E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f006r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.1. C8051F000/05/10/15 Block Diagram

1.4. Programmable Digital I/O and Crossbar

The standard 8051 Ports (0, 1, 2, and 3) are available on the MCUs. All four ports are pinned out on the F000/05/10/15. Ports 0 and 1 are pinned out on the F001/06/11/16, and only Port 0 is pinned out on the F002/07/12/17. The Ports not pinned out are still available for software use as general purpose registers. The Port I/O behave like the standard 8051 with a few enhancements.

Each Port I/O pin can be configured as either a push-pull or open-drain output. Also, the "weak pull-ups" which are normally fixed on an 8051 can be globally disabled, providing additional power saving capabilities for low power applications.

Perhaps the most unique enhancement is the Digital Crossbar. This is essentially a large digital switching network that allows mapping of internal digital system resources to Port I/O pins on P0, P1, and P2. (See Figure 1.8.) Unlike microcontrollers with standard multiplexed digital I/O, all combinations of functions are supported.

The on-board counter/timers, serial buses, HW interrupts, ADC Start of Conversion input, comparator outputs, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources needed for his particular application.

Figure 1.8. Digital Crossbar Diagram

4. PINOUT AND PACKAGE DEFINITIONS

Table 4.1. Pin Definitions

	Pin Numbers							
Name	F000	F001	F002	Type	Description			
1 vanne	F003 F010	F000 F011	F007 F012	турс	Description			
	F015	F016	F017					
VDD	31,	23,	18,		Digital Voltage Supply.			
	40,	32	20					
	62							
DGND	30.	22.	17.		Digital Ground.			
	41	33	21					
	61	27						
	01	19						
AV+	16	13	0		Positive Analog Voltage Supply			
	10,	13,	$\frac{9}{20}$		roshive rinding voluge supply.			
ACNID	17 5	43	29		Analog Ground			
AGND	Э, 1 <i>5</i>	44,	8, 20		Allalog Glound.			
mair	15	12	30	D T				
TCK	22	18	14	D In	JTAG Test Clock with internal pull-up.			
TMS	21	17	13	D In	JTAG Test-Mode Select with internal pull-up.			
TDI	28	20	15	D In	JTAG Test Data Input with internal pull-up. TDI is latched on a rising edge of TCK.			
TDO	29	21	16	D Out	JTAG Test Data Output with internal pull-up. Data is shifted out on TDO on the falling edge of TCK TDO output is a tri-state driver			
ΧͲΔΤ.1	18	14	10	A Tn	Crystal Input This pin is the return for the internal oscillator circuit for a			
	10	14	10		crystal or ceramic resonator. For a precision internal clock, connect a crystal			
					or ceramic resonator from XTAL1 to XTAL2. If overdriven by an external			
					CMOS clock, this becomes the system clock.			
XTAL2	19	15	11	A Out	Crystal Output. This pin is the excitation driver for a crystal or ceramic			
					resonator.			
/RST	20	16	12	D I/O	Chip Reset. Open-drain output of internal Voltage Supply monitor. Is driven			
					low when VDD is < 2.7 V. An external source can force a system reset by			
					driving this pin low.			
VREF	6	3	3	A I/O	Voltage Reference. When configured as an input, this pin is the voltage			
					reference for the MCU. Otherwise, the internal reference drives this pin.			
CP0+	4	2	2	A In	Comparator 0 Non-Inverting Input.			
CP0-	3	1	1	A In	Comparator 0 Inverting Input.			
CP1+	2	45		A In	Comparator 1 Non-Inverting Input.			
CP1-	1	46		A In	Comparator 1 Inverting Input.			
DAC0	64	48	32	A Out	Digital to Analog Converter Output 0. The DAC0 voltage output. (See			
					Section 7 DAC Specification for complete description).			
DAC1	63	47	31	A Out	Digital to Analog Converter Output 1. The DAC1 voltage output. (See			
					Section 7 DAC Specification for complete description).			
AIN0	7	4	4	A In	Analog Mux Channel Input 0. (See ADC Specification for complete			
					description).			
AINI	8	5	5	A In	Analog Mux Channel Input 1. (See ADC Specification for complete			
	_				description).			
AIN2	9	6	6	A In	Analog Mux Channel Input 2. (See ADC Specification for complete			
ר א ד אד ס	10	-	-	7 T	description).			
AIN3	10	/	/	AIN	Analog Mux Channel Input 3. (See ADC Specification for complete			
7 T NT /	11	0		<u>λ</u> Τη	Apolog Mux Channel Input 4 (See ADC Specification for complete			
LTINI	11	ð		A 111	description)			
ATN5	12	0		A Tn	Analog Mux Channel Input 5 (See ADC Specification for complete			
11110	12	2			description).			
L			L					

6.2. ADC Modes of Operation

The ADC uses VREF to determine its full-scale voltage, thus the reference must be properly configured before performing a conversion (see Section 9). The ADC has a maximum conversion speed of 100ksps. The ADC conversion clock is derived from the system clock. Conversion clock speed can be reduced by a factor of 2, 4, 8 or 16 via the ADCSC bits in the ADC0CF Register. This is useful to adjust conversion speed to accommodate different system clock speeds.

A conversion can be initiated in one of four ways, depending on the programmed states of the ADC Start of Conversion Mode bits (ADSTM1, ADSTM0) in ADC0CN. Conversions may be initiated by:

- 1. Writing a 1 to the ADBUSY bit of ADC0CN;
- 2. A Timer 3 overflow (i.e. timed continuous conversions);
- 3. A rising edge detected on the external ADC convert start signal, CNVSTR;
- 4. A Timer 2 overflow (i.e. timed continuous conversions).

Writing a 1 to ADBUSY provides software control of the ADC whereby conversions are performed "on-demand". During conversion, the ADBUSY bit is set to 1 and restored to 0 when conversion is complete. The falling edge of ADBUSY triggers an interrupt (when enabled) and sets the ADCINT interrupt flag. Note: When conversions are performed "on-demand", the ADCINT flag, not ADBUSY, should be polled to determine when the conversion has completed. Converted data is available in the ADC data word MSB and LSB registers, ADCOH, ADCOL. Converted data can be either left or right justified in the ADCOH:ADCOL register pair (see example in Figure 6.9) depending on the programmed state of the ADLJST bit in the ADCOCN register.

The ADCTM bit in register ADC0CN controls the ADC track-and-hold mode. In its default state, the ADC input is continuously tracked, except when a conversion is in progress. Setting ADCTM to 1 allows one of four different low power track-and-hold modes to be specified by states of the ADSTM1-0 bits (also in ADC0CN):

- 1. Tracking begins with a write of 1 to ADBUSY and lasts for 3 SAR clocks;
- 2. Tracking starts with an overflow of Timer 3 and lasts for 3 SAR clocks;
- 3. Tracking is active only when the CNVSTR input is low;
- 4. Tracking starts with an overflow of Timer 2 and lasts for 3 SAR clocks.

Modes 1, 2 and 4 (above) are useful when the start of conversion is triggered with a software command or when the ADC is operated continuously. Mode 3 is used when the start of conversion is triggered by external hardware. In this case, the track-and-hold is in its low power mode at times when the CNVSTR input is high. Tracking can also be disabled (shutdown) when the entire chip is in low power standby or sleep modes.

r	0				0	· · · · · · · · · · · · · · · · · · ·	/	
R/W	V R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ADC	EN ADCTM	ADCINT	ADBUSY	ADSTM1	ADSTM0	ADWINT	ADLJST	0000000
Bit7	7 Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit addressable)	0xE8
Bit7:	ADCEN: ADC	Enable Bit						
	0: ADC Disabl	ed. ADC is	in low power	shutdown.				
	1: ADC Enable	ed. ADC is a	ctive and rea	dy for data co	onversions.			
Bit6:	ADCTM: ADC	Track Mode	Bit	•				
	0: When the A	DC is enable	d, tracking is	always done	unless a con	version is in	process	
	1: Tracking De	fined by AD	STM1-0 bits					
	ADST	M1-0:						
	00: Ti	acking starts	with the writ	te of 1 to AD	BUSY and la	asts for 3 SA	R clocks	
	01: Ti	acking starte	d by the over	flow of Time	er 3 and last f	for 3 SAR clo	ocks	
	10: A	DC tracks on	ly when CNV	/STR input is	s logic low			
	11: Ti	acking starte	d by the over	flow of Time	er 2 and last f	for 3 SAR clo	ocks	
Bit5:	ADCINT: ADC	^C Conversion	Complete In	terrupt Flag				
	(Must be cleare	d by softwar	e)					
	0: ADC has no	t completed a	a data conver	sion since the	e last time thi	s flag was cl	eared	
D:44.	1: ADC has co	mpleted a da	ta conversion					
Б114:	ADBUST: AD	C Busy Bit						
	0: ADC Convo	rsion comple	to or no valid	l data has has	n convorted	since a reset	The felling	
	0. ADC Collive	BUSV gener	ates an interr	i uata nas bee	bled	since a reset.	The failing	
	1. ADC Busy of	converting da	ta	ipt when that	bicu.			
	Write	converting du	itu					
	0: No effect							
	1: Starts ADC	Conversion i	f ADSTM1-0	0 = 00b				
Bits3-2	2: ADSTM1-0: A	DC Start of C	Conversion M	lode Bits				
	00: ADC conv	ersion started	l upon every	write of 1 to 2	ADBUSY			
	01: ADC conv	ersions taken	on every ove	erflow of Tim	ner 3			
	10: ADC conv	ersion started	l upon every i	rising edge of	f CNVSTR			
	11: ADC conv	ersions taken	on every ove	erflow of Tim	ner 2			
Bit1:	ADWINT: AD	C Window C	ompare Inter	rupt Flag				
	(Must be cleare	d by softwar	e)					
	0: ADC Windo	ow Compariso	on Data mate	h has not occ	urred			
DHO	I: ADU Windo	w Comparis	on Data mate	n occurred				
B110:	ADLJST: ADC	COLLADCOL	Data Bit					
	1. Data III ADO		Registers is 1	laft instified	L			
	1. Data ili ADC		Registers is i	ien justineu				

Figure 6.7. ADC0CN: ADC Control Register (C8051F01x)

		,				0		
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CP0EN	CP0OUT	CP0RIF	CP0FIF	CP0HYP1	CP0HYP0	CP0HYN1	CP0HYN0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x9E
Bit7:	CP0EN: Com	parator 0 Ena	ıble Bit					
	0: Comparato	r 0 Disabled						
	1: Comparato	r 0 Enabled.						
Bit6:	CP0OUT: Con	mparator 0 O	utput State F	Flag				
	0: Voltage on	CP0+ < CP0)-					
	1: Voltage on	CP0+>CP0)-					
Bit5:	CP0RIF: Com	parator 0 Ris	sing-Edge In	terrupt Flag				
	0: No Compa	rator 0 Risin	g-Edge Inter	rupt has occu	rred since thi	s flag was clo	eared	
	1: Comparato	r 0 Rising-E	dge Interrupt	has occurred	since this fla	ag was cleare	ed	
Bit4:	CP0FIF: Com	parator 0 Fal	ling-Edge In	terrupt Flag				
	0: No Compa	rator 0 Fallin	g-Edge Inter	rupt has occu	rred since th	is flag was cl	leared	
	1: Comparato	r 0 Falling-E	dge Interrup	t has occurred	d since this fl	ag was cleare	ed	
Bit3-2:	CP0HYP1-0:	Comparator) Positive Hy	steresis Cont	trol Bits			
	00: Positive H	Iysteresis Di	sabled					
	01: Positive H	Hysteresis = 2	2mV					
	10: Positive H	Iysteresis = 4	lmV					
	11: Positive H	Iysteresis = 1	0mV					
Bit1-0:	CP0HYN1-0:	Comparator	0 Negative H	Iysteresis Co	ntrol Bits			
	00: Negative	Hysteresis D	isabled					
	01: Negative	Hysteresis =	2mV					
	10: Negative	Hysteresis =	4mV					
	11: Negative	Hysteresis =	10mV					

Figure 8.3. CPT0CN: Comparator 0 Control Register

57

Mnemonic	onic Description		
	ARITHMETIC OPERATIONS		
ADD A,Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A,@Ri	Add indirect RAM to A	1	2
ADD A,#data	Add immediate to A	2	2
ADDC A,Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A,@Ri	Add indirect RAM to A with carry	1	2
ADDC A,#data	Add immediate to A with carry	2	2
SUBB A,Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A,@Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A,#data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DAA	Decimal Adjust A	1	1
DITI	LOGICAL OPERATIONS	1	1
ANL A Rn	AND Register to A	1	1
ANL A direct	AND direct byte to A	2	2
ANL A @Ri	AND indirect RAM to A	1	2
ANL A #data	AND immediate to A	2	2
ANL direct A	AND A to direct byte	2	2
ANI direct #data	AND immediate to direct byte	3	3
ORI A Rn	OR Register to A	1	1
ORL A direct	OR direct byte to A	2	2
ORL A @Ri	OR indirect RAM to A	1	2
ORL A #data	OR immediate to A	2	2
ORL A;rdata	OR A to direct byte	2	2
ORL direct #data	OR A to direct byte	3	3
VPL A Pn	Exclusive OP Pagister to A		1
XRL A,RII	Exclusive-OK Register to A	- 1	1
XRL A, dilect	Exclusive-OK direct byte to A		2
XRL A, @KI	Exclusive-OR indirect RAW to A	- 1	2
XRL A,#uata	Exclusive-OK initiediate to A	2	2
XRL direct,A	Exclusive-OK A to direct byte	2	2
CLD A	Clean A		<u> </u>
	Crear A	1	1
UPL A	Complement A		
KL A			
KLC A	Kotate A left through carry	1	1

Table 10.1. CIP-51 Instruction Set Summary

Mnemonic	Description	Bytes	Clock Cycles
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A,#data,rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn,#data,rel	Compare immediate to register and jump if not equal	3	3/4
CJNE @Ri,#data,rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn,rel	Decrement register and jump if not zero	2	2/3
DJNZ direct,rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through register R0-R1

rel - 8-bit, signed (two's compliment) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00-0x7F) or an SFR (0x80-0xFF).

#data - 8-bit constant

#data 16 - 16-bit constant

bit - Direct-addressed bit in Data RAM or SFR.

addr 11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2K-byte page of program memory as the first byte of the following instruction.

addr 16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 64K-byte program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

Address	Register	Description	Page No.
0x89	TMOD	Counter/Timer Mode	143
0x91	TMR3CN	Timer 3 Control	152
0x95	TMR3H	Timer 3 High	153
0x94	TMR3L	Timer 3 Low	153
0x93	TMR3RLH	Timer 3 Reload High	153
0x92	TMR3RLL	Timer 3 Reload Low	153
0xFF	WDTCN	Watchdog Timer Control	96
0xE1	XBR0	Port I/O Crossbar Configuration 1	105
0xE2	XBR1	Port I/O Crossbar Configuration 2	107
0xE3	XBR2	Port I/O Crossbar Configuration 3	108
0x84-86, 0x96-97, 0x9C, 0xA1-A3, 0xA9-AC, 0xAE, 0xB3-B5, 0xB9, 0xBD, 0xC9, 0xCE, 0xDE, 0xE4-E5, 0xF1-F5		Reserved	

* Refers to a register in the C8051F000/1/2/5/6/7 only. ** Refers to a register in the C8051F010/1/2/5/6/7 only. *** Refers to a register in the C8051F005/06/07/15/16/17 only.

Figure 10.7. ACC: Accumulator

Figure 10.8. B: B Register

13. RESET SOURCES

The reset circuitry of the MCUs allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the CIP-51 halts program execution, forces the external port pins to a known state and initializes the SFRs to their defined reset values. Interrupts and timers are disabled. On exit, the program counter (PC) is reset, and program execution starts at location 0x0000.

All of the SFRs are reset to predefined values. The reset values of the SFR bits are defined in the SFR detailed descriptions. The contents of internal data memory are not changed during a reset and any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost even though the data on the stack are not altered.

The I/O port latches are reset to 0xFF (all logic ones), activating internal weak pull-ups which take the external I/O pins to a high state. The weak pull-ups are enabled during and after the reset. If the source of reset is from the VDD Monitor or writing a 1 to PORSF, the /RST pin is driven low until the end of the VDD reset timeout.

On exit from the reset state, the MCU uses the internal oscillator running at 2MHz as the system clock by default. Refer to Section 14 for information on selecting and configuring the system clock source. The Watchdog Timer is enabled using its longest timeout interval. (Section 13.8 details the use of the Watchdog Timer.)

There are seven sources for putting the MCU into the reset state: power-on/power-fail, external /RST pin, external CNVSTR signal, software commanded, Comparator 0, Missing Clock Detector, and Watchdog Timer. Each reset source is described below:

14.1. External Crystal Example

If a crystal or ceramic resonator were used to generate the system clock for the MCU, the circuit would be as shown in Figure 14.1, Option 1. For an ECS-110.5-20-4 crystal, the resonate frequency is 11.0592MHz, the intrinsic capacitance is 7pF, and the ESR is 60Ω . The compensation capacitors should be 33pF each, and the PWB parasitic capacitance is estimated to be 2pF. The appropriate External Oscillator Frequency Control value (XFCN) from the Crystal column in the table in Figure 14.3 (OSCXCN Register) should be 111b.

Because the oscillator detect circuitry needs time to settle after the crystal oscillator is enabled, software should wait at least 1ms between enabling the crystal oscillator and polling the XTLVLD bit. The recommend procedure is:

- 1. Enable the external oscillator
- 2. Wait at least 1 ms
- 3. Poll for XTLVLD '0' ==> '1'
- 4. Switch to the external oscillator

Switching to the external oscillator before the crystal oscillator has stabilized could result in unpredictable behavior.

NOTE: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device, keeping the traces as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

14.2. External RC Example

If an external RC network were used to generate the system clock for the MCU, the circuit would be as shown in Figure 14.1, Option 2. The capacitor must be no greater than 100pF, but using a very small capacitor will increase the frequency drift due to the PWB parasitic capacitance. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100kHz, let $R = 246k\Omega$ and C = 50pF:

 $f = 1.23(10^3)/RC = 1.23(10^3) / [246 * 50] = 0.1MHz = 100kHz$

$$\begin{split} XFCN &\geq \log_2(f/25kHz) \\ XFCN &\geq \log_2(100kHz/25kHz) = \log_2(4) \\ XFCN &\geq 2, \text{ or code } 010 \end{split}$$

14.3. External Capacitor Example

If an external capacitor were used to generate the system clock for the MCU, the circuit would be as shown in Figure 14.1, Option 3. The capacitor must be no greater than 100pF, but using a very small capacitor will increase the frequency inaccuracy due to the PWB parasitic capacitance. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the equations below. Assume AV + = 3.0V and C = 50pF:

f = KF / (C * VDD) = KF / (50 * 3)f = KF / 150

If a frequency of roughly 90kHz is desired, select the K Factor from the table in Figure 14.3 as KF = 13:

f = 13 / 150 = 0.087 MHz, or 87 kHz

Therefore, the XFCN value to use in this example is 011.

Figure 15.11.	P2: Port2 Register
---------------	--------------------

R/W P2.7	R/W P2.6	R/W P2.5	R/W P2.4	R/W P2.3	R/W P2.2	R/W P2.1	R/W P2.0	Reset Value 11111111
Bit7	Bit6	Bit	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit addressable)	0xA0
Bits7-0: F (1 ((1 (1	2.[7:0] Write – Outp): Logic Low : Logic High Read – Regar): P2.n is logi : P2.n is logi	ut appears or Output. a Output (hig rdless of XBF ic low. ic high.	1 I/O pins per h-impedance R0, XBR1, ar	XBR0, XBR if correspond nd XBR2 Reg	81, and XBR2 ding PRT2CI gister settings	2 registers) F.n bit = 0) 5).		

Figure 15.12. PRT2CF: Port2 Configuration Register

18. UART

The UART is a serial port capable of asynchronous transmission. The UART can function in full duplex mode. In all modes, receive data is buffered in a holding register. This allows the UART to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART has an associated Serial Control Register (SCON) and a Serial Data Buffer (SBUF) in the SFRs. The single SBUF location provides access to both transmit and receive registers. Reads access the Receive register and writes access the Transmit register automatically.

The UART is capable of generating interrupts if enabled. The UART has two sources of interrupts: a Transmit Interrupt flag, TI (SCON.1) set when transmission of a data byte is complete, and a Receive Interrupt flag, RI (SCON.0) set when reception of a data byte is complete. The UART interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software. This allows software to determine the cause of the UART interrupt (transmit complete or receive complete).

18.1. UART Operational Modes

The UART provides four operating modes (one synchronous and three asynchronous) selected by setting configuration bits in the SCON register. These four modes offer different baud rates and communication protocols. The four modes are summarized in Table 18.1 below. Detailed descriptions follow.

Mode	Synchronization	Baud Clock	Data Bits	Start/Stop Bits
0	Synchronous	SYSCLK/12	8	None
1	Asynchronous	Timer 1 or Timer 2 Overflow	8	1 Start, 1 Stop
2	Asynchronous	SYSCLK/32 or SYSCLK/64	9	1 Start, 1 Stop
3	Asynchronous	Timer 1 or Timer 2 Overflow	9	1 Start, 1 Stop

Table 18.1. UART Modes

18.1.1. Mode 0: Synchronous Mode

Mode 0 provides synchronous, half-duplex communication. Serial data is transmitted and received on the RX pin. The TX pin provides the shift clock for both transmit and receive. The MCU must be the master since it generates the shift clock for transmission in both directions (see the interconnect diagram in Figure 18.2).

Eight data bits are transmitted/received, LSB first (see the timing diagram in Figure 18.3). Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt Flag (SCON.1) is set at the end of the eighth bit time. Data reception begins when the REN Receive Enable bit (SCON.4) is set to logic 1 and the RI Receive Interrupt Flag (SCON.0) is cleared. One cycle after the eighth bit is shifted in, the RI flag is set and reception stops until software clears the RI bit. An interrupt will occur if enabled when either TI or RI is set.

The Mode 0 baud rate is the system clock frequency divided by twelve. RX is forced to open-drain in mode 0, and an external pull-up will typically be required.

Figure 18.3. UART Mode 0 Timing Diagram

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is 0 or the input signal /INT0 is logic-level one. Setting GATE0 to logic 1 allows the timer to be controlled by the external input signal /INT0, facilitating pulse width measurements.

TR0	GATE0	/INT0	Counter/Timer
0	X	Х	Disabled
1	0	Х	Enabled
1	1	0	Disabled
1	1	1	Enabled
X = D	on't Care		

Setting TR0 does not reset the timer register. The timer register should be initialized to the desired value before enabling the timer.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0.

Figure 19.1. T0 Mode 0 Block Diagram

19.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

20.1.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software.

20.1.4. Pulse Width Modulator Mode

All of the modules can be used independently to generate pulse width modulated (PWM) outputs on their respective CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer. The duty cycle of the PWM output signal is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 20.6). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the PCA0CPHn without software intervention. It is good practice to write to PCA0CPHn instead of PCA0CPLn to avoid glitches in the digital comparator. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables Pulse Width Modulator mode.

Figure 20.11.	PCA0L:	PCA	Counter/Timer	Low Byte
			••••	

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xE9			
Bits 7-0: PCA0L: PCA Counter/Timer Low Byte. The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.											

Figure 20.12. PCA0H: PCA Counter/Timer High Byte

Figure 20.13. PCA0CPLn: PCA Capture Module Low Byte

Figure 20.14. PCA0CPHn: PCA Capture Module High Byte

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
	D'/7	Dire	D://5	Ditt	D'/2	D:/2	D'(1	D':0	00000000			
	Bit/	B10	Bits	Bit4	Bit3	Bit2	Bitl	Bit0	0xFA-0xFE			
	PCA0CPH	In Address:	PCA0CF	PH0 = 0xFA	(n = 0)							
	PCA0CPH1 = 0xFB (n = 1)											
	PCA0CPH2 = 0xFC(n = 2)											
	PCA0CPH3 = 0xFD(n = 3)											
	PCA0CPH4 = 0xFE (n = 4)											
	Bits7-0: PCA0CPHn: PCA Capture Module High Byte.											
	The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n.											

Figure 21.5. FLASHDAT: JTAG Flash Data Register

	÷		÷		÷	÷			÷	Reset Value	
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	FAIL	FBUSY	000000000	
Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
This register is used to read or write data to the Flash memory across the JTAG interface. Bits9-2: DATA7-0: Flash Data Byte.											
Bit1:	 Bit1: FAIL: Flash Fail Bit. 0: Previous Flash memory operation was successful. 1: Previous Flash memory operation failed. Usually indicates the associated memory location was locked. 										
Bit0:	 FBUSY: Flash Busy Bit. 0: Flash interface logic is not busy. 1: Flash interface logic is processing a request. Reads or writes while FBUSY = 1 will not initiate another operation 										

Figure 21.6. FLASHSCL: JTAG Flash Scale Register

FOSE	ED 4 E							1.0000 Turde				
	FRAE	_	-	FLSCL3	FLSCL2	FLSCL1	FLSCL0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
This reg timing f	This register controls the Flash read timing circuit and the prescaler required to generate the correct timing for Flash operations.											
Bit7:	Bit7: FOSE: Flash One-Shot Enable Bit.											
	0: Flash read	strobe is a fu	ll clock-cycle	e wide.								
	1: Flash read	strobe is 50n	sec.									
Bit6:	FRAE: Flash I	Read Always	Bit.	1.6. 1	1	1	1 1 .1					
	0: The Flash of Elash mom	output enable	e and sense a	mplifier enab	le are on only	y when neede	ed to read the					
	1. The Flash of	ory. Sutnut enable	and sense a	mnlifier enab	le are always	on This ca	n be used to					
	limit the variations in digital supply current due to switching the sense amplifiers, thereby reducing digitally induced noise.											
Bits5-4:	Bits5-4: UNUSED. Read = 00b, Write = don't care.											
Bits3-0:	FLSCL3-0: Fl	ash Prescale	Control Bits	s.								
	The FLSCL3-	0 bits control	l the prescale	r used to gen	erate timing	signals for Fl	ash					
	operations. Its	s value shoul	d be written	before any Fl	ash operation	ns are initiate	d. The value					
	written should be the smallest integer for which:											
	$FLSCL[3:0] > log_2(f_{SYSCLK} / 50kHz)$											
	Where f_{SYSCLK} is the system clock frequency. All Flash read/write/erase operations are disallowed when FLSCL[3:0] = 1111b.											

