

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	8
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 4x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f007-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.	SYSTEM OVERVIEW	. 8
	Table 1.1. Product Selection Guide	8
	Figure 1.1. C8051F000/05/10/15 Block Diagram	9
	Figure 1.2. C8051F001/06/11/16 Block Diagram	.10
	Figure 1.3. C8051F002/07/12/17 Block Diagram	.11
	1.1. CIP-51 TM CPU	.12
	Figure 1.4. Comparison of Peak MCU Execution Speeds	.12
	Figure 1.5. On-Board Clock and Reset	.13
	1.2. On-Board Memory	.14
	Figure 1.6. On-Board Memory Map	.14
	1.3. JTAG Debug and Boundary Scan	.15
	Figure 1.7. Debug Environment Diagram	.15
	1.4. Programmable Digital I/O and Crossbar	16
	Figure 1.8. Digital Crossbar Diagram	16
	1.5. Programmable Counter Array	.17
	Figure 1.9. PCA Block Diagram	.17
	1.6. Serial Ports	.17
	1.7. Analog to Digital Converter	18
	Figure 1.10. ADC Diagram	18
	1.8. Comparators and DACs	.19
_	Figure 1.11. Comparator and DAC Diagram.	.19
2.	ABSOLUTE MAXIMUM RATINGS*	20
3.	GLOBAL DC ELECTRICAL CHARACTERISTICS	20
4.	PINOUT AND PACKAGE DEFINITIONS	21
	Table 4.1. Pin Definitions	.21
	Figure 4.1. TQFP-64 Pinout Diagram	.23
	Figure 4.2. TQFP-64 Package Drawing	.24
	Figure 4.3. TQFP-48 Pinout Diagram	.25
	Figure 4.4. TQFP-48 Package Drawing	.26
	Figure 4.5. LQFP-32 Pinout Diagram	.27
	Figure 4.6. LQFP-32 Package Drawing	.28
5.	ADC (12-Bit, C8051F000/1/2/5/6/7 Only)	29
	Figure 5.1. 12-Bit ADC Functional Block Diagram	.29
	5.1. Analog Multiplexer and PGA	.29
	5.2. ADC Modes of Operation	.30
	Figure 5.2. 12-Bit ADC Track and Conversion Example Timing	.30
	Figure 5.3. Temperature Sensor Transfer Function	.31
	Figure 5.4. AMX0CF: AMUX Configuration Register (C8051F00x)	.31
	Figure 5.5. AMX0SL: AMUX Channel Select Register (C8051F00x)	.32
	Figure 5.6. ADC0CF: ADC Configuration Register (C8051F00x)	.33
	Figure 5.7. ADC0CN: ADC Control Register (C8051F00x)	.34
	Figure 5.8. ADC0H: ADC Data Word MSB Register (C8051F00x)	.35
	Figure 5.9. ADC0L: ADC Data Word LSB Register (C8051F00x)	.35
	5.3. ADC Programmable Window Detector	.36
	Figure 5.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F00x)	.36
	Figure 5.11. ADCOGTL: ADC Greater-Than Data Low Byte Register (C8051F00x)	.36
	Figure 5.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F00x)	.36
	Figure 5.15. ADCULIL: ADC Less-Inan Data Low Byte Register (C8051F00x)	.36
	Figure 5.14. 12-Bit ADC Window Interrupt Examples, Kight Justified Data	.31
	Figure 5.15. 12-Bit ADC Window Interrupt Examples, Left Justified Data	.37
	Figure 5.15. 12-Bit ADC window interrupt Examples, Left Justified Data	.30

1.8. Comparators and DACs

The C8051F000 MCU Family has two 12-bit DACs and two comparators on chip (the second comparator, CP1, is not bonded out on the F002, F007, F012, and F017). The MCU data and control interface to each comparator and DAC is via the Special Function Registers. The MCU can place any DAC or comparator in low power shutdown mode.

The comparators have software programmable hysteresis. Each comparator can generate an interrupt on its rising edge, falling edge, or both. The comparators' output state can also be polled in software. These interrupts are capable of waking up the MCU from idle mode. The comparator outputs can be programmed to appear on the Port I/O pins via the Crossbar.

The DACs are voltage output mode and use the same voltage reference as the ADC. They are especially useful as references for the comparators or offsets for the differential inputs of the ADC.

Figure 1.11. Comparator and DAC Diagram

4. PINOUT AND PACKAGE DEFINITIONS

Table 4.1. Pin Definitions

	Pin	Numb	pers		
Name	F000	F001	F002	Type	Description
1 vanne	F003 F010	F000 F011	F007 F012	турс	Description
	F015	F016	F017		
VDD	31,	23,	18,		Digital Voltage Supply.
	40,	32	20		
	62				
DGND	30.	22.	17.		Digital Ground.
	41	33	21		
	61	27			
	01	19			
AV+	16	13	0		Positive Analog Voltage Supply
	10,	13,	$\frac{2}{20}$		roshive rinding voluge supply.
ACNID	17 5	43	29		Analog Ground
AGND	Э, 1 <i>5</i>	44,	8, 20		Allalog Glound.
marr	15	12	30	D T	
TCK	22	18	14	D In	JTAG Test Clock with internal pull-up.
TMS	21	17	13	D In	JTAG Test-Mode Select with internal pull-up.
TDI	28	20	15	D In	JTAG Test Data Input with internal pull-up. TDI is latched on a rising edge of TCK.
TDO	29	21	16	D Out	JTAG Test Data Output with internal pull-up. Data is shifted out on TDO on the falling edge of TCK TDO output is a tri-state driver
ΧͲΔΤ.1	18	14	10	A Tn	Crystal Input This pin is the return for the internal oscillator circuit for a
	10	14	10		crystal or ceramic resonator. For a precision internal clock, connect a crystal
					or ceramic resonator from XTAL1 to XTAL2. If overdriven by an external
					CMOS clock, this becomes the system clock.
XTAL2	19	15	11	A Out	Crystal Output. This pin is the excitation driver for a crystal or ceramic
					resonator.
/RST	20	16	12	D I/O	Chip Reset. Open-drain output of internal Voltage Supply monitor. Is driven
					low when VDD is < 2.7 V. An external source can force a system reset by
					driving this pin low.
VREF	6	3	3	A I/O	Voltage Reference. When configured as an input, this pin is the voltage
					reference for the MCU. Otherwise, the internal reference drives this pin.
CP0+	4	2	2	A In	Comparator 0 Non-Inverting Input.
CP0-	3	1	1	A In	Comparator 0 Inverting Input.
CP1+	2	45		A In	Comparator 1 Non-Inverting Input.
CP1-	1	46		A In	Comparator 1 Inverting Input.
DAC0	64	48	32	A Out	Digital to Analog Converter Output 0. The DAC0 voltage output. (See
					Section 7 DAC Specification for complete description).
DAC1	63	47	31	A Out	Digital to Analog Converter Output 1. The DAC1 voltage output. (See
					Section 7 DAC Specification for complete description).
AIN0	7	4	4	A In	Analog Mux Channel Input 0. (See ADC Specification for complete
					description).
AINI	8	5	5	A In	Analog Mux Channel Input 1. (See ADC Specification for complete
	_				description).
AIN2	9	6	6	A In	Analog Mux Channel Input 2. (See ADC Specification for complete
ר א ד אד ס	10	-	-	7 T	description).
AIN3	10	/	/	AIN	Analog Mux Channel Input 3. (See ADC Specification for complete
7 T NT /	11	0		<u>λ</u> Τη	Apolog Mux Channel Input 4 (See ADC Specification for complete
LTINI	11	ð		A 111	description)
ATN5	12	0		A Tn	Analog Mux Channel Input 5 (See ADC Specification for complete
11110	12	2			description).
			L		

Figure 6.14. 10-Bit ADC Window Interrupt Examples, Right Justified Data

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 0000000 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 0xD3 Bits7-0: DAC0 Data Word Most Significant Byte.

Figure 7.2. DAC0H: DAC0 High Byte Register

Figure 7.3. DAC0L: DAC0 Low Byte Register

Figure 7.4. DAC0CN: DAC0 Control Register

R/W	7	R/W	R/W	R/W	R	W/W	R/W	R/W	R/W	Reset Value
DACO	EN	-	-	-		-	DAC0DF2	DAC0DF1	DAC0DF0	00000000
Bit7		Bit6	Bit5	Bit4	В	it3	Bit2	Bit1	Bit0	SFR Address:
										0xD4
Bit7.	D۵		⁻ 0 Enable Bit	÷						
Dit/.	0. T	ACO Disal	bled DACO	Output pin is	dicabl	ed: D4	$\Delta C0$ is in low	nower shut	lown mode	
	0. L 1. Г	ACO Enah	led DACO	Dutput pill is	active		is operation	al	iown mode.	
Bits6-3	\cdot IINI	ISED Rea	d = 0000b V	Vrite = don't	care	DITC	o is operation	iui.		
Bits2-0		СОДЕ2-0: Г	DAC0 Data F	ormat Bits	cure					
D102 0	000:	The most	significant ny	whole of the l	DACO	Data V	Vord is in DA	AC0H[3:0]. v	while the least	significant
	000	byte is in	DAC0L.			2		10011[010],		5-8
		-)	DACOH					DACOL		
			MSB					DIICOL]	LSB
	001:	The most	significant 5	bits of the D	AC0 I	Data W	ord is in DA	C0H[4:0], wl	hile the least	significant
		7-bits is ir	n DAC0L[7:1].						
			DAC0H					DAC0L		
			MSB						LSB	
	010:	The most	significant 6-	bits of the D	AC0 I	Data W	ord is in DA	C0H[5:0], wl	hile the least	significant
	-	6-bits is ir	n DAC0L[7:2	2].						
			DAC0H					DAC0L		
		MSB							LSB	
	011:	The most	significant 7-	bits of the D	AC0 E	Data W	ord is in DA	C0H[6:0], wl	hile the least	significant
	1	5-bits is in	n DAC0L[7:3].						
			DAC0H			-		DAC0L		
	1	MSB TIL			COD	4 - X V -		LSB	1	
	IXX:	in in DAC	significant by	yte of the DA	CU Da	ita wo	rd is in DAC	OH, while the	e least signifi	cant nybble
		is in DAC	0L[7:4].					DAGOI		
	MCD	I I	DACOH	T T	1			DACOL		
	MSB							LSB		

Table 7.1. DAC Electrical Characteristics

VDD = 3.0V, AV + = 3.0V, R	EF = 2.40V (REFBE=0), No Output Load un	less other	wise speci	fied.	
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
STATIC PERFORMANCE					
Resolution			12		bits
Integral Nonlinearity	For Data Word Range 0x014 to 0xFEB		±2		LSB
Differential Nonlinearity	Guaranteed Monotonic (codes 0x014 to			±1	LSB
	0xFEB)				
Output Noise	No Output Filter		250		μVrms
	100kHz Output Filter		128		
	10kHz Output Filter		41		
Offset Error	Data Word = $0x014$		±3	±30	mV
Offset Tempco			6		ppm/°C
Full-Scale Error			±20	±60	mV
Full-Scale Error Tempco			10		ppm/°C
VDD Power-Supply			-60		dB
Rejection Ratio					
Output Impedance in	DACnEN=0		100		kΩ
Shutdown Mode					
Output Cumont			+300		uА
Output Current			1300		μΑ
Output Short Circuit Current	Data Word = $0xFFF$		15		mA
DYNAMIC PERFORMANC	CE				
Voltage Output Slew Rate	Load = 40 pF		0.44		V/µs
Output Settling Time To ¹ / ₂	Load = 40pF, Output swing from code		10		μs
LSB	0xFFF to 0x014				
Output Voltage Swing		0		REF-	V
				1LSB	
Startup Time	DAC Enable asserted		10		μs
ANALOG OUTPUTS					
Load Regulation	$I_L = 0.01 \text{mA}$ to 0.3mA at code 0xFFF		60		ppm
CURRENT CONSUMPTIO	N (each DAC)				
Power Supply Current (AV+	Data Word = $0x7FF$		110	400	μA
supplied to DAC)					

10. CIP-51 CPU

The MCUs' system CPU is the CIP-51. The CIP-51 is fully compatible with the MCS-51TM instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are four 16-bit counter/timers (see description in Section 19), a full-duplex UART (see description in Section 18), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (see Section 10.3), and four byte-wide I/O Ports (see description in Section 14). The CIP-51 also includes on-chip debug hardware (see description in Section 21), and interfaces directly with the MCUs' analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

Features

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 10.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput with 25MHz Clock
- 0 to 25MHz Clock Frequency (on 'F0x5/6/7)
- Four Byte-Wide I/O Ports
- Extended Interrupt Handler

- Reset Input
- Power Management Modes
- On-chip Debug Circuitry
- Program and Data Memory Security

R/W	R/W	V	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
CY	AC	2	F0	RS1	RS0	OV	F1	PARITY	00000000			
Bit7	Bite	<u>.</u>	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								(bit addressable)	0xD0			
Bit7:	CY: Carr	y Flag.										
	This bit i	s set whe	n the last	arithmeti	c operation re	sults in a carry	(addition) or	a borrow				
	(subtract	ion). It is	s cleared	to 0 bv al	l other arithm	etic operations.	· /					
	(- /		,		I						
Bit6:	AC: Aux	iliary Ca	rry Flag.									
	This bit i	This bit is set when the last arithmetic operation results in a carry into (addition) or a										
	borrow fr	borrow from (subtraction) the high order nibble. It is cleared to 0 by all other arithmetic										
	operation	operations.										
	1											
Bit5:	F0: User	Flag 0.										
	This is a	bit-addre	ssable, ge	eneral pui	pose flag for	use under softw	are control.					
Bits4-3:	RS1-RS0): Registe	er Bank S	elect.								
	These bit	s select v	which reg	ister bank	is used durin	g register acces	sses.					
						1						
	RS1	RS0	Registe	r Bank	Address							
	0	0	0)	0x00-0x07							
	0	1	1	-	0x08-0x0F							
	1	0	2	2	0x10-0x17							
	1	1	3	3	0x18-0x1F]						
	NT	•						1 6 11 1				
	Note: An	y instruc	tion whic	h change	s the RS1-RS	bits must not l	be immediate	ely followed				
	by the "N	AOV Rn,	A instru	lction.								
D;+7.		rflow Ele										
DIL2:	This hit i	THOW FIE	ig. under th	a followir	a airaumatan	2001						
				UDD inc	truction course	co.	overflow					
	• All A	ADD, AL	JDC, 01 S	oulta in ar	uucuon cause	s a sign-change	255					
	• AN	IUL IIIsu	uction res		l overnow (re	suit is greater th	ian 233).					
	• AD	hit is ala	ction cau	ses a divi		nuluon.	d DIV in star	ations in all				
	other ou		area to o	by the Al	JD, ADDC, S	UDD, MUL, al	la DI V Illstru	ictions in an				
	other cas	ses.										
Rit1.	F1. Usor	Flag 1										
DIT.	This is a	hit-addre	ecable o	eneral nu	mose flag for	use under softw	vare control					
	1 III 5 15 a	Ult-addit	ssable, g	incrai pui	pose mag for	use under softw	are control.					
Bit0.	PARITY	· Parity F	lag									
21101	(Read on	1v)										
	This bit i	s set to 1	if the sur	n of the e	ight bits in the	e accumulator i	s odd and cle	ared if the				
	sum is even											

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
EXVLD	-	EX7	EX6	EX5	EX4	EADC0	ET3	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE7
Bit7:	EXVLD: Enal	ble External (Clock Source	e Valid (XTL	VLD) Interr	upt.		
	This bit sets th	ne masking of	f the XTLVI	D interrupt.		-		
	0: Disable all	XTLVLD in	terrupts.	_				
	1: Enable inte	errupt request	s generated	by the XTLV	LD flag (OS	CXCN.7)		
Bit6:	Reserved. Mu	ust Write 0. I	Reads 0.					
Bit5:	EX7: Enable I	External Inter	rupt 7.	_				
	This bit sets th	ne masking of	f External In	terrupt 7.				
	0: Disable Ex	ternal Interru	ipt 7.		1.7	-		
	I: Enable inte	errupt request	s generated	by the Extern	al Interrupt	/ input pin.		
Bit/.	EV6. Enable I	Extornal Into	rupt 6					
DII4.	This bit sets th	e masking of	f External In	terrupt 6				
	0. Disable Ex	ternal Interru	int 6	terrupt 0.				
	1: Enable inte	errupt request	s generated	by the Extern	al Interrupt (6 input pin.		
			Benerated		ar morrapo	op at p		
Bit3:	EX5: Enable I	External Inter	rupt 5.					
	This bit sets th	ne masking of	f External In	terrupt 5.				
	0: Disable Ex	ternal Interru	ipt 5.	-				
	1: Enable inte	errupt request	s generated	by the Exterr	al Interrupt	5 input pin.		
Bit2:	EX4: Enable I	External Inter	rupt 4.					
	This bit sets th	ne masking of	f External In	terrupt 4.				
	0: Disable Ex	ternal Interru	ipt 4.		1.1.1	4		
	1: Enable inte	errupt request	s generated	by the Extern	ial Interrupt 4	4 input pin.		
Rit1.	EADCO: Enab	le ADC0 En	d of Convers	ion Interrunt				
DIT.	This bit sets th	he masking of	f the ADC01	End of Conve	ersion Interri	int		
	0 [•] Disable AI	CO Convers	ion Interrupt			ipt.		
	1: Enable inte	errupt request	s generated	by the ADC(Conversion	Interrupt.		
			<i></i>	- ,		P		
Bit0:	ET3: Enable 7	Fimer 3 Interi	upt.					
	This bit sets th	ne masking of	f the Timer 3	interrupt.				
	0: Disable all	Timer 3 inte	rrupts.					
	1: Enable inte	errupt request	s generated	by the TF3 fl	ag (TMR3C	N.7)		

Figure 10.12. EIE2: Extended Interrupt Enable 2

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PCP1R	PCP1F	PCP0R	PCP0F	PPCA0	PWADC0	PSMB0	PSPI0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF6
Bit7:	PCP1R: Com	parator 1 (CP	1) Rising Int	errupt Priori	ty Control.			
	This bit sets the	ne priority of	the CP1 inte	rrupt.				
	0: CP1 rising	interrupt set	to low priori	ty level.				
	1: CPI rising	interrupt set	to high prior	ity level.				
Dite	DCD1E. Com	omotom 1 (CD	1) Eolling Int	amment Dui ani	tri Control			
DILO:	This bit sets the	Darator 1 (CP	the CP1 into	rupt Priori	ty Control.			
	0. CP1 falling	interrupt set	t to low prior	ity lovel				
	1. CP1 falling	interrupt set	t to high prio	rity level				
	1. 01 1 141111	5 menupt set	t to high prio	ing ieven				
Bit5:	PCP0R: Com	parator 0 (CP	0) Rising Int	errupt Priori	ty Control.			
	This bit sets the	he priority of	the CP0 inte	rrupt.	•			
	0: CP0 rising	interrupt set	to low priori	ty level.				
	1: CP0 rising	interrupt set	to high prior	ity level.				
					~ .			
Bit4:	PCP0F: Comp	parator 0 (CP	0) Falling Int	terrupt Priori	ty Control.			
	This bit sets the	ne priority of	the CP0 inte	rrupt.				
	0: CP0 falling	g interrupt set	t to low prior	ity level.				
	1: CPO failing	g interrupt set	t to high prio	nty level.				
Bit3:	PPCA0: Prog	rammable Co	unter Arrav ((PCA0) Inter	rupt Priority (Control.		
Bitter	This bit sets th	ne priority of	the PCA0 in	terrupt.	raper noney -	controll		
	0: PCA0 inter	rrupt set to lo	w priority le	vel.				
	1: PCA0 inter	rrupt set to hi	gh priority le	evel.				
Bit2:	PWADC0: Al	DC0 Window	Comparator	Interrupt Pr	iority Control	•		
	This bit sets th	ne priority of	the ADC0 W	/indow inter	rupt.			
	0: ADC0 Wit	ndow interrup	pt set to low j	priority level				
	1: ADC0 W1	ndow interrup	pt set to high	priority leve	1.			
Bit1.	PSMB0: SMF	Rus () Interrur	nt Priority Co	ntrol				
Dit1.	This bit sets th	ne priority of	the SMBus i	nterrupt.				
	0: SMBus int	errupt set to l	low priority 1	evel.				
	1: SMBus int	errupt set to l	high priority	level.				
		-	•					
Bit0:	PSPI0: Serial	Peripheral In	terface 0 Inte	errupt Priorit	y Control.			
	This bit sets the	ne priority of	the SPI0 inte	errupt.				
	0: SPI0 interr	upt set to low	v priority lev	el.				
	1: SPI0 interr	upt set to hig	h priority lev	/el.				

Figure 10.13. EIP1: Extended Interrupt Priority 1

12. EXTERNAL RAM (C8051F005/06/07/15/16/17)

The C8051F005/06/07/15/16/17 MCUs include 2048 bytes of RAM mapped into the external data memory space. All of these address locations may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using MOVX indirect addressing mode. If the MOVX instruction is used with an 8-bit address operand (such as @R1), then the high byte of the 16-bit address is provided by the External Memory Interface Control Register (EMI0CN as shown in Figure 12.1). Note: the MOVX instruction is also used for writes to the Flash memory. See Section 11 for details. The MOVX instruction accesses XRAM by default (i.e. PSTCL.0 = 0).

For any of the addressing modes the upper 5-bits of the 16-bit external data memory address word are "don't cares". As a result, the 2048-byte RAM is mapped modulo style over the entire 64k external data memory address range. For example, the XRAM byte at address 0x0000 is also at address 0x0800, 0x1000, 0x1800, 0x2000, etc. This is a useful feature when doing a linear memory fill, as the address pointer doesn't have to be reset when reaching the RAM block boundary.

R	R	R	R	R	R/W	R/W	R/W	Reset Value
-	-	-	-	-	PGSEL2	PGSEL1	PGSEL0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xAF
		1 000001						
Bits 7-3:1	Not Used – rea	ads 00000b						
Bits 2-0:1	PGSEL[2:0]: 2	XRAM Page	Select Bits					
	The XRAM Pa	age Select Bi	its provide th	e high byte o	f the 16-bit e	xternal data i	memory	
8	address when	using an 8-bi	it MOVX cor	mmand, effec	tively selecti	ng a 256-byt	e page of	
]	RAM. The up	per 5-bits ar	e "don't care	s", so the 2k	address block	ks are repeate	ed modulo	
(over the entire	64k externa	l data memor	y address spa	ace.			
(000: xxxxx000	Ob		-				
(001: xxxxx00	1b						
()10: xxxxx010	Ob						
(011: xxxxx01	1b						
1	100: xxxxx100	0b						
1	101: xxxxx10	1b						
1	110: xxxxx110	Ob						
1	111: xxxxx11	1b						

Figure 12.1. EMI0CN: External Memory Interface Control

Figure 14.3.	OSCXCN:	External	Oscillator	Control	Register
	0.0 0 0		0.0000000		

R	R/	W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
XTLVLD) XOSC	CMD2	XOSCMD1	XOSCMD0	-	XFCN2	XFCN1	XFCN0	00110000
Bit7	Bi	t6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
									0xB1
Bit7: X	XTLVLD	: Crys	tal Oscillator	Valid Flag					
(Valid on	ly who	en XOSCMI	$\mathbf{O} = 1\mathbf{x}\mathbf{x}.\mathbf{O}$					
C): Crysta	l Oscil	lator is unuse	ed or not ye	t stable				
1	l: Crysta	l Oscil	lator is runni	ng and stab	le (should rea	d 1ms after	Crystal Oscilla	ator is	
	enable	d to av	void transient	condition).					
Bits6-4: X	XOSCMI	D2-0: H	External Osci	llator Mode	Bits				
C	00x: Off.	XTA	L1 pin is gro	unded inter	nally.				
0	010: Syst	em Cl	ock from Ext	ernal CMO	S Clock on X	TAL1 pin.			
0)11: Syst	em Cl	ock from Ext	ernal CMO	S Clock on X	TAL1 pin d	ivided by 2.		
1	l0x: RC/	C Osc	illator Mode	with divide	by 2 stage.				
1	10: Crys	stal Os	cillator Mod	e 					
D:42	III: Crys	stal Os	cillator Mod	e with divid	e by 2 stage.				
Bits: h	XESERV	ED. R	ead = undefi	ned, Write	= don't care				
Bits2-0: 2	XFCN2-0	: Exte	rnal Oscillato	or Frequenc	y Control Bits	5			
U		see ta	Die Delow						
Г	VECN	Crave	tol (VOSCM	D	PC (VOSCI)	$(D - 10_{\rm w})$	C (VOSCM	$D = 10_{\rm W}$	
	AFCN	(11v)		D –	KC (AOSCIM	D = 10x	C (AOSCIMI	J = 10X	
-	000	f < 1	2.51/17		f < 25kH7		K Factor – 0	14	
_	000	$1 \ge 1$ 12.51	2.3 MIZ	21.11.7	$1 \leq 23 \text{KHZ}$	501.11.7	K Factor = 1	4	
F	010	12.3	$\frac{KHZ}{S} = \frac{1}{2} \frac{S}{S}$		23 kHz $< 1 \le$	1001-11-	K Factor = 4	.4	
-	010	30.3	5 KHZ $< 1 \le 9$	3.8KHZ	50 kHz $< 1 \le$		K Factor = 4	2	
-	100	93.8	$kHz < f \le 26$	/KHZ	$100 \text{ kHz} < f \le$	200kHz	K Factor = 1	3	
_	100	267k	$Hz < f \le 72$	2kHz	$200 \text{kHz} < f \le$	400kHz	K Factor = 3	8	
_	101	722k	$Hz < f \le 2.2$	3MHz	$400 \text{kHz} < \text{f} \le$	800kHz	K Factor = 1	00	
_	110	2.23	$MHz < f \le 6$.74MHz	$800 \text{kHz} < \text{f} \le$	1.6MHz	K Factor $= 4$	-20	
	111	f > 6	.74MHz		$1.6 MHz < f \le$	3.2MHz	K Factor $= 1$	400	
CRYSTA	L MOD	E (Cir	cuit from Fig	ure 14.1, O	ption 1; XOS	CMD = 11x)		
(Choose X	FCN v	value to mate	h the crysta	l or ceramic r	esonator fre	quency.		
DOMOD			T : 444	o o		10.)			
RC MOD	DE (Circu	it from	n Figure 14.1	, Option 2;	XOSCMD =	10x)			
(Choose os	Scillati	on frequency	range when	re:				
I	= 1.23(1	U ²) / (² U	$\mathbf{K} * \mathbf{C}$, wher	e . MII-					
I	= freque	ncy of	oscillation in	1 MHZ					
	z = capac	itor va	lue in pF						
ŀ	$\mathbf{x} = \mathbf{Pull} \cdot \mathbf{u}$	ip resi	stor value in	KQ					
CMODE	(C:	from		Intion 2. W	05010 1/)w)			
CMODE	Circuit	Foots	rigure 14.1, (\mathbf{KE}) for t^{1}	opuon 3; X	OSCIVID = I(JX) siradi			
۲ ۲	$\frac{10080 \text{ K}}{10080 \text{ K}}$	$\Gamma a C $	$I(\mathbf{K}\mathbf{\Gamma}) IOF IO(\mathbf{V})$	e oscination	inequency de	siled.			
L L	$= \mathbf{N}\mathbf{\Gamma} / ($ $= \mathbf{f}\mathbf{r}_{0}$	$\mathbf{U}^{\mathrm{T}}\mathbf{A}$	v+), where	› M比?					
I	= neque	itor ve	USCIIIATION II		ning in nE				
	$\Delta V_{\perp} = \alpha_{1}$	nor va nalog l	Dower Supply	$\mathbf{J}_{1}, \mathbf{\Lambda}_{1} \mathbf{A} \mathbf{L}_{2}$	pills III pr n volts				
F	$\mathbf{v} + - \mathbf{A}$	liaiog I	ower supply						

15. PORT INPUT/OUTPUT

The MCUs have a wide array of digital resources, which are available through four digital I/O ports, P0, P1, P2 and P3. Each of the pins on Ports 0, 1, and 2 can be defined as either its corresponding port I/O or one of the internal digital resources assigned as shown in Figure 15.1. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins available on the selected package (the C8051F000/05/10/15 have all four ports pinned out, the F001/06/11/16 have P0 and P1, and the F002/07/12/17 have P0). This resource assignment flexibility is achieved through the use of a Priority CrossBar Decoder. (Note that the state of a Port I/O pin can always be read in the corresponding Port latch regardless of the Crossbar settings).

The CrossBar assigns the selected internal digital resources to the I/O pins based on the Priority Decode Table 15.1. The registers XBR0, XBR1, and XBR2, defined in Figure 15.3, Figure 15.4, and Figure 15.5 are used to select an internal digital function or let an I/O pin default to being a Port I/O. The crossbar functions identically for each MCU, with the caveat that P2 is not pinned out on the F001/06/11/16, and both P1 and P2 are not pinned out on the F002/07/12/17. Digital resources assigned to port pins that are not pinned out cannot be accessed.

All Port I/Os are 5V tolerant (Refer to Figure 15.2 for the port cell circuit.) The Port I/O cells are configured as either push-pull or open-drain in the Port Configuration Registers (PRT0CF, PRT1CF, PRT2CF, PRT3CF). Complete Electrical Specifications for Port I/O are given in Table 15.2.

15.1. Priority Cross Bar Decoder

One of the design goals of this MCU family was to make the entire palette of digital resources available to the designer even on reduced pin count packages. The Priority CrossBar Decoder provides an elegant solution to the problem of connecting the internal digital resources to the physical I/O pins.

The Priority CrossBar Decode (Table 15.1) assigns a priority to each I/O function, starting at the top with the SMBus. As the table illustrates, when selected, its two signals will be assigned to Pin 0 and 1 of I/O Port 0. The decoder always fills I/O bits from LSB to MSB starting with Port 0, then Port 1, finishing if necessary with Port 2. If you choose not to use a resource, the next function down on the table will fill the priority slot. In this way it is possible to choose only the functions required by the design, making full use of the available I/O pins. Also, any extra Port I/O are grouped together for more convenient use in application code.

Registers XBR0, XBR1 and XBR2 are used to assign the digital I/O resources to the physical I/O Port pins. It is important to understand that when the SMBus, SPI Bus, or UART is selected, the crossbar assigns all pins associated with the selected bus. It would be impossible for instance to assign the RX pin from the UART function without also assigning the TX function. Standard Port I/Os appear contiguously after the prioritized functions have been assigned. For example, if you choose functions that take the first 14 Port I/O (P0.[7:0], P1.[5:0]), you would have 18 Port I/O left unused by the crossbar (P1.[7:6], P2 and P3).

15.2. Port I/O Initialization

Port I/O initialization is straightforward. Registers XBR0, XBR1 and XBR2 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR2 to 1 enables the CrossBar. **Until the Crossbar is enabled, the external pins remain as standard Ports in input mode regardless of the XBRn Register settings.** For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table; as an alternative, the Code Configuration Wizard function of the IDE software will determine the Port I/O pin-assignments based on the XBRn Register settings.

The output driver characteristics of the I/O pins are defined using the Port Configuration Registers PRT0CF, PRT1CF, PRT2CF and PRT3CF (see Figure 15.7, Figure 15.9, Figure 15.12, and Figure 15.14). Each Port Output driver can be configured as either Open Drain or Push-Pull. This is required even for the digital resources selected in the XBRn registers and is not automatic. The only exception to this is the SMBus (SDA, SCL) and UART Receive (RX, when in mode 0) pins which are Open-drain regardless of the PRTnCF settings. When the WEAKPUD bit in XBR2 is 0, a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	11111111		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
							(bit addressable)	0xB0		
Bits7-0:	P3.[7:0]									
	(Write)									
	0: Logic Low Output.									
	1: Logic High	n Output (hig	h-impedance	if correspond	ding PRT3C	F.n bit = 0				
	(Read)	1 \ 0	1	1	U	,				
	0: P3 n is logic low									
	1: P3 n is logic high									
	1. 1.5.11 15 10g	ie ingin								

Figure 15.13. P3: Port3 Register

Table 15.2. Port I/O DC Electrical Characteristics

VDD = 2.7 to 3.6V, -40°C to +85°C unless otherwise specified.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output High Voltage	$I_{OH} = -10uA$, Port I/O push-pull	VDD –			V
		0.1			
	$I_{OH} = -3mA$, Port I/O push-pull	VDD –			
		0.7			
	I _{OH} = -10mA, Port I/O push-pull		VDD –		
			0.8		
Output Low Voltage	$I_{OL} = 10uA$			0.1	V
	$I_{OL} = 8.5 \text{mA}$			0.6	
	$I_{OL} = 25 \text{mA}$		1.0		
Input High Voltage		0.7 x			V
		VDD			
Input Low Voltage				0.3 x	V
				VDD	
Input Leakage Current	DGND < Port Pin < VDD, Pin Tri-state				μA
	Weak Pull-up Off			±1	·
	Weak Pull-up On		30		
Capacitive Loading			5		pF

17.4. SPI Special Function Registers

The SPI is accessed and controlled through four special function registers in the system controller: SPIOCN Control Register, SPIODAT Data Register, SPIOCFG Configuration Register, and SPIOCKR Clock Rate Register. The four special function registers related to the operation of the SPI Bus are described in the following section.

Figure 17.5.	SPI0CFG:	SPI	Configuration	Register
I Igui e I / ie i			Comigaration	Register

CKPHA Bit7 Bit7:	CVDO	1	<u> </u>	R	R	R/W	R/W	R/W	Reset V	
Bit7 Bit7:	CKPU	L B	C2	BC1	BC0	SPIFRS2	SPIFRS1	SPIFRS0	00000	
Bit7:	Bit6	В	it5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Add	
Bit /:	CIZDUA		DI						0171	
	CKPHA: S	SPI Clock	Phase.							
	This bit co	ontrols the	SPI cloc	k phase.						
	0: Data sat	mpled on f	irst edge	of SCK pe	riod.					
	1: Data sa	mpled on s	second ed	ige of SCK	period.					
Bit6:	CKPOL: SPI Clock Polarity.									
	This bit co	ontrols the	SPI cloc	k polarity.						
	0: SCK lin	e low in i	dle state.							
	1: SCK lin	e high in i	idle state	•						
Bits5-3:	BC2-BC0 Indicates v	SPI Bit C which of th	Count. The up to 8	3 bits of the	SPI word h	ave been trar	ismitted.			
		BC2-BC0		Bit Tra	nsmitted					
	0	0	0	Bit 0	(LSB)					
	0	0	1	Bit 1						
	0	1	0	Bit 2						
	0	1	1	Bit 3						
	1	1 0 0 Bit 4								
	1 0 1 Bit			Bit 5						
	1	1	Δ	D:4 (
	1	1	0	B11 0						
Dita? 0.	1 1	1 1 SDIED SO:	1 SDI Eror	Bit 0 Bit 7	(MSB)					
Bits2-0:	1 SPIFRS2- These thre during a d	1 SPIFRS0: e bits dete ata transfe	1 SPI Frar rmine th r in mast	Bit 0 Bit 7 ne Size. e number of er mode. T	(MSB) f bits to shif 'hey are ign	t in/out of the ored in slave	e SPI shift reş mode.	gister		
Bits2-0:	I SPIFRS2- These thre during a d	1 SPIFRS0: e bits dete ata transfe SPIFRS	SPI Fram rmine the r in mast	Bit o Bit 7 ne Size. e number o er mode. T Bits Shift	(MSB) f bits to shif 'hey are ign fted	t in/out of the ored in slave	e SPI shift reş mode.	gister		
Bits2-0:	1 SPIFRS2- These three during a d 0 0	1 SPIFRS0: e bits dete ata transfe SPIFRS 0 0	0 1 SPI Frar rmine th r in mast 0 1	Bit o Bit 7 Bit 7 ne Size. e number o er mode. T Bits Shift	(MSB) f bits to shif 'hey are ign fted	t in/out of the ored in slave	e SPI shift reş mode.	gister		
Bits2-0:	1 1 SPIFRS2- These three during a d 0 0 0 0 0	1 SPIFRS0: e bits dete ata transfe SPIFRS 0 0 1	SPI Framermine the rin mast	Bit o Bit 7 Bit 7 ne Size. e number o: er mode. T Bits Shift 1 2 3	(MSB) f bits to shif 'hey are ign fted	it in/out of the ored in slave	e SPI shift reg mode.	gister		
Bits2-0:	1 SPIFRS2- These three during a d 0 0 0 0 0 0 0 0	1 SPIFRS0: e bits dete ata transfe SPIFRS 0 0 1 1	SPI Fran rmine th r in mast 0 1 0 1	Bit o Bit 7 Bit 7 ne Size. e number o er mode. T Bits Shift 1 2 3 4	(MSB) f bits to shif 'hey are ign fted	t in/out of the ored in slave	e SPI shift reş mode.	gister		
Bits2-0:	11SPIFRS2-These threeduring a d0000001	1 SPIFRS0: e bits dete ata transfe SPIFRS 0 0 1 1 1 0	0 1 SPI Fran mine the r in mast 0 1 0 1 0	Bit 6 Bit 7 ne Size. e number of er mode. T Bits Shift 1 2 3 4 5	(MSB) f bits to shif 'hey are ign fted	t in/out of the ored in slave	e SPI shift reş mode.	gister		
Bits2-0:	11SPIFRS2- These three during a d00000011	1 SPIFRS0: e bits dete ata transfe SPIFRS 0 0 1 1 1 0 0	0 1 SPI Frar rmine the r in mast 0 1 0 1 0 1 0 1 0 1	Bit 6 Bit 7 Bit 7 ne Size. e number or er mode. T Bits Shift 1 2 3 4 5 6	(MSB) f bits to shif 'hey are ign fted	t in/out of the	e SPI shift reş mode.	gister		
Bits2-0:	1 SPIFRS2- These three during a d 0 0 0 0 1 1 1	I SPIFRS0: e bits dete ata transfe SPIFRS 0 0 1 1 0 0 1 1 0 0	0 1 SPI Frar rmine the r in mast 0 1 0 1 0 1 0 1 0	Bit 6 Bit 7 Bit 7 ne Size. e number o: er mode. T Bits Shif 1 2 3 4 4 5 6 7	(MSB) f bits to shif 'hey are ign fted	it in/out of the	e SPI shift reg mode.	gister		

18.1. UART Operational Modes

The UART provides four operating modes (one synchronous and three asynchronous) selected by setting configuration bits in the SCON register. These four modes offer different baud rates and communication protocols. The four modes are summarized in Table 18.1 below. Detailed descriptions follow.

Mode	Synchronization	Baud Clock	Data Bits	Start/Stop Bits
0	Synchronous	SYSCLK/12	8	None
1	Asynchronous	Timer 1 or Timer 2 Overflow	8	1 Start, 1 Stop
2	Asynchronous	SYSCLK/32 or SYSCLK/64	9	1 Start, 1 Stop
3	Asynchronous	Timer 1 or Timer 2 Overflow	9	1 Start, 1 Stop

Table 18.1. UART Modes

18.1.1. Mode 0: Synchronous Mode

Mode 0 provides synchronous, half-duplex communication. Serial data is transmitted and received on the RX pin. The TX pin provides the shift clock for both transmit and receive. The MCU must be the master since it generates the shift clock for transmission in both directions (see the interconnect diagram in Figure 18.2).

Eight data bits are transmitted/received, LSB first (see the timing diagram in Figure 18.3). Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt Flag (SCON.1) is set at the end of the eighth bit time. Data reception begins when the REN Receive Enable bit (SCON.4) is set to logic 1 and the RI Receive Interrupt Flag (SCON.0) is cleared. One cycle after the eighth bit is shifted in, the RI flag is set and reception stops until software clears the RI bit. An interrupt will occur if enabled when either TI or RI is set.

The Mode 0 baud rate is the system clock frequency divided by twelve. RX is forced to open-drain in mode 0, and an external pull-up will typically be required.

Figure 18.3. UART Mode 0 Timing Diagram

18.2. Multiprocessor Communications

Modes 2 and 3 support multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the SM2 bit (SCON.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic one (RB8 = 1) signifying an address byte has been received. In the UART's interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its SM2 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their SM2 bits set and do not generate interrupts on the received, the addressed slave resets its SM2 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 18.7. UART Multi-Processor Mode Interconnect Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
Bit7:	TF2: Timer 2 Set by hardwa	Overflow Fla	ag. Jer 2 overfloy	ws from 0xFF	FF to 0x000	0 or reload v	alue. When	UXC0		
	the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software. TF2 will not be set when RCLK and/or TCLK are logic 1.									
Bit6:	EXF2: Timer 2 External Flag. Set by hardware when either a capture or reload is caused by a high-to-low transition on the T2EX input pin and EXEN2 is logic 1. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 Interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.									
Bit5:	RCLK: Receive Clock Flag.Selects which timer is used for the UART's receive clock in modes 1 or 3.0: Timer 1 overflows used for receive clock.1: Timer 2 overflows used for receive clock.									
Bit4:	TCLK: Transmit Clock Flag.Selects which timer is used for the UART's transmit clock in modes 1 or 3.0: Timer 1 overflows used for transmit clock.1: Timer 2 overflows used for transmit clock.									
Bit3:	 EXEN2: Timer 2 External Enable. Enables high-to-low transitions on T2EX to trigger captures or reloads when Timer 2 is not operating in Baud Rate Generator mode. 0: High-to-low transitions on T2EX ignored. 1: High-to-low transitions on T2EX cause a capture or reload. 									
Bit2:	 TR2: Timer 2 Run Control. This bit enables/disables Timer 2. 0: Timer 2 disabled. 1: Timer 2 enabled. 									
Bit1:	C/T2: Counter 0: Timer Fun 1: Counter Fu (T2).	r/Timer Selec ction: Timer unction: Time	et. 2 incremente er 2 incremer	ed by clock do nted by high-t	efined by T2 o-low transit	M (CKCON.: tions on exter	5). nal input pin			
Bit0:	CP/RL2: Cap This bit select be logic 1 for captures or re in auto-reload 0: Auto-reload 1: Capture on	ture/Reload S s whether Tin high-to-low t loads. If RC mode. d on Timer 2 high-to-low	Select. mer 2 functio transitions or LK or TCLk overflow or transition at	ons in capture n T2EX to be K is set, this b high-to-low t T2EX (EXEN	or auto-relo recognized a it is ignored ransition at T $V_2 = 1$).	ad mode. EX and used to tr and Timer 2 F2EX (EXEN	XEN2 must igger will function $(2 = 1)$.			

Figure 19.17. TL2: Timer 2 Low Byte

Figure 19.18. TH2: Timer 2 High Byte

