
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

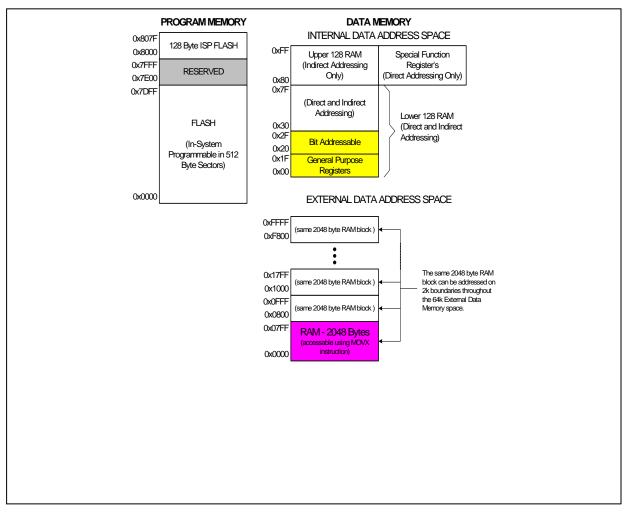
Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	20MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f011-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Table 5.1. 12-Bit ADC Electrical Characteristics.	
	Table 5.1. 12-Bit ADC Electrical Characteristics.	
6.	ADC (10-Bit, C8051F010/1/2/5/6/7 Only)	40
	Figure 6.1. 10-Bit ADC Functional Block Diagram	
	6.1. Analog Multiplexer and PGA	
	6.2. ADC Modes of Operation	
	Figure 6.2. 10-Bit ADC Track and Conversion Example Timing	
	Figure 6.3. Temperature Sensor Transfer Function	
	Figure 6.4. AMX0CF: AMUX Configuration Register (C8051F01x)	
	Figure 6.5. AMX0SL: AMUX Channel Select Register (C8051F01x)	43
	Figure 6.6. ADC0CF: ADC Configuration Register (C8051F01x)	44
	Figure 6.7. ADC0CN: ADC Control Register (C8051F01x)	45
	Figure 6.8. ADC0H: ADC Data Word MSB Register (C8051F01x)	46
	Figure 6.9. ADC0L: ADC Data Word LSB Register (C8051F01x)	46
	6.3. ADC Programmable Window Detector	47
	Figure 6.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F01x)	47
	Figure 6.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F01x)	47
	Figure 6.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F01x)	
	Figure 6.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F01x)	
	Figure 6.14. 10-Bit ADC Window Interrupt Examples, Right Justified Data	48
	Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data	
	Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data	
	Table 6.1. 10-Bit ADC Electrical Characteristics.	
	Table 6.1. 10-Bit ADC Electrical Characteristics.	
7.	DACs, 12 BIT VOLTAGE MODE	51
	Figure 7.1. DAC Functional Block Diagram	
	Figure 7.2. DAC0H: DAC0 High Byte Register	
	Figure 7.3. DAC0L: DAC0 Low Byte Register	
	Figure 7.4. DAC0CN: DAC0 Control Register	
	Figure 7.5. DAC1H: DAC1 High Byte Register	
	Figure 7.6. DAC1L: DAC1 Low Byte Register	
	Figure 7.7. DAC1CN: DAC1 Control Register	
	Table 7.1. DAC Electrical Characteristics	
8.	COMPARATORS	
	Figure 8.1. Comparator Functional Block Diagram	55
	Figure 8.2. Comparator Hysteresis Plot	
	Figure 8.3. CPT0CN: Comparator 0 Control Register	
	Figure 8.4. CPT1CN: Comparator 1 Control Register	
	Table 8.1. Comparator Electrical Characteristics	
9.	VOLTAGE REFERENCE	60
	Figure 9.1. Voltage Reference Functional Block Diagram	60
	Figure 9.2. REF0CN: Reference Control Register	61
	Table 9.1. Reference Electrical Characteristics	61
10.	CIP-51 CPU	62
	Figure 10.1. CIP-51 Block Diagram	62
	10.1. INSTRUCTION SET.	
	Table 10.1. CIP-51 Instruction Set Summary	65
	10.2. MEMORY ORGANIZATION	
	Figure 10.2. Memory Map	
	10.3. SPECIAL FUNCTION REGISTERS	
	Table 10.2. Special Function Register Memory Map	70
	Table 10.3. Special Function Registers	70
	Figure 10.3. SP: Stack Pointer	
	Figure 10.4. DPL: Data Pointer Low Byte	74

Table 21.1. Boundary Data Register Bit Definitions	165
Figure 21.2. DEVICEID: JTAG Device ID Register	
21.2. Flash Programming Commands	167
Figure 21.3. FLASHCON: JTAG Flash Control Register	
Figure 21.4. FLASHADR: JTAG Flash Address Register	168
Figure 21.5. FLASHDAT: JTAG Flash Data Register	169
Figure 21.6. FLASHSCL: JTAG Flash Scale Register	
21.3. Debug Support	170



1.2. On-Board Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general-purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

The CIP-51 in the C8051F005/06/07/15/16/17 MCUs additionally has a 2048 byte RAM block in the external data memory address space. This 2048 byte block can be addressed over the entire 64k external data memory address range (see Figure 1.6).

The MCU's program memory consists of 32k + 128 bytes of FLASH. This memory may be reprogrammed insystem in 512 byte sectors, and requires no special off-chip programming voltage. The 512 bytes from addresses 0x7E00 to 0x7FFF are reserved for factory use. There is also a single 128-byte sector at address 0x8000 to 0x807F, which may be useful as a small table for software constants or as additional program space. See Figure 1.6 for the MCU system memory map.

Figure 1.6. On-Board Memory Map

1.4. Programmable Digital I/O and Crossbar

The standard 8051 Ports (0, 1, 2, and 3) are available on the MCUs. All four ports are pinned out on the F000/05/10/15. Ports 0 and 1 are pinned out on the F001/06/11/16, and only Port 0 is pinned out on the F002/07/12/17. The Ports not pinned out are still available for software use as general purpose registers. The Port I/O behave like the standard 8051 with a few enhancements.

Each Port I/O pin can be configured as either a push-pull or open-drain output. Also, the "weak pull-ups" which are normally fixed on an 8051 can be globally disabled, providing additional power saving capabilities for low power applications.

Perhaps the most unique enhancement is the Digital Crossbar. This is essentially a large digital switching network that allows mapping of internal digital system resources to Port I/O pins on P0, P1, and P2. (See Figure 1.8.) Unlike microcontrollers with standard multiplexed digital I/O, all combinations of functions are supported.

The on-board counter/timers, serial buses, HW interrupts, ADC Start of Conversion input, comparator outputs, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources needed for his particular application.

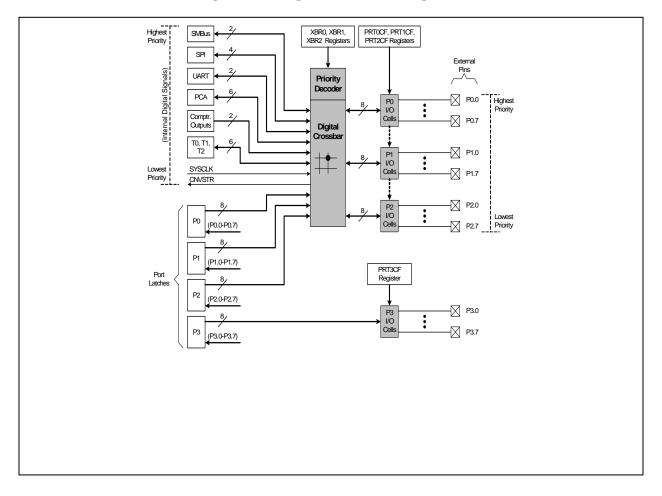
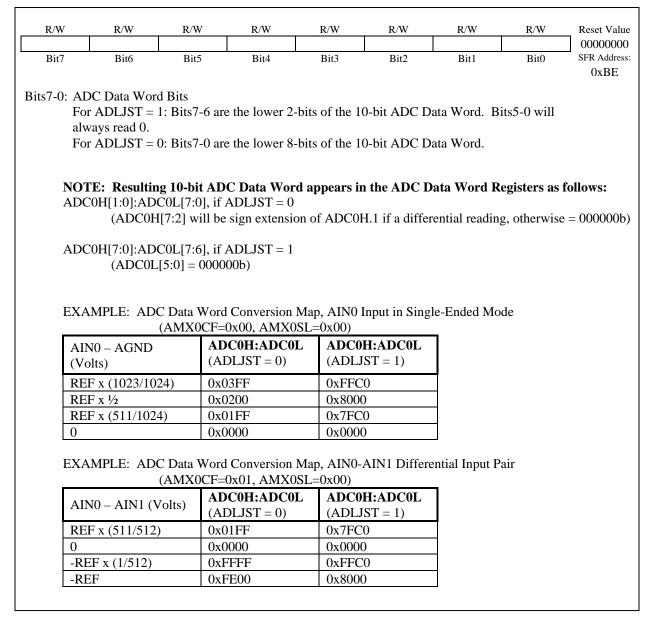


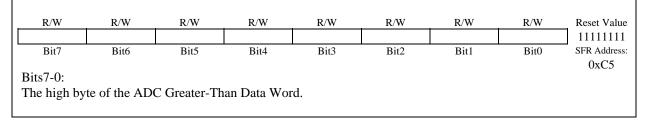
Figure 1.8. Digital Crossbar Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ADCE	N ADCTM	ADCINT	ADBUSY	ADSTM1	ADSTM0	ADWINT	ADLJST	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres
							(bit addressable)	0xE8
Bit7:	ADCEN: ADC	Enable Bit						
	0: ADC Disabl	ed. ADC is i	n low power	shutdown.				
	1: ADC Enable				onversions.			
Bit6:	ADCTM: ADC			•				
	0: When the A	DC is enable	d, tracking is	always done	unless a con	version is in	process	
	1: Tracking De			-			-	
	ADST	M1-0:						
	00: Ti	acking starts	with the writ	te of 1 to AD	BUSY and la	asts for 3 SA	R clocks	
	01: Tı	acking starte	d by the over	flow of Time	er 3 and last f	For 3 SAR clo	ocks	
	10: A	DC tracks on	ly when CNV	/STR input is	s logic low			
	11: Ti	acking starte	d by the over	flow of Time	er 2 and last f	for 3 SAR clo	ocks	
Bit5:	ADCINT: ADC	C Conversion	Complete In	terrupt Flag				
	(Must be cleare							
	0: ADC has no				e last time thi	s flag was cl	eared	
	1: ADC has co		a conversion					
Bit4:	ADBUSY: AD	C Busy Bit						
	Read							
	0: ADC Conve					since a reset.	The falling	
		BUSY genera		ipt when ena	bled.			
	1: ADC Busy of	converting da	ta					
	Write							
	0: No effect							
	1: Starts ADC							
Bits3-2:	ADSTM1-0: A							
	00: ADC conv							
	01: ADC conv							
	10: ADC conv							
D . 4	11: ADC conv		•		her 2			
Bit1:	ADWINT: AD			rupt Flag				
	(Must be cleare							
	0: ADC Windo				urred			
D'/0	1: ADC Windo			n occurred				
Bit0:	ADLJST: ADC			1.				
	0: Data in ADC							
	1: Data in ADO	LUH:ADCUL	Registers is	iert justified				


Figure 6.7. ADC0CN: ADC Control Register (C8051F01x)

	rigure o.	o. ADCUI	I: ADC D	ata woru	wisd keg	ister (Cou	SIFUIX)	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBF
Bits7-0: A	DC Data Wor	d Bits						
E	or ADLJST =	1. Unner 8-h	its of the 10-	hit ADC Dat	a Word			
							2 hits of the	
	or $ADLJST =$		e the sign ext	ension of Bi	1. Bits 1-0 a	ire the upper	2-bits of the	
10)-bit ADC Dat	ta Word.						

Figure 6.8. ADC0H: ADC Data Word MSB Register (C8051F01x)



6.3. ADC Programmable Window Detector

The ADC programmable window detector is very useful in many applications. It continuously compares the ADC output to user-programmed limits and notifies the system when an out-of-band condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADWINT in ADC0CN) can also be used in polled mode. The high and low bytes of the reference words are loaded into the ADC Greater-Than and ADC Less-Than registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Figure 6.14 and Figure 6.15 show example comparisons for reference. Notice that the window detector flag can be asserted when the measured data is inside or outside the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx registers.

Figure 6.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F01x)

Figure 6.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F01x)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bits7-0:	11111111 SFR Address:								
Bits7-0:	0xC4								
	0.101								
The low byte of the ADC Greater-Than Data Word.									
Definition: ADC Greater-Than Data Word = ADC0GTH:ADC0GTL									

Figure 6.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F01x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xC7
Bits7-0:			D . 111 1					
The high by	te of the AD	C Less-Than	Data Word.					

Figure 6.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F01x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	00000000 SFR Address: 0xC6
Bits7-0: These bits :	are the low by	rte of the AD	C Less-Than	Data Word				
Definition:		te of the AD	C Less-Than	Data Word.				
	Than Data W	ord = ADC0	LTH:ADC0I	LTL				

SILICON LABS

Table 6.1. 10-Bit ADC Electrical Characteristics

	REF = 2.40V (REFBE=0), PGA Gain = 1, -	40°C to +8		s otherwise	
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
DC ACCURACY					
Resolution			10		bits
Integral Nonlinearity			± ½	± 1	LSB
Differential Nonlinearity	Guaranteed Monotonic		± 1/2	± 1	LSB
Offset Error			± 0.5		LSB
Full Scale Error	Differential mode		-1.5 ±		LSB
			0.5		
Offset Temperature			± 0.25		ppm/°C
Coefficient					11
DYNAMIC PERFORMAN	CE (10kHz sine-wave input, 0 to –1dB of f	ull scale, 1	00ksps)		
Signal-to-Noise Plus		59	61		dB
Distortion					
Total Harmonic Distortion	Up to the 5 th harmonic		-70		dB
Spurious-Free Dynamic			80		dB
Range					
CONVERSION RATE					
Conversion Time in SAR		16			clocks
Clocks					
SAR Clock Frequency	C8051F000, 'F001, 'F002			2.0	MHz
	C8051F005, 'F006, 'F007			2.5	MHz
Track/Hold Acquisition		1.5			μs
Time					
Throughput Rate				100	ksps
ANALOG INPUTS	1	-	1		
Voltage Conversion Range	Single-ended Mode (AINn – AGND)	0		VREF	V
	Differential Mode (AINn+) – (AINm-)			- 1LSB	
Input Voltage	Any AINn pin	AGND		AV+	V
Input Capacitance			10		pF
TEMPERATURE SENSOR		1	1		
Linearity			± 0.20		°C
Absolute Accuracy			± 3		°C
Gain	PGA Gain = 1		2.86		mV/°C
Gain Error $(\pm 1\sigma)$	PGA Gain = 1		± 33.5		μV/°C
Offset	PGA Gain = 1, Temp = 0° C		776		mV
Offset Error $(\pm 1\sigma)$	PGA Gain = 1, Temp = 0° C		± 8.51		mV
POWER SPECIFICATION	· •				
Power Supply Current (AV+	Operating Mode, 100ksps		450	900	μΑ
supplied to ADC)					
Power Supply Rejection			± 0.3		mV/V

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's maximum system clock at 25MHz, it has a peak throughput of 25MIPS. The CIP-51 has a total of 109 instructions. The number of instructions versus the system clock cycles required to execute them is as follows:

Instructions	26	50	5	14	7	3	1	2	1
Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8

Programming and Debugging Support

A JTAG-based serial interface is provided for in-system programming of the Flash program memory and communication with on-chip debug support circuitry. The reprogrammable Flash can also be read and changed a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support circuitry facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints and watch points, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive and non-invasive, requiring no RAM, Stack, timers, or other on-chip resources.

The CIP-51 is supported by development tools from Silicon Laboratories and third party vendors. Silicon Labs provides an integrated development environment (IDE) including editor, macro assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via its JTAG interface to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

10.1. INSTRUCTION SET

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51TM instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51TM counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

10.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 10.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

10.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access external data memory. In the CIP-51, the MOVX instruction can access the on-chip program memory space implemented as reprogrammable Flash memory using the control bits in the PSCTL register (see Figure 11.1). This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. For the products with RAM mapped into external data memory space (C8051F005/06/07/15/16/17), MOVX is still used to read/write this memory with the PSCTL

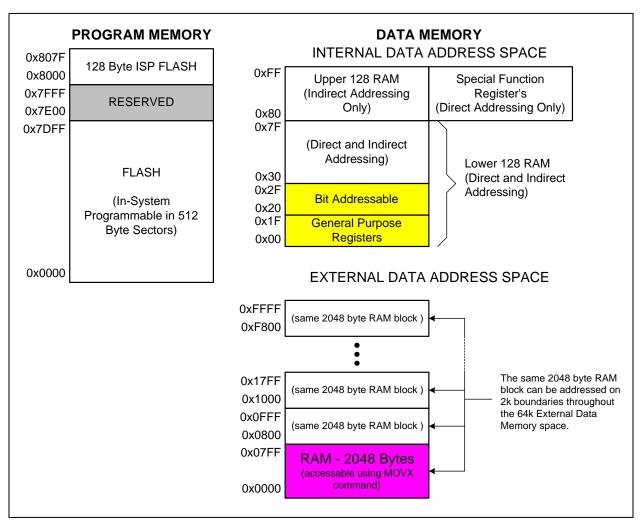


Figure 10.2. Memory Map

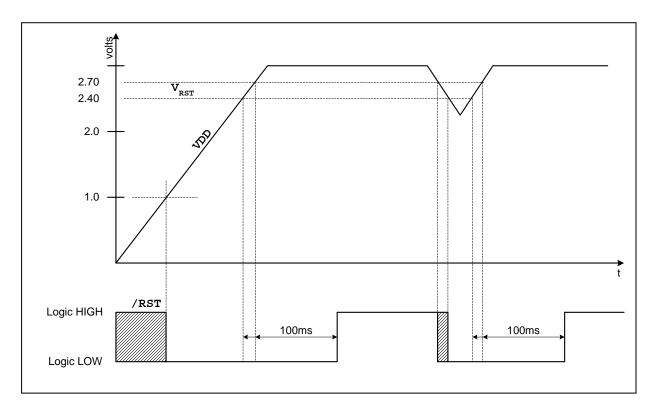
10.2.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

The MCUs also have built-in hardware for a stack record. The stack record is a 32-bit shift register, where each Push or increment SP pushes one record bit onto the register, and each Call or interrupt pushes two record bits onto the register. (A Pop or decrement SP pops one record bit, and a Return pops two record bits, also.) The stack record circuitry can also detect an overflow or underflow on the Stack, and can notify the debug software even with the MCU running full-speed debug.

is bit sets th XTLVLD i XTLVLD i served: Mus 7: External is bit sets th External In External In External In External In External In External In	PX7 Bit5 Bit5 Bit5 Bit5 Bit5 Bit5 Bit5 Bit5	the XTLVL o low priori o high prior eads 0. Priority Cont the External to low priori Priority Cont the External to low priori	ty level. ity level. trol. I Interrupt 7. ity level. rity level. trol. I Interrupt 6. ity level.	PX4 Bit2	PADC0 Bit1	PT3 Bit0	00000000 SFR Addres: 0xF7
CVLD: Exte is bit sets th XTLVLD i XTLVLD i served: Mus 7: External is bit sets th External In External In External In External In External In External In	ernal Clock Se ne priority of interrupt set t interrupt set t st write 0. Re Interrupt 7 P ne priority of iterrupt 7 set t Interrupt 7 set t Interrupt 6 P ne priority of iterrupt 6 set t	ource Valid the XTLVL o low priori o high prior eads 0. Priority Cont the External to low priori Priority Cont the External to low priori	(XTLVLD) I D interrupt. ty level. ity level. trol. I Interrupt 7. ity level. rity level. trol. I Interrupt 6. ity level.			Bit0	
is bit sets th XTLVLD i XTLVLD i served: Mus 7: External is bit sets th External In External In External In External In External In External In	ne priority of interrupt set t interrupt set t st write 0. Ro Interrupt 7 P ne priority of iterrupt 7 set t Interrupt 7 set t Interrupt 6 P ne priority of iterrupt 6 set t	the XTLVL o low priori o high prior eads 0. Priority Cont the External to low priori Priority Cont the External to low priori	D interrupt. ty level. ity level. trol. l Interrupt 7. ity level. rity level. trol. l Interrupt 6. ity level.	nterrupt Pric	ority Control.		
 7: External is bit sets th External In External In 6: External In 6: External In External In External In 	Interrupt 7 P the priority of terrupt 7 set to terrupt 7 set to Interrupt 6 P the priority of terrupt 6 set to	Priority Cont the External to low priori to high prior Priority Cont the External to low priori	l Interrupt 7. ity level. rity level. trol. l Interrupt 6. ity level.				
is bit sets th External In External In 6: External is bit sets th External In External In	ne priority of Iterrupt 7 set to Iterrupt 7 set to Interrupt 6 P ne priority of Iterrupt 6 set to	the External to low priori to high prior Priority Cont the External to low priori	l Interrupt 7. ity level. rity level. trol. l Interrupt 6. ity level.				
is bit sets th External In External In	ne priority of iterrupt 6 set	the External to low priori	l Interrupt 6. ity level.				
5. Extans 1			rity level.				
is bit sets th External In		the External to low priori	l Interrupt 5. ity level.				
is bit sets th External In	ne priority of iterrupt 4 set	the External to low priori	l Interrupt 4. ity level.				
is bit sets th ADC0 End	ne priority of l of Conversio	the ADC0 E on interrupt	End of Conver set to low pri-	rsion Interru ority level.	pt.		
is bit sets th Timer 3 int	ne priority of terrupt set to be	the Timer 3 low priority	interrupts. level.				
	External In 4: External s bit sets th External In External In DC0: ADC s bit sets th ADC0 End ADC0 End 3: Timer 3 s bit sets th Timer 3 int	External Interrupt 5 set 4: External Interrupt 4 F s bit sets the priority of External Interrupt 4 set External Interrupt 4 set DC0: ADC End of Com s bit sets the priority of ADC0 End of Conversion ADC0 End of Conversion 3: Timer 3 Interrupt Prior s bit sets the priority of Timer 3 interrupt set to	External Interrupt 5 set to high prior 4: External Interrupt 4 Priority Cont s bit sets the priority of the External External Interrupt 4 set to low prior External Interrupt 4 set to high prior DC0: ADC End of Conversion Inter s bit sets the priority of the ADC0 F ADC0 End of Conversion interrupt ADC0 End of Conversion interrupt 3: Timer 3 Interrupt Priority Control s bit sets the priority of the Timer 3 Timer 3 interrupt set to low priority	s bit sets the priority of the ADC0 End of Conver ADC0 End of Conversion interrupt set to low pri	 External Interrupt 5 set to high priority level. 4: External Interrupt 4 Priority Control. s bit sets the priority of the External Interrupt 4. External Interrupt 4 set to low priority level. External Interrupt 4 set to high priority level. DC0: ADC End of Conversion Interrupt Priority Control. s bit sets the priority of the ADC0 End of Conversion Interrupt ADC0 End of Conversion interrupt set to low priority level. ADC0 End of Conversion interrupt set to high priority level. 3: Timer 3 Interrupt Priority Control. s bit sets the priority of the Timer 3 interrupts. Timer 3 interrupt set to low priority level. 	 External Interrupt 5 set to high priority level. 4: External Interrupt 4 Priority Control. s bit sets the priority of the External Interrupt 4. External Interrupt 4 set to low priority level. External Interrupt 4 set to high priority level. DC0: ADC End of Conversion Interrupt Priority Control. s bit sets the priority of the ADC0 End of Conversion Interrupt. ADC0 End of Conversion interrupt set to low priority level. ADC0 End of Conversion interrupt set to high priority level. S: Timer 3 Interrupt Priority Control. s bit sets the priority of the Timer 3 interrupts. Timer 3 interrupt set to low priority level. 	 External Interrupt 5 set to high priority level. 4: External Interrupt 4 Priority Control. s bit sets the priority of the External Interrupt 4. External Interrupt 4 set to low priority level. External Interrupt 4 set to high priority level. DC0: ADC End of Conversion Interrupt Priority Control. s bit sets the priority of the ADC0 End of Conversion Interrupt. ADC0 End of Conversion interrupt set to low priority level. ADC0 End of Conversion interrupt set to high priority level. S: Timer 3 Interrupt Priority Control. s bit sets the priority of the Timer 3 interrupts. Timer 3 interrupt set to low priority level.

Figure 10.14. EIP2: Extended Interrupt Priority 2


13.1. Power-on Reset

The C8051F000 family incorporates a power supply monitor that holds the MCU in the reset state until VDD rises above the V_{RST} level during power-up. (See Figure 13.2 for timing diagram, and refer to Table 13.1 for the Electrical Characteristics of the power supply monitor circuit.) The /RST pin is asserted (low) until the end of the 100ms VDD Monitor timeout in order to allow the VDD supply to become stable.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. All of the other reset flags in the RSTSRC Register are indeterminate. PORSF is cleared by a reset from any other source. Since all resets cause program execution to begin at the same location (0x0000), software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset.

13.2. Software Forced Reset

Writing a 1 to the PORSF bit forces a Power-On Reset as described in Section 13.1.

Figure 13.2. VDD Monitor Timing Diagram

13.3. Power-fail Reset

When a power-down transition or power irregularity causes VDD to drop below V_{RST} , the power supply monitor will drive the /RST pin low and return the CIP-51 to the reset state (see Figure 13.2). When VDD returns to a level above V_{RST} , the CIP-51 will leave the reset state in the same manner as that for the power-on reset. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if VDD dropped below the level required for data retention. If the PORSF flag is set, the data may no longer be valid.

R	R/W	R/W	R/W	R	R	R/W	R	Reset Value
JTAGRS'	Γ CNVRSEF	CORSEF	SWRSEF	WDTRSF	MCDRSF	PORSF	PINRSF	XXXXXXXX
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xEF
(Note:	Do not use read	-modify-wri	te operations	on this regis	ter.)			
Bit7:	JTAGRST. J7							
	0: JTAG is no		n reset state.					
	1: JTAG is in							
Bit6:	CNVRSEF: C	onvert Start	Reset Source	Enable and	Flag			
	Write							
	0: CNVSTR i							
	1: CNVSTR i	s a reset sou	rce (active lo	w)				
	Read	•						
	0: Source of p							
D'/ 5	1: Source of p							
Bit5:	CORSEF: Con	nparator 0 Re	eset Enable a	nd Flag				
	Write	. 0 :	4					
	0: Comparato							
	1: Comparato Read	r 0 is a reset	source (activ	e low)				
	Note: The valu	10 road from	CODSEE	ot defined if	Comparator	0 has not had	n anablad as	
	a reset source.		CORSEPTS	iot defined fi	Comparator	o has not bee	in enabled as	
	0: Source of p	rior reset w	as not from C	omparator 0				
	1: Source of p							
Bit4:	SWRSF: Softv							
Dit i.	Write	ware Reset I	oree and r ha	>				
	0: No Effect							
	1: Forces an in	nternal reset	. /RST pin is	not effected				
	Read		I I I					
	0: Prior reset	source was r	not from write	e to the SWR	SF bit.			
	1: Prior reset	source was f	rom write to	the SWRSF	oit.			
Bit3:	WDTRSF: Wa	atchdog Tim	er Reset Flag					
	0: Source of p	prior reset wa	as not from V	VDT timeout.				
	1: Source of p	prior reset wa	as from WDT	timeout.				
Bit2:	MCDRSF: Mi	ssing Clock	Detector Flag	g				
	0: Source of p							
	1: Source of p				tector timeou	t.		
Bit1:	PORSF: Powe	er-On Reset I	Force and Fla	ıg				
	Write							
	0: No effect							
	1: Forces a Po	ower-On Res	et. /RST is c	lriven low.				
	Read	•		0 D				
	0: Source of p							
D':0	1: Source of p							
Bit0:	PINRSF: HW		-	ост ":»				
	0: Source of p							
	1: Source of p	mor reset wa	as moin /KST	pm.				

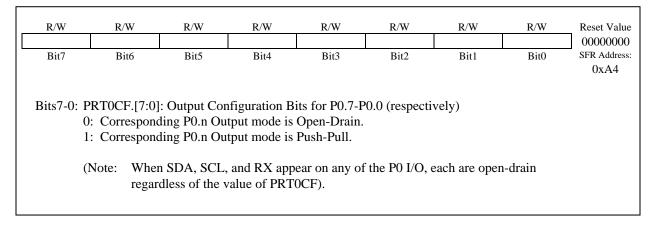
Figure 13.4. RSTSRC: Reset Source Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
VEAKPUD	XBARE	-	-	-	-	-	CNVSTE	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres 0xE3
0	VEAKPUD: P): Weak Pull-ı : Weak Pull-ı	ups Enabled	(except for I		/O are confi	gured as pus	h-pull)	
0	KBARE: Cross Crossbar Di Crossbar En	sabled	Bit					
Bits5-1: U	JNUSED. Rea	ad = 00000t	, Write $=$ do	n't care.				
Bit0: C	CNVSTE: AD	C Convert S	tart Input En	able Bit				
	: CNVSTR u							
1	: CNVSTR ro	outed to Por	t Pin.					
When sele Table 15. through P	Usage of XBR ected, the digi 1) starting wi 2.7. If the dig internal Port R	ital resource ith P0.0 thr gital resourc	es fill the Por rough P0.7, res are not m	and then P1	.0 through 1	P1.7, and fi	nally P2.0	
-	: If XBR0 = 0 A, P0.1=SCL,					rresponding	Port I/O.	
-	: If XBR0 = 0 , P0.1=/INT0,					ding Port I/(2	

Figure 15.5. XBR2: Port I/O CrossBar Register 2

15.3. General Purpose Port I/O

Each MCU has four byte-wide, bi-directional parallel ports that can be used general purpose I/O. Each port is accessed through a corresponding special function register (SFR) that is both byte addressable and bit addressable. When writing to a port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the port's input pins are returned regardless of the XBRn settings (i.e. even when the pin is assigned to another signal by the Crossbar, the Port Register can always still read its corresponding Port I/O pin). The exception to this is the execution of the *read-modify-write* instructions. The *read-modify-write* instructions when operating on a port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SET, when the destination is an individual bit in a port SFR. For these instructions, the value of the port register (not the pin) is read, modified, and written back to the SFR.

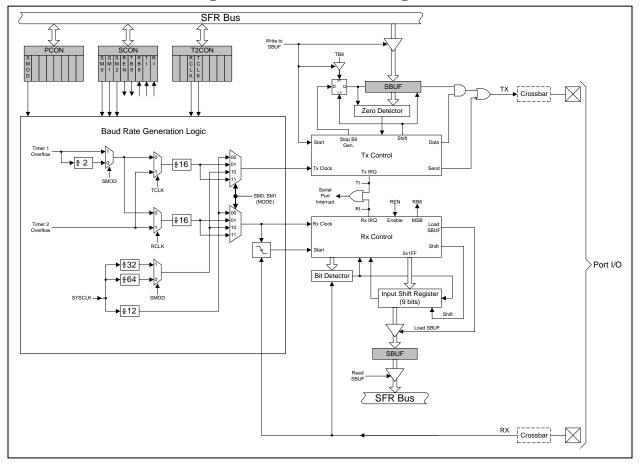

15.4. Configuring Ports Which are not Pinned Out

P2 and P3 are not pinned out on the F001/06/11/16. P1, P2, and P3 are not pinned out on the F002/07/12/17. These port registers (and corresponding interrupts, where applicable) are still available for software use in these reduced pin count MCUs. Whether used or not in software, it is recommended not to let these port drivers go to high impedance state. This is prevented after reset by having the weak pull-ups enabled as described in the XBR2 register. It is recommended that each output driver for ports not pinned out should be configured as push-pull using the corresponding PRTnCF register. This will inhibit a high impedance state even if the weak pull-up is disabled.

R/W P0.7	R/W P0.6	R/W P0.5	R/W P0.4	R/W P0.3	R/W P0.2	R/W P0.1	R/W P0.0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable)	SFR Address: 0x80
0 1 () 0	0.[7:0] Write – Outpu : Logic Low : Logic High Read – Regar : P0.n pin is : P0.n pin is	Output. Output (hig) dless of XBF logic low.	h-impedance	if correspond	ding PRT0CI	F.n bit = 0)		

Figure	15.6.	P0: Port	t0 Register
LIGUIC	10.00	10.101	i itegister

Figure 15.7. PRT0CF: Port0 Configuration Register



18. UART

The UART is a serial port capable of asynchronous transmission. The UART can function in full duplex mode. In all modes, receive data is buffered in a holding register. This allows the UART to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART has an associated Serial Control Register (SCON) and a Serial Data Buffer (SBUF) in the SFRs. The single SBUF location provides access to both transmit and receive registers. Reads access the Receive register and writes access the Transmit register automatically.

The UART is capable of generating interrupts if enabled. The UART has two sources of interrupts: a Transmit Interrupt flag, TI (SCON.1) set when transmission of a data byte is complete, and a Receive Interrupt flag, RI (SCON.0) set when reception of a data byte is complete. The UART interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software. This allows software to determine the cause of the UART interrupt (transmit complete or receive complete).

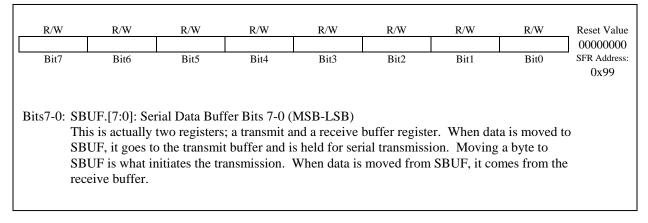

Oscillator Frequency (MHz)	Divide Factor	Timer 1 Load Value*	Resulting Baud Rate**
24.0	208	0xF3	115200 (115384)
23.592	205	0xF3	115200 (113423)
22.1184	192	0xF4	115200
18.432	160	0xF6	115200
16.5888	144	0xF7	115200
14.7456	128	0xF8	115200
12.9024	112	0xF9	115200
11.0592	96	0xFA	115200
9.216	80	0xFB	115200
7.3728	64	0xFC	115200
5.5296	48	0xFD	115200
3.6864	32	0xFE	115200
1.8432	16	0xFF	115200
24.576	320	0xEC	76800
25.0	434	0xE5	57600 (57870)
25.0	868	0xCA	28800
24.576	848	0xCB	28800 (28921)
24.0	833	0xCC	28800 (28846)
23.592	819	0xCD	28800 (28911)
22.1184	768	0xD0	28800
18.432	640	0xD8	28800
16.5888	576	0xDC	28800
14.7456	512	0xE0	28800
12.9024	448	0xE4	28800
11.0592	384	0xE8	28800
9.216	320	0xEC	28800
7.3728	256	0xF0	28800
5.5296	192	0xF4	28800
3.6864	128	0xF8	28800
1.8432	64	0xFC	28800

Table 18.2. Oscillator Frequencies for Standard Baud Rates

* Assumes SMOD=1 and T1M=1.

** Numbers in parenthesis show the actual baud rate.

Figure 18.8. SBUF: Serial (UART) Data Buffer Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable)	SFR Address: 0x88
Bit7:	TF1: Timer 1 Set by hardwa automatically 0: No Timer 1 1: Timer 1 ha	re when Tim cleared wher overflow de	er 1 overflow the CPU ve etected.					
Bit6:	TR1: Timer 1 Run Control.0: Timer 1 disabled.1: Timer 1 enabled.							
Bit5:	Set by hardwa automatically 0: No Timer (TF0: Timer 0 Overflow Flag.Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.0: No Timer 0 overflow detected.1: Timer 0 has overflowed.						
Bit4:	TR0: Timer 0 Run Control.0: Timer 0 disabled.1: Timer 0 enabled.							
Bit3:	IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if $IT1 = 1$. This flag is the inverse of the /INT1 input signal's logic level when $IT1 = 0$.							
Bit2:	 IT1: Interrupt 1 Type Select. This bit selects whether the configured /INT1 signal will detect falling edge or active-low level-sensitive interrupts. 0: /INT1 is level triggered. 1: /INT1 is edge triggered. 							
Bit1:	IE0: External Interrupt 0. This flag is set by hardware when an edge/level of type defined by IT0 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 0 service routine if IT0 = 1. This flag is the inverse of the /INT0 input signal's logic level when IT0 = 0.							
Bit0:	IT0: Interrupt This bit select: level-sensitive 0: /INT0 is let 1: /INT0 is ed	s whether the interrupts. vel triggered	e configured .	/INTO signal	will detect f	alling edge or	active-low	

Figure 19.4. TCON: Timer Control Register

19.2.2. Mode 1: 16-bit Counter/Timer with Auto-Reload

The Counter/Timer with Auto-Reload mode sets the TF2 timer overflow flag when the counter/timer register overflows from 0xFFFF to 0x0000. An interrupt is generated if enabled. On overflow, the 16-bit value held in the two capture registers (RCAP2H, RCAP2L) is automatically loaded into the counter/timer register and the timer is restarted.

Counter/Timer with Auto-Reload mode is selected by clearing the CP/RL2 bit. Setting TR2 to logic 1 enables and starts the timer. Timer 2 can use either the system clock or transitions on an external input pin as its clock source, as specified by the C/T2 bit. If EXEN2 is set to logic 1, a high-to-low transition on T2EX will also cause Timer 2 to be reloaded. If EXEN2 is cleared, transitions on T2EX will be ignored.

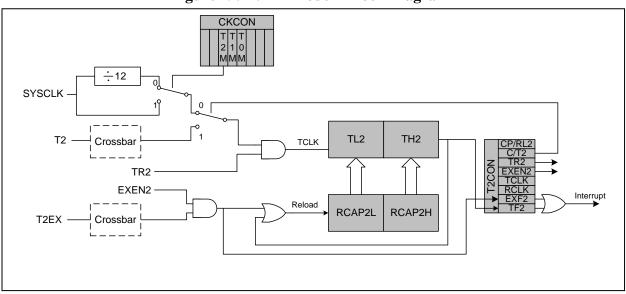


Figure 19.12. T2 Mode 1 Block Diagram

21.1. Boundary Scan

The Data Register in the Boundary Scan path is an 87-bit shift register. The Boundary DR provides control and observability of all the device pins as well as the SFR bus and Weak Pullup feature via the EXTEST and SAMPLE commands.

Table 21.1. Boundary Data Register Bit Definitions

EXTEST provides access to both capture and update actions, while Sample only performs a capture.

Bit	Action	Target				
0	Capture	Reset Enable from MCU				
	Update	Reset Enable to /RST pin				
1	Capture	Reset input from /RST pin				
1	Update	Reset output to /RST pin				
2	Capture	External Clock from XTAL1 pin				
2	Update	Not used				
3	Capture	Weak pullup enable from MCU				
5	Update	Weak pullup enable to Port Pins				
4 11	Capture	SFR Address Bus bit from CIP-51 (e.g. Bit4=SFRA0, Bit5=SFRA1)				
4-11	Update	SFR Address Bus bit to SFR Address Bus (e.g. Bit4=XSFRA0, Bit5=XSFRA1)				
12 10	Capture	SFR Data Bus bit read from SFR (e.g. Bit12=SFRD0, Bit13=SFRD1)				
12-19	Update	SFR Data Bus bit written to SFR (e.g. Bit12=SFRD0, Bit13=SFRD1)				
20	Capture	SFR Write Strobe from CIP-51				
20	Update	SFR Write Strobe to SFR Bus				
21	Capture	SFR Read Strobe from CIP-51				
21	Update	SFR Read Strobe to SFR Bus				
22	Capture	SFR Read/Modify/Write Strobe from CIP-51				
22	Update	SFR Read/Modify/Write Strobe to SFR Bus				
23,25,27,29,	Capture	P0.n output enable from MCU (e.g. Bit23=P0.0, Bit25=P0.1, etc.)				
31,33,35,37	Update	P0.n output enable to pin (e.g. Bit23=P0.00e, Bit25=P0.10e, etc.)				
24,26,28,30,	Capture	P0.n input from pin (e.g. Bit24=P0.0, Bit26=P0.1, etc.)				
32,34,36,38	Update	P0.n output to pin (e.g. Bit24=P0.0, Bit26=P0.1, etc.)				
39,41,43,45,	Capture	P1.n output enable from MCU (e.g. Bit39=P1.0, Bit41=P1.1, etc.)				
47,49,51,53	Update	P1.n output enable to pin (e.g. Bit39=P1.00e, Bit41=P1.10e, etc.)				
40,42,44,46,	Capture	P1.n input from pin (e.g. Bit40=P1.0, Bit42=P1.1, etc.)				
48,50,52,54	Update	P1.n output to pin (e.g. Bit40=P1.0, Bit42=P1.1, etc.)				
55,57,59,61,	Capture	P2.n output enable from MCU (e.g. Bit55=P2.0, Bit57=P2.1, etc.)				
63,65,67,69	Update	P2.n output enable to pin (e.g. Bit55=P2.00e, Bit57=P2.10e, etc.)				
56,58,60,62, 64,66,68,70	Capture	P2.n input from pin (e.g. Bit56=P2.0, Bit58=P2.1, etc.)				
	Update	P2.n output to pin (e.g. Bit56=P2.0, Bit58=P2.1, etc.)				
71,73,75,77,	Capture	P3.n output enable from MCU (e.g. Bit71=P3.0, Bit73=P3.1, etc.)				
79,81,83,85	Update	P3.n output enable to pin (e.g. Bit71=P3.0oe, Bit73=P3.1oe, etc.)				
72,74,76,78,	Capture	P3.n input from pin (e.g. Bit72=P3.0, Bit74=P3.1, etc.)				
80,82,84,86	Update	P3.n output to pin (e.g. Bit72=P3.0, Bit74=P3.1, etc.)				

