
Silicon Labs - C8051F011 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	20MHz
Connectivity	SMBus (2-Wire/l²C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f011

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Figure 10.5. DPH: Data Pointer High Byte	74
	Figure 10.6. PSW: Program Status Word	
	Figure 10.7. ACC: Accumulator	
	Figure 10.7. ACC. Accumulator Figure 10.8. B: B Register	
	10.4. INTERRUPT HANDLER	
	Table 10.4. Interrupt Summary	
	Figure 10.9. IE: Interrupt Enable	
	Figure 10.9. IP: Interrupt Priority	
	Figure 10.10. IF: Interrupt Friority Figure 10.11. EIE1: Extended Interrupt Enable 1	
	Figure 10.12. EIE2: Extended Interrupt Enable 2	
	Figure 10.12. EIP1: Extended Interrupt Priority 1	
	Figure 10.13. EIP1. Extended Interrupt Priority 2	
	10.5. Power Management Modes	
44	Figure 10.15. PCON: Power Control Register	
11.	FLASH MEMORY	
	11.1. Programming The Flash Memory	
	Table 11.1. FLASH Memory Electrical Characteristics	
	11.2. Non-volatile Data Storage	
	11.3. Security Options	
	Figure 11.1. PSCTL: Program Store RW Control	
	Figure 11.2. Flash Program Memory Security Bytes	
	Figure 11.3. FLACL: Flash Access Limit (C8051F005/06/07/15/16/17 only)	
	Figure 11.4. FLSCL: Flash Memory Timing Prescaler	
12.	EXTERNAL RAM (C8051F005/06/07/15/16/17)	
	Figure 12.1. EMIOCN: External Memory Interface Control	
13.	RESET SOURCES	
	Figure 13.1. Reset Sources Diagram	
	13.1. Power-on Reset	
	13.2. Software Forced Reset	
	Figure 13.2. VDD Monitor Timing Diagram	
	13.3. Power-fail Reset	
	13.4. External Reset	
	13.5. Missing Clock Detector Reset	
	13.6. Comparator 0 Reset	
	13.7. External CNVSTR Pin Reset	
	13.7. External CIVVSTR FIN Reset 13.8. Watchdog Timer Reset	
	Figure 13.3. WDTCN: Watchdog Timer Control Register	
	Figure 13.4. RSTSRC: Reset Source Register	
	Table 13.1. Reset Electrical Characteristics	
11		
14.	OSCILLATOR	
	Figure 14.1. Oscillator Diagram	
	Figure 14.2. OSCICN: Internal Oscillator Control Register	
	Table 14.1. Internal Oscillator Electrical Characteristics	
	Figure 14.3. OSCXCN: External Oscillator Control Register	
	14.1. External Crystal Example	
	14.2. External RC Example	
	14.3. External Capacitor Example	
15.	PORT INPUT/OUTPUT	103
	15.1. Priority Cross Bar Decoder	
	15.2. Port I/O Initialization	
	Figure 15.1. Port I/O Functional Block Diagram	104
	Figure 15.2. Port I/O Cell Block Diagram	
	Table 15.1. Crossbar Priority Decode	
	Figure 15.3. XBR0: Port I/O CrossBar Register 0	
	-	

Figure 5.7. ADCOCN, ADC COntrol Register (Coustfoux)												
R/W		R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
ADCE		ADCINT	ADBUSY	ADSTM1	ADSTM0	ADWINT	ADLJST	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
							(bit addressable)	0xE8				
Bit7:	ADCEN: ADC	Enable Bit										
	0: ADC Disabled. ADC is in low power shutdown.											
	1: ADC Enabled. ADC is active and ready for data conversions.											
Bit6:	ADCTM: ADC	Track Mode	Bit	-								
	0: When the Al	DC is enabled	l, tracking is	always done	unless a con	version is in	process					
	1: Tracking De	fined by ADS	STM1-0 bits									
	ADST											
		-		te of 1 to AD								
				flow of Time		for 3 SAR clo	ocks					
				/STR input is			_					
D: -				flow of Time	er 2 and last f	for 3 SAR clo	ocks					
Bit5:	ADCINT: ADC		-	terrupt Flag								
	(Must be cleared				1	. (1	4					
	0: ADC has not				e last time thi	s flag was cl	eared					
Bit4:	1: ADC has con		a conversion									
DII4:	ADBUSY: ADO Read											
	0: ADC Conver	rsion comple	te or no valid	l data has bee	n converted	since a reset	The falling					
				ipt when ena		since a reset.	The family					
	1: ADC Busy c			T' mien enu								
	Write											
	0: No effect											
	1: Starts ADC	Conversion if	ADSTM1-0	0 = 00b								
Bits3-2	ADSTM1-0: AI	DC Start of C	onversion M	lode Bits								
	00: ADC conve											
	01: ADC conve											
	10: ADC conve											
	11: ADC conve				er 2							
Bit1:	ADWINT: ADO		-	rupt Flag								
	(Must be cleared			11.	1							
	0: ADC Windo				urred							
D:40.	1: ADC Windo	-		n occurred								
Bit0:	ADLJST: ADC	•		right instified								
	0: Data in ADC 1: Data in ADC											
	1. Data III ADC	UR.ADCUL	Registers is I	ien justified								

Figure 5.7. ADC0CN: ADC Control Register (C8051F00x)

Mnemonic	Bytes	Clock Cycles					
	ARITHMETIC OPERATIONS						
ADD A,Rn	Add register to A	1	1				
ADD A, direct	Add direct byte to A	2	2				
ADD A,@Ri	Add indirect RAM to A	1	2				
ADD A,#data	Add immediate to A	2	2				
ADDC A,Rn							
ADDC A, direct	Add direct byte to A with carry	2	2				
ADDC A,@Ri	Add indirect RAM to A with carry	1	2				
ADDC A,#data	Add immediate to A with carry	2	2				
SUBB A,Rn	Subtract register from A with borrow	1	1				
SUBB A, direct	Subtract direct byte from A with borrow	2	2				
SUBB A,@Ri	Subtract indirect RAM from A with borrow	1	2				
SUBB A,#data	Subtract immediate from A with borrow	2	2				
INC A	Increment A	1	1				
INC Rn	Increment register	1	1				
INC direct	Increment direct byte	2	2				
INC @Ri	Increment indirect RAM	1	2				
DEC A	Decrement A	1	1				
DEC Rn	Decrement register	1	1				
DEC direct	Decrement direct byte	2	2				
DEC @Ri	Decrement indirect RAM	1	2				
INC DPTR	Increment Data Pointer	1	1				
MUL AB	Multiply A and B	1	4				
DIV AB	Divide A by B	1	8				
DA A	Decimal Adjust A	1	1				
DITI	LOGICAL OPERATIONS	1	1				
ANL A,Rn	AND Register to A	1	1				
ANL A,direct	AND direct byte to A	2	2				
ANL A,@Ri	AND indirect RAM to A	1	2				
ANL A,#data	AND immediate to A	2	2				
ANL direct,A	AND A to direct byte	2	2				
ANL direct,#data	AND immediate to direct byte	3	3				
ORL A,Rn	OR Register to A	1	1				
ORL A, direct	OR direct byte to A	2	2				
ORL A,@Ri	OR indirect RAM to A	1	2				
ORL A,#data	OR immediate to A	2	2				
ORL direct,A	OR A to direct byte	2	2				
ORL direct,#data	OR immediate to direct byte	3	3				
XRL A,Rn	Exclusive-OR Register to A	1	1				
XRL A,direct	Exclusive-OR direct byte to A	2	2				
XRL A,@Ri	Exclusive-OR indirect RAM to A	1	2				
XRL A,#data	Exclusive-OR immediate to A	2	2				
XRL direct,A	Exclusive-OR A to direct byte	2	2				
XRL direct,#data	Exclusive-OR immediate to direct byte	3	3				
CLR A	Clear A	1	1				
CPL A	Complement A	1	1				
RL A	Rotate A left	1	1				
RLC A	Rotate A left through carry	1	1				

Table 10.1. CIP-51 Instruction Set Summary

Address	Register	Description	Page No.
0xC7	ADC0LTH	ADC Less-Than Data Word (High Byte)	36*, 47**
0xC6	ADC0LTL	ADC Less-Than Data Word (Low Byte)	36*, 47**
0xBA	AMX0CF	ADC MUX Configuration	31*, 42**
0xBB	AMX0SL	ADC MUX Channel Selection	32*, 43**
0xF0	В	B Register	76
0x8E	CKCON	Clock Control	144
0x9E	CPT0CN	Comparator 0 Control	56
0x9F	CPT1CN	Comparator 1 Control	58
0xD4	DAC0CN	DAC 0 Control	52
0xD3	DAC0H	DAC 0 Data Word (High Byte)	52
0xD2	DAC0L	DAC 0 Data Word (Low Byte)	52
0xD7	DAC1CN	DAC 1 Control	53
0xD6	DAC1H	DAC 1 Data Word (High Byte)	53
0xD5	DAC1L	DAC 1 Data Word (Low Byte)	53
0x83	DPH	Data Pointer (High Byte)	74
0x82	DPL	Data Pointer (Low Byte)	74
0xE6	EIE1	Extended Interrupt Enable 1	81
0xE7	EIE2	Extended Interrupt Enable 2	82
0xF6	EIP1	External Interrupt Priority 1	83
0xF7	EIP2	External Interrupt Priority 2	84
0xAF	EMI0CN	External Memory Interface Control	92***
0xB7	FLACL	Flash Access Limit	90***
0xB6	FLSCL	Flash Memory Timing Prescaler	91
0xA8	IE	Interrupt Enable	79
0xB8	IP	Interrupt Priority Control	80
0xB2	OSCICN	Internal Oscillator Control	100
0xB1	OSCXCN	External Oscillator Control	101
0x80	P0	Port 0 Latch	109
0x90	P1	Port 1 Latch	110
0xA0	P2	Port 2 Latch	111
0xB0	P3	Port 3 Latch	112
0xD8	PCA0CN	Programmable Counter Array 0 Control	160
0xFA	PCA0CPH0	PCA Capture Module 0 Data Word (High Byte)	163
0xFB	PCA0CPH1	PCA Capture Module 1 Data Word (High Byte)	163
0xFC	PCA0CPH2	PCA Capture Module 2 Data Word (High Byte)	163
0xFD	PCA0CPH3	PCA Capture Module 3 Data Word (High Byte)	163
0xFE	PCA0CPH4	PCA Capture Module 4 Data Word (High Byte)	163
0xEA	PCA0CPL0	PCA Capture Module 0 Data Word (Low Byte)	163
0xEB	PCA0CPL1	PCA Capture Module 1 Data Word (Low Byte)	163
0xEC	PCA0CPL2	PCA Capture Module 2 Data Word (Low Byte)	163
0xED	PCA0CPL3	PCA Capture Module 3 Data Word (Low Byte)	163

Address	Register	Description	Page No.
0x89	TMOD	Counter/Timer Mode	143
0x91	TMR3CN	Timer 3 Control	152
0x95	TMR3H	Timer 3 High	153
0x94	TMR3L	Timer 3 Low	153
0x93	TMR3RLH	Timer 3 Reload High	153
0x92	TMR3RLL	Timer 3 Reload Low	153
0xFF	WDTCN	Watchdog Timer Control	96
0xE1	XBR0	Port I/O Crossbar Configuration 1	105
0xE2	XBR1	Port I/O Crossbar Configuration 2	107
0xE3	XBR2	Port I/O Crossbar Configuration 3	108
0x84-86, 0	x96-97, 0x9C,		
0xA1-A3,	0xA9-AC,		
0xAE, 0xB	3-B5, 0xB9,	Reserved	
0xBD, 0xC	C9, 0xCE,		
0xDF, 0xE	4-E5, 0xF1-F5		

* Refers to a register in the C8051F000/1/2/5/6/7 only. ** Refers to a register in the C8051F010/1/2/5/6/7 only. *** Refers to a register in the C8051F005/06/07/15/16/17 only.

Figure 10.10. IP: Interrupt Priority

- D:47		R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
D:47	-	PT2	PS	PT1	PX1	PT0	PX0	0000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable)	SFR Address 0xB8	
Bit5:	UNUSED. Re PT2 Timer 2 I This bit sets th 0: Timer 2 int 1: Timer 2 int	nterrupt Prio e priority of errupts set to	rity Control. the Timer 2 low priority	interrupts.					
Bit4:	PS: Serial Port This bit sets th 0: UART inte 1: UART inte	t (UART) Int e priority of rrupts set to	errupt Priori the Serial Po low priority	ty Control. ort (UART) i level.	nterrupts.				
	PT1: Timer 1 This bit sets th 0: Timer 1 int 1: Timer 1 int	e priority of errupts set to	the Timer 1 low priority	interrupts. / level.					
	PX1: External This bit sets th 0: External In 1: External In	e priority of terrupt 1 set	the External to low priori	Interrupt 1 i ty level.	nterrupts.				
	 PT0: Timer 0 Interrupt Priority Control. This bit sets the priority of the Timer 0 interrupts. 0: Timer 0 interrupt set to low priority level. 1: Timer 0 interrupt set to high priority level. 								
	PX0: External This bit sets th 0: External In	e priority of terrupt 0 set	the External	Interrupt 0 i ty level.	nterrupts.				

11. FLASH MEMORY

These devices include 32k + 128 bytes of on-chip, reprogrammable Flash memory for program code and nonvolatile data storage. The Flash memory can be programmed in-system, a single byte at a time, through the JTAG interface or by software using the MOVX instruction. Once cleared to 0, a Flash bit must be erased to set it back to 1. The bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution. Data polling to determine the end of the write/erase operation is not required. The Flash memory is designed to withstand at least 20,000 write/erase cycles. Refer to Table 11.1 for the electrical characteristics of the Flash memory.

11.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the JTAG interface using programming tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device. For details on the JTAG commands to program Flash memory, see Section 21.2.

The Flash memory can be programmed by software using the MOVX instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1. Writing to Flash remains enabled until the PSWE bit is cleared by software.

Writes to Flash memory can clear bits but cannot set them. Only an erase operation can set bits in Flash. Therefore, the byte location to be programmed must be erased before a new value can be written. The 32kbyte Flash memory is organized in 512-byte sectors. The erase operation applies to an entire sector (setting all bytes in the sector to 0xFF). Setting the PSEE Program Store Erase Enable bit (PSCTL.1) and PSWE (PSCTL.0) bit to logic 1 and then using the MOVX command to write a data byte to any byte location within the sector will erase an entire 512-byte sector. The data byte written can be of any value because it is not actually written to the Flash. Flash erasure remains enabled until the PSEE bit is cleared by software. The following sequence illustrates the algorithm for programming the Flash memory by software:

- 1. Enable Flash Memory write/erase in FLSCL Register using FLASCL bits.
- 2. Set PSEE (PSCTL.1) to enable Flash sector erase.
- 3. Set PSWE (PSCTL.0) to enable Flash writes.
- 4. Use MOVX to write a data byte to any location within the 512-byte sector to be erased.
- 5. Clear PSEE to disable Flash sector erase.
- 6. Use MOVX to write a data byte to the desired byte location within the erased 512-byte sector. Repeat until finished. (Any number of bytes can be written from a single byte to and entire sector.)
- 7. Clear the PSWE bit to disable Flash writes.

Write/Erase timing is automatically controlled by hardware based on the prescaler value held in the Flash Memory Timing Prescaler register (FLSCL). The 4-bit prescaler value FLASCL determines the time interval for write/erase operations. The FLASCL value required for a given system clock is shown in Figure 11.4, along with the formula used to derive the FLASCL values. When FLASCL is set to 1111b, the write/erase operations are disabled. Note that code execution in the 8051 is stalled while the Flash is being programmed or erased.

Table 11.1. FLASH Memory Electrical Characteristics

VDD = 2.7 to 3.6V, $-40^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Endurance		20k	100k		Erase/Wr
Erase Cycle Time		10			ms
Write Cycle Time		40			μs

prohibited from reading locations in the lower partition using the MOVC instruction. (Executing a MOVC instruction from the upper partition with a source address in the lower partition will always return a data value of 0x00.) Software running in the lower partition can access locations in both the upper and lower partition without restriction.

The Value-added firmware should be placed in the lower partition. On reset, control is passed to the value-added firmware via the reset vector. Once the value-added firmware completes its initial execution, it branches to a predetermined location in the upper partition. If entry points are published, software running in the upper partition may execute program code in the lower partition, but it cannot read the contents of the lower partition. Parameters may be passed to the program code running in the lower partition either through the typical method of placing them on the stack or in registers before the call or by placing them in prescribed memory locations in the upper partition.

The SRL address is specified using the contents of the Flash Access Register. The 16-bit SRL address is calculated as 0xNN00, where NN is the contents of the SRL Security Register. Thus, the SRL can be located on 256-byte boundaries anywhere in program memory space. However, the 512-byte erase sector size essentially requires that a 512 boundary be used. The contents of a non-initialized SRL security byte is 0x00, thereby setting the SRL address to 0x0000 and allowing read access to all locations in program memory space by default.

Figure 11.3. FLACL: Flash Access Limit (C8051F005/06/07/15/16/17 only)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xB7
r I	FLACL: Flash This register h address. The e replaced by co register can o antil the next	olds the high entire 16-bit ontents of FL. nly be writt	byte of the laccess limit a	ddress value te to this regis	is calculated ster sets the F	as 0xNN00 Flash Access	where NN i Limit. Thi	S

R	R/W	R/W	R/W	R	R	R/W	R	Reset Value			
JTAGRS	Γ CNVRSEF	CORSEF	SWRSEF	WDTRSF	MCDRSF	PORSF	PINRSF	XXXXXXXX			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xEF			
(Note:	Do not use read	-modify-wri	te operations	on this regis	ter.)						
Bit7:	JTAGRST. J7										
	0: JTAG is not currently in reset state.										
	1: JTAG is in										
Bit6:	CNVRSEF: C	onvert Start	Reset Source	Enable and	Flag						
	Write										
	0: CNVSTR i										
	1: CNVSTR i	s a reset sou	rce (active lo	w)							
	Read	•									
	0: Source of p										
D'/C	1: Source of p										
Bit5:	CORSEF: Con	nparator 0 Re	eset Enable a	nd Flag							
	Write	. 0 :	4								
	0: Comparato										
	1: Comparato Read	r 0 is a reset	source (activ	e low)							
	Note: The valu	10 road from	CODSEE	ot defined if	Comparator	0 has not had	n anablad as				
	a reset source.		CORSEPTS	iot defined fi	Comparator	o has not bee	in enabled as				
	0: Source of p	rior reset w	as not from C	omparator 0							
	1: Source of p										
Bit4:	SWRSF: Softv										
Dit i.	Write	ware Reset I	oree and r ha	>							
	0: No Effect										
	1: Forces an in	nternal reset	. /RST pin is	not effected							
	Read		I I I								
	0: Prior reset	source was r	not from write	e to the SWR	SF bit.						
	1: Prior reset	source was f	rom write to	the SWRSF	oit.						
Bit3:	WDTRSF: Wa	atchdog Tim	er Reset Flag								
	0: Source of p	prior reset wa	as not from V	VDT timeout.							
	1: Source of p	prior reset wa	as from WDT	timeout.							
Bit2:	MCDRSF: Mi	ssing Clock	Detector Flag	g							
	0: Source of p										
	1: Source of p				tector timeou	t.					
Bit1:	PORSF: Powe	er-On Reset I	Force and Fla	ıg							
	Write										
	0: No effect										
	1: Forces a Po	ower-On Res	et. /RST is c	lriven low.							
	Read	•		0 D							
	0: Source of p										
D:40	1: Source of p										
Bit0:	PINRSF: HW		-	ост ":»							
	0: Source of p										
	1: Source of p	mor reset wa	as moin /KST	pm.							

Figure 13.4. RSTSRC: Reset Source Register

R/W MSCLKE	R/W	R/W	R IFRDY	R/W CLKSL	R/W IOSCEN	R/W IFCN1	R/W IFCN0	Reset Value 00000100
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xB2
Bit7: MS	SCLKE: Miss	sing Clock E	nable Bit					
	Missing Cloc	•						
1:	Missing Cloc	ck Detector E	Enabled; trigg	gers a reset if	a missing clo	ock is detected	b	
Bits6-5: UN	USED. Rea	d = 00b, Wri	te = don't ca	re	-			
Bit4: IFI	RDY: Interna	l Oscillator F	Frequency Re	ady Flag				
						the IFCN bits		
	Internal Osci				ified by the l	FCN bits.		
	KSL: System							
	Uses Interna							
	Uses Externa			ock.				
	SCEN: Intern							
	Internal Osci							
	Internal Osci							
	CN1-0: Intern							
	Internal Os	• •						
	Internal Os							
	Internal Os							
11:	: Internal Os	cillator typic	al frequency	18 16MHZ.				

Figure 14.2. OSCICN: Internal Oscillator Control Register

-40°C to +85°C unless otherwise specified.	-40°C to -	+85°C u	inless	otherwise	specified.
--	------------	---------	--------	-----------	------------

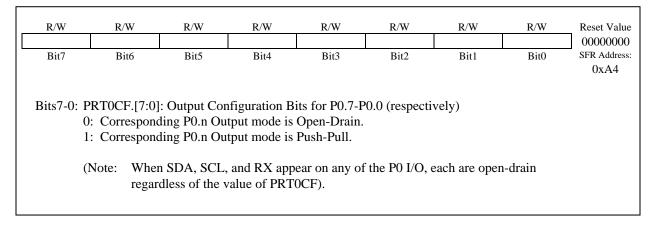
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Internal Oscillator	OSCICN.[1:0] = 00	1.5	2	2.4	MHz
Frequency	OSCICN.[1:0] = 01	3.1	4	4.8	
	OSCICN.[1:0] = 10	6.2	8	9.6	
	OSCICN.[1:0] = 11	12.3	16	19.2	
Internal Oscillator Current	OSCICN.2 = 1		200		μA
Consumption (from VDD)					·
Internal Oscillator			4		ppm/°C
Temperature Stability					
Internal Oscillator Power			6.4		%/V
Supply (VDD) Stability					

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SYSCKE	T2EXE	T2E	INT1E	T1E	INT0E	T0E	CP10EN	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE2
Bit7: S	YSCKE: SYS	SCLK Outpu	ıt Enable Bit					
0:	: SYSCLK u	navailable a	t Port pin.					
1:	: SYSCLK o	utput routed	to Port Pin.					
Bit6: T	2EXE: T2EX	Enable Bit						
0:	: T2EX unav	ailable at Po	ort pin.					
1:	: T2EX route	ed to Port Pi	n. –					
Bit5: T	2E: T2 Enabl	e Bit						
0:	: T2 unavaila	ble at Port p	oin.					
1:	: T2 routed to	o Port Pin.						
Bit4: IN	NT1E: /INT1	Enable Bit						
0:	: /INT1 unav	ailable at Po	ort pin.					
1:	: /INT1 route	ed to Port Pi	n.					
Bit3: T	'1E: T1 Enabl	e Bit						
0:	: T1 unavaila	ble at Port p	oin.					
1:	: T1 routed to	o Port Pin.						
Bit2: IN	NT0E: /INT0	Enable Bit						
0:	: /INT0 unav	ailable at Po	ort pin.					
1:	: /INT0 route	ed to Port Pi	n.					
Bit1: T	OE: TO Enabl	e Bit						
0:	: T0 unavaila	ble at Port p	oin.					
1:	: T0 routed to	o Port Pin.						
Bit0: C	PIOEN: Con	nparator 1 C	utput Enable	Bit				
0:	: CP1 unavai	lable at Port	pin.					
1:	: CP1 routed	to Port Pin.	-					

Figure 15.4. XBR1: Port I/O CrossBar Register 1

15.3. General Purpose Port I/O

Each MCU has four byte-wide, bi-directional parallel ports that can be used general purpose I/O. Each port is accessed through a corresponding special function register (SFR) that is both byte addressable and bit addressable. When writing to a port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the port's input pins are returned regardless of the XBRn settings (i.e. even when the pin is assigned to another signal by the Crossbar, the Port Register can always still read its corresponding Port I/O pin). The exception to this is the execution of the *read-modify-write* instructions. The *read-modify-write* instructions when operating on a port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SET, when the destination is an individual bit in a port SFR. For these instructions, the value of the port register (not the pin) is read, modified, and written back to the SFR.


15.4. Configuring Ports Which are not Pinned Out

P2 and P3 are not pinned out on the F001/06/11/16. P1, P2, and P3 are not pinned out on the F002/07/12/17. These port registers (and corresponding interrupts, where applicable) are still available for software use in these reduced pin count MCUs. Whether used or not in software, it is recommended not to let these port drivers go to high impedance state. This is prevented after reset by having the weak pull-ups enabled as described in the XBR2 register. It is recommended that each output driver for ports not pinned out should be configured as push-pull using the corresponding PRTnCF register. This will inhibit a high impedance state even if the weak pull-up is disabled.

R/W P0.7	R/W P0.6	R/W P0.5	R/W P0.4	R/W P0.3	R/W P0.2	R/W P0.1	R/W P0.0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable)	SFR Address: 0x80
0 1 () 0	0.[7:0] Write – Outpu : Logic Low : Logic High Read – Regar : P0.n pin is : P0.n pin is	Output. Output (hig) dless of XBF logic low.	h-impedance	if correspond	ding PRT0CI	F.n bit = 0)		

Figure	15.6.	P0: Port	t0 Register
Inguic	10.00	10.101	i itegister

Figure 15.7. PRT0CF: Port0 Configuration Register

16.2.4. Slave Receiver Mode

Serial data is received on SDA while the serial clock is received on SCL. First, a byte is received that contains an address and data direction bit. In this case the data direction bit (R/W) will be logic 0 to indicate a "WRITE" operation. If the received address matches the slave's assigned address (or a general call address is received) one or more bytes of serial data are received from the master. After each byte is received, an acknowledge bit is transmitted by the slave. The master outputs START and STOP conditions to indicate the beginning and end of the serial transfer.

16.3. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remains high for a specified time. Two or more master devices may attempt to generate a START condition at the same time. Since the devices that generated the START condition may not be aware that other masters are contending for the bus, an arbitration scheme is employed. The master devices continue to transmit until one of the masters transmits a HIGH level, while the other(s) master transmits a LOW level on SDA. The first master(s) transmitting the HIGH level on SDA looses the arbitration and is required to give up the bus.

16.4. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave can hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

16.5. Timeouts

16.5.1. SCL Low Timeout

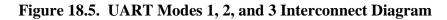
If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10ms after detecting the timeout condition.

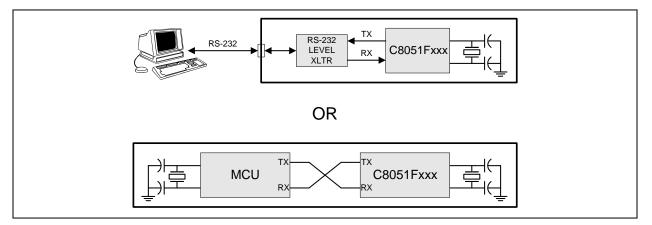
One of the MCU's general-purpose timers, operating in 16-bit auto-reload mode, can be used to monitor the SCL line for this timeout condition. Timer 3 is specifically designed for this purpose. (Refer to the Timer 3 Section 19.3. for detailed information on Timer 3 operation.)

16.5.2. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if a device holds the SCL and SDA lines high for more that 50usec, the bus is designated as free. The SMB0CR register is used to detect this condition when the FTE bit in SMB0CN is set.

16.6. SMBus Special Function Registers


The SMBus serial interface is accessed and controlled through five SFRs: SMB0CN Control Register, SMB0CR Clock Rate Register, SMB0ADR Address Register, SMB0DAT Data Register and SMB0STA Status Register. The system device may have one or more SMBus serial interfaces implemented. The five special function registers related to the operation of the SMBus interface are described in the following section.



The Timer 2 overflow rate, when in *Baud Rate Generator Mode* and using an internal clock source, is determined solely by the Timer 2 16-bit reload value (RCAP2H:RCAP2L). The Timer 2 clock source is fixed at SYSCLK/2. The Timer 2 overflow rate can be calculated as follows:

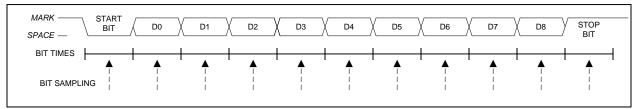
 $T2_OVERFLOWRATE = (SYSCLK/2) / (65536 - [RCAP2H:RCAP2L]).$

Timer 2 can be selected as the baud rate generator for RX and/or TX by setting RCLK (T2CON.5) and/or TCLK (T2CON.4), respectively. When either RCLK or TCLK is set to logic 1, Timer 2 interrupts are automatically disabled and the timer is forced into *Baud Rate Generator Mode* with SYSCLK/2 as its clock source. If a different timebase is required, setting the C/T2 bit (T2CON.1) to logic 1 will allow Timer 2 to be clocked from the external input pin T2. See the Timers section for complete timer configuration details.

18.1.3. Mode 2: 9-Bit UART, Fixed Baud Rate

Mode 2 provides asynchronous, full-duplex communication using a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit (see timing diagram in Figure 18.6). On transmit, the ninth data bit is determined by the value in TB8 (SCON.3). It can be assigned the value of the parity flag P in the PSW or used in multiprocessor communications. On receive, the ninth data bit goes into RB8 (SCON.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt Flag (SCON.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN Receive Enable bit (SCON.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF receive register if the following conditions are met: RI must be logic 0, and if SM2 is logic 1, the 9th bit must be logic 1.


If these conditions are met, the eight bits of data are stored in SBUF, the ninth bit is stored in RB8 and the RI flag is set. If these conditions are not met, SBUF and RB8 will not be loaded and the RI flag will not be set. An interrupt will occur if enabled when either TI or RI are set.

The baud rate in Mode 2 is a direct function of the system clock frequency as follows:

Mode 2 Baud Rate = $2^{SMOD} * (SYSCLK / 64)$.

The SMOD bit (PCON.7) selects whether to divide SYSCLK by 32 or 64. In the formula, 2 is raised to the power SMOD, resulting in a baud rate of either 1/32 or 1/64 of the system clock frequency. On reset, the SMOD bit is logic 0, thus selecting the lower speed baud rate by default.

18.1.4. Mode 3: 9-Bit UART, Variable Baud Rate

Mode 3 is the same as Mode 2 in all respects except the baud rate is variable. The baud rate is determined in the same manner as for Mode 1. Mode 3 operation transmits 11 bits: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. Timer 1 or Timer 2 overflows generate the baud rate just as with Mode 1. In summary, Mode 3 transmits using the same protocol as Mode 2 but with Mode 1 baud rate generation.

19. TIMERS

Each MCU implements four counter/timers: three are 16-bit counter/timers compatible with those found in the standard 8051, and one is a 16-bit timer for use with the ADC, SMBus, or for general purpose use. These can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 offers additional capabilities not available in Timers 0 and 1. Timer 3 is similar to Timer 2, but without the capture or Baud Rate Generator modes.

Timer 0 and Timer 1:	Timer 2:	<u>Timer 3:</u>
13-bit counter/timer	16-bit counter/timer with auto-reload	16-bit timer with auto-reload
16-bit counter/timer	16-bit counter/timer with capture	
8-bit counter/timer with auto-reload	Baud rate generator	
Two 8-bit counter/timers (Timer 0 only)		

When functioning as a timer, the counter/timer registers are incremented on each clock tick. Clock ticks are derived from the system clock divided by either one or twelve as specified by the Timer Clock Select bits (T2M-T0M) in CKCON. The twelve-clocks-per-tick option provides compatibility with the older generation of the 8051 family. Applications that require a faster timer can use the one-clock-per-tick option.

When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin for T0, T1, or T2. Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is sampled.

19.1. Timer 0 and Timer 1

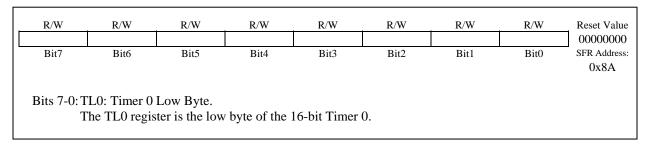
Timer 0 and Timer 1 are accessed and controlled through SFRs. Each counter/timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control (TCON) register is used to enable Timer 0 and Timer 1 as well as indicate their status. Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits M1-M0 in the Counter/Timer Mode (TMOD) register. Each timer can be configured independently. Following is a detailed description of each operating mode.

19.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as a 13-bit counter/timer in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. Clearing C/T selects the system clock as the input for the timer. When C/T0 is set to logic 1, high-to-low transitions at the selected input pin increment the timer register. (Refer to Port I/O Section 15.1 for information on selecting and configuring external I/O pins.)



R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	T2M	T1M	TOM	Reserved	Reserved	Reserved	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
Bits7-6:	UNUSED. Re	ead = 00b, W	rite = don't c	care.				0x8E
Bit5:	T2M: Timer 2 This bit contro when the timer 0: Timer 2 use 1: Timer 2 use	ols the division r is in baud r es the system	on of the syste ate generator clock divide	mode or cou				
Bit4:	T1M: Timer 1 This bit contro 0: Timer 1 use 1: Timer 1 use	ols the divisions of the system	on of the systen clock divide	-	plied to Time	er 1.		
Bit3:	T0M: Timer 0 This bit contro 0: Counter/Tin 1: Counter/Tin	ols the division mer uses the	on of the syste system clock	divided by	-	nter/Timer 0.		
Bits2-0:	Reserved. Rea	ad = 000b, N	Iust Write = (000.				

Figure 19.6. CKCON: Clock Control Register

Figure 19.7. TL0: Timer 0 Low Byte

Figure 19.8. TL1: Timer 1 Low Byte

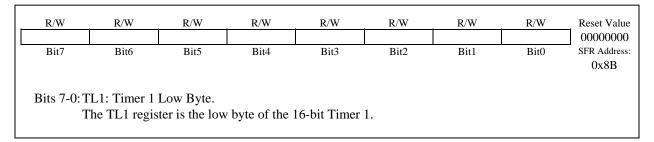
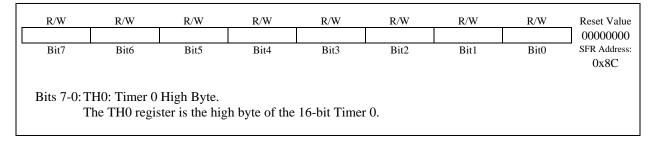
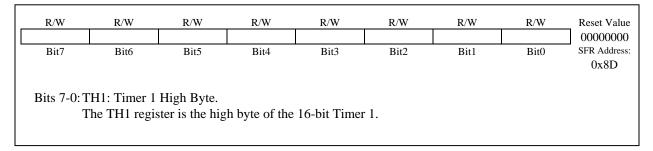
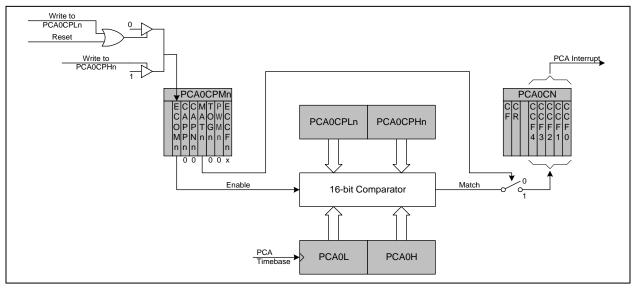
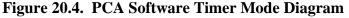




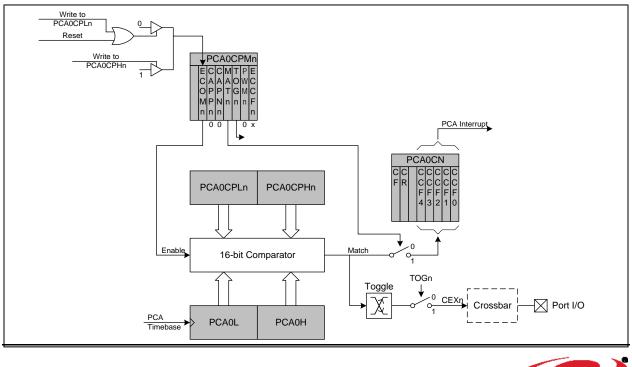
Figure 19.9. TH0: Timer 0 High Byte


Figure 19.10. TH1: Timer 1 High Byte



20.1.2. Software Timer (Compare) Mode

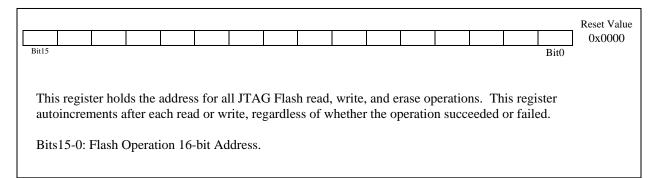
In Software Timer mode, the PCA counter/timer is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.



20.1.3. High Speed Output Mode

In this mode, each time a match occurs between the PCA Timer Counter and a module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn) the logic level on the module's associated CEXn pin will toggle. Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.

Figure 20.5. PCA High Speed Output Mode Diagram



WRMD3	WRMD2	WRMD1	WRMD0	RDMD3	RDMD2	RDMD1	RDMD0	Reset Valu 00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
FLASHD	ter determine AT Register. VRMD3-0: W			logic will res	pond to reads	s and writes	to the	
	The Write Mo			v the interfac	e logic respo	nds to writes	to the	
F	FLASHDAT I	Register per t	he following	values:				
0	000: A FLA		e replaces the	e data in the l	FLASHDAT	register, but	is otherwise	
0	ignored 001: A FLA		e initiates a v	vrite of FLAS	SHDAT into	the memory	location	
		ed by the FL			SHADR is inc			
0	010: A FLA		e initiates an	erasure (sets	all bytes to 0	() () () () () () () () () () () () () () (Flash page	
	contain	ing the addre	ss in FLASH	ADR. FLAS	SHDAT must	t be 0xA5 for	r the erase to	
							OFF, the entire area 0x7E00	
	0x7FFF		aseu (i.e. ent	ne Piasn mei	nory except i	ioi Reserveu	area 0x/E00	_
(.	All other valu	ies for WRM	D3-0 are res	erved.)				
Bits3-0: R	RDMD3-0: Re	ead Mode Se	lect Bits.					
	The Read Moo				e logic respon	nds to reads t	o the	
	LASHDAT I 000: A FLA				SASHDAT re	orister but is	otherwise	
0	ignored		provides the	dutu ili tilo i		gister, out is	other wise	
0							HADR registe	er
0					is used for bl		DR only if no	
0					us read has al			
	FLASH	DAT. This	mode allows		to be read (or			
1	without All other valu	initiating an						
	ALL OTHOR VOLU	Ing tor PINA	114 II oro roco	mund)				

Figure 21.3. FLASHCON: JTAG Flash Control Register

