E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	20MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f011r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5. Programmable Counter Array

The C8051F000 MCU family has an on-board Programmable Counter/Timer Array (PCA) in addition to the four 16-bit general-purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer timebase with 5 programmable capture/compare modules. The timebase gets its clock from one of four sources: the system clock divided by 12, the system clock divided by 4, Timer 0 overflow, or an External Clock Input (ECI).

Each capture/compare module can be configured to operate in one of four modes: Edge-Triggered Capture, Software Timer, High Speed Output, or Pulse Width Modulator. The PCA Capture/Compare Module I/O and External Clock Input are routed to the MCU Port I/O via the Digital Crossbar.

1.6. Serial Ports

The C8051F000 MCU Family includes a Full-Duplex UART, SPI Bus, and I2C/SMBus. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little intervention by the CPU. The serial buses do not "share" resources such as timers, interrupts, or Port I/O, so any or all of the serial buses may be used together.

2. ABSOLUTE MAXIMUM RATINGS*

Ambient temperature under bias	
Storage Temperature	65 to 150°C
Voltage on any Pin (except VDD and Port I/O) with respect to DGND	$-0.3V$ to (VDD + 0.3V)
Voltage on any Port I/O Pin or /RST with respect to DGND	0.3V to 5.8V
Voltage on VDD with respect to DGND	0.3V to 4.2V
Maximum Total current through VDD, AV+, DGND and AGND	
Maximum output current sunk by any Port pin	
Maximum output current sunk by any other I/O pin	25mA
Maximum output current sourced by any Port pin	100mA
Maximum output current sourced by any other I/O pin	25mA

*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

3. GLOBAL DC ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Analog Supply Voltage	(Note 1)	2.7	3.0	3.6	V
Analog Supply Current	Internal REF, ADC, DAC, Comparators		1	2	mA
	all active				
Analog Supply Current with	Internal REF, ADC, DAC, Comparators		5	20	μA
analog sub-systems inactive	all disabled, oscillator disabled				
Analog-to-Digital Supply				0.5	V
Delta ($ VDD - AV + $)					
Digital Supply Voltage		2.7	3.0	3.6	V
Digital Supply Current with	VDD = 2.7V, Clock=25MHz		12.5		mA
CPU active	VDD = 2.7V, Clock=1MHz		0.5		mA
	VDD = 2.7V, Clock=32kHz		10		μΑ
Digital Supply Current	Oscillator not running		5		μA
(shutdown)					
Digital Supply RAM Data			1.5		V
Retention Voltage					
Specified Operating		-40		+85	°C
Temperature Range					
SYSCLK (System Clock	C8051F005/6/7, C8051F015/6/7	0		25	MHz
Frequency)	(Note 2)				
SYSCLK (System Clock	C8051F000/1/2, C8051F010/1/2	0		20	MHz
Frequency)	(Note 2)				
Tsysl (SYSCLK Low Time)		18			ns
Tsysh (SYSCLK High Time)		18			ns

-40°C to +85°C unless otherwise specified.

Note 1: Analog Supply AV+ must be greater than 1V for VDD monitor to operate. Note 2: SYSCLK must be at least 32 kHz to enable debugging.

Figure 5.5. AMX0SL: AMUX Channel Select Register (C8051F00x)

R/W	I	R/W	R/W	R/W		R/W	R/W	R/W		R/W
-		-	-	-	Al	MXAD3	AMXAD2	AMXAI	D1 AM	IXAD0
-4: 8-0:	UNUSE AMXAI 0000-11	D. Read = D3-0: AM 11: ADC	= 0000b; ^Y UX Addru Inputs se	Write = do ess Bits lected per	on't care chart be	elow	Bit2	ВШ		BIO
						AMXAD	3-0			
	-	0000	0001	0010	0011	0100	0101	0110	0111	1xxx
A M	0000	AIN0	AIN1	AIN2	AIN3	AIN4	AIN5	AIN6	AIN7	TEMP SENSOF
X 0	0001	+(AIN0) -(AIN1)		AIN2	AIN3	AIN4	AIN5	AIN6	AIN7	TEMP SENSOF
C F	0010	AIN0	AIN1	+(AIN2) -(AIN3)		AIN4	AIN5	AIN6	AIN7	TEMP SENSOF
B	0011	+(AIN0) -(AIN1)		+(AIN2) -(AIN3)		AIN4	AIN5	AIN6	AIN7	TEMP SENSOF
T T	0100	AIN0	AIN1	AIN2	AIN3	+(AIN4) -(AIN5)		AIN6	AIN7	TEMP SENSOF
3	0101	+(AIN0) -(AIN1)		AIN2	AIN3	+(AIN4) -(AIN5)		AIN6	AIN7	TEMP SENSOF
- 0	0110	AIN0	AIN1	+(AIN2) -(AIN3)		+(AIN4) -(AIN5)		AIN6	AIN7	TEMP SENSOF
Ū	0111	+(AIN0) -(AIN1)		+(AIN2) -(AIN3)		+(AIN4) -(AIN5)		AIN6	AIN7	TEMP SENSOF
	1000	AIN0	AIN1	AIN2	AIN3	AIN4	AIN5	+(AIN6) -(AIN7)		TEMP SENSOF
	1001	+(AIN0) -(AIN1)		AIN2	AIN3	AIN4	AIN5	+(AIN6) -(AIN7)		TEMP SENSOF
	1010	AIN0	AIN1	+(AIN2) -(AIN3)		AIN4	AIN5	+(AIN6) -(AIN7)		TEMP SENSOF
	1011	+(AIN0) -(AIN1)		+(AIN2) -(AIN3)		AIN4	AIN5	+(AIN6) -(AIN7)		TEMP SENSOF
	1100	AIN0	AIN1	AIN2	AIN3	+(AIN4) -(AIN5)		+(AIN6) -(AIN7)		TEMP SENSOF
	1101	+(AIN0) -(AIN1)		AIN2	AIN3	+(AIN4) -(AIN5)		+(AIN6) -(AIN7)		TEMP SENSOF
	1110	AIN0	AIN1	+(AIN2) -(AIN3)		+(AIN4) -(AIN5)		+(AIN6) -(AIN7)		TEMP SENSOF
	1111	+(AIN0)		+(AIN2)		+(AIN4)		+(AIN6)		TEMP

		0						•	
R/W	<i>.</i>	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ADCI	EN A	DCTM	ADCINT	ADBUSY	ADSTM1	ADSTM0	ADWINT	ADLJST	00000000
Bit7		Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								(bit addressable)	0xE8
Bit7:	ADCE	N: ADC	Enable Bit						
	0: AD	C Disable	ed. ADC is i	n low power	shutdown.				
	1: AD	C Enable	d. ADC is a	ctive and rea	dy for data co	onversions.			
Bit6:	ADCT	M: ADC	Track Mode	Bit	5				
	0: Wh	en the Al	DC is enabled	l, tracking is	always done	unless a con-	version is in	process	
	1: Tra	cking De	fined by ADS	STM1-0 bits	2			1	
		ADST	M1-0:						
		00: Tr	acking starts	with the writ	e of 1 to AD	BUSY and la	sts for 3 SA	R clocks	
		01: Tr	acking starte	d by the over	flow of Time	er 3 and last f	or 3 SAR clo	ocks	
		10: AI	OC tracks on	ly when CNV	/STR input is	s logic low			
		11: Tr	acking started	d by the over	flow of Time	er 2 and last f	or 3 SAR clo	ocks	
Bit5:	ADCIN	NT: ADC	Conversion	Complete In	terrupt Flag				
	(Must l	be cleared	d by software	e)					
	0: AD	C has not	t completed a	data convers	sion since the	e last time this	s flag was cl	eared	
	1: AD	C has con	mpleted a dat	a conversion					
Bit4:	ADBU	SY: ADO	C Busy Bit						
	Read								
	0: AD	C Conve	rsion comple	te or no valid	l data has bee	en converted a	since a reset.	The falling	
	edg	e of ADE	BUSY genera	tes an interru	pt when ena	bled.			
	1: AD	C Busy c	onverting dat	ta					
	Write								
	0: No	effect							
	1: Star	ts ADC (Conversion if	ADSTM1-0	0 = 00b				
Bits3-2	: ADST	M1-0: AI	DC Start of C	onversion M	ode Bits				
	00: AI	DC conve	ersion started	upon every	write of 1 to 1	ADBUSY			
	01: AI	DC conve	ersions taken	on every ove	erflow of Tim	her 3			
	10: AI	DC conve	ersion started	upon every i	rising edge of	f CNVSTR			
	11: AI	DC conve	ersions taken	on every ove	erflow of Tim	her 2			
Bit1:	ADWI	NT: ADC	Window Co	ompare Inter	rupt Flag				
	(Must	be cleared	d by software	e)					
	0: AD	C Windo	w Compariso	on Data mate	h has not occ	urred			
DUO	I: AD	C Windo	w Compariso	on Data mate	h occurred				
Bit0:	ADLIS	SI: ADC	Left Justify I	Data Bit					
	U: Dat	a in ADC	UH:ADCOL	Registers is i	ignt justified				
	1: Dat	a in ADC	UH:ADCOL	Registers is l	ert justified				

Figure 5.7. ADC0CN: ADC Control Register (C8051F00x)

6.2. ADC Modes of Operation

The ADC uses VREF to determine its full-scale voltage, thus the reference must be properly configured before performing a conversion (see Section 9). The ADC has a maximum conversion speed of 100ksps. The ADC conversion clock is derived from the system clock. Conversion clock speed can be reduced by a factor of 2, 4, 8 or 16 via the ADCSC bits in the ADC0CF Register. This is useful to adjust conversion speed to accommodate different system clock speeds.

A conversion can be initiated in one of four ways, depending on the programmed states of the ADC Start of Conversion Mode bits (ADSTM1, ADSTM0) in ADC0CN. Conversions may be initiated by:

- 1. Writing a 1 to the ADBUSY bit of ADC0CN;
- 2. A Timer 3 overflow (i.e. timed continuous conversions);
- 3. A rising edge detected on the external ADC convert start signal, CNVSTR;
- 4. A Timer 2 overflow (i.e. timed continuous conversions).

Writing a 1 to ADBUSY provides software control of the ADC whereby conversions are performed "on-demand". During conversion, the ADBUSY bit is set to 1 and restored to 0 when conversion is complete. The falling edge of ADBUSY triggers an interrupt (when enabled) and sets the ADCINT interrupt flag. Note: When conversions are performed "on-demand", the ADCINT flag, not ADBUSY, should be polled to determine when the conversion has completed. Converted data is available in the ADC data word MSB and LSB registers, ADCOH, ADCOL. Converted data can be either left or right justified in the ADCOH:ADCOL register pair (see example in Figure 6.9) depending on the programmed state of the ADLJST bit in the ADCOCN register.

The ADCTM bit in register ADC0CN controls the ADC track-and-hold mode. In its default state, the ADC input is continuously tracked, except when a conversion is in progress. Setting ADCTM to 1 allows one of four different low power track-and-hold modes to be specified by states of the ADSTM1-0 bits (also in ADC0CN):

- 1. Tracking begins with a write of 1 to ADBUSY and lasts for 3 SAR clocks;
- 2. Tracking starts with an overflow of Timer 3 and lasts for 3 SAR clocks;
- 3. Tracking is active only when the CNVSTR input is low;
- 4. Tracking starts with an overflow of Timer 2 and lasts for 3 SAR clocks.

Modes 1, 2 and 4 (above) are useful when the start of conversion is triggered with a software command or when the ADC is operated continuously. Mode 3 is used when the start of conversion is triggered by external hardware. In this case, the track-and-hold is in its low power mode at times when the CNVSTR input is high. Tracking can also be disabled (shutdown) when the entire chip is in low power standby or sleep modes.

	riguit 0.0	b. ADCU	I. ADC D	ala wolu	MOD KCg		JITUIAJ	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBF
Bits7-0. AL	C Data Word	1 Bits						
DIG/ 0. TIL								
For	r ADLJST = 1	1: Upper 8-b	its of the 10-	bit ADC Dat	a Word.			
For	· ADI IST – (). Bits7-2 ar	e the sign ext	ension of Bi	1 Bits 1-0 a	are the unner	2-bits of the	
10	ADLJSI = 0	5. DR57-2 a	e the sign ext	clision of Di	1. Dits 1-0.0	are the upper	2-0113 01 1110	
10-	bit ADC Dat	a Word.						

Figure 6.8. ADC0H: ADC Data Word MSB Register (C8051F01x)

Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 0000000 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 0xD3 Bits7-0: DAC0 Data Word Most Significant Byte.

Figure 7.2. DAC0H: DAC0 High Byte Register

Figure 7.3. DAC0L: DAC0 Low Byte Register

Figure 7.4. DAC0CN: DAC0 Control Register

R/W	7	R/W	R/W	R/W	R	W/W	R/W	R/W	R/W	Reset Value
DACO	EN	-	-	-		-	DAC0DF2	DAC0DF1	DAC0DF0	00000000
Bit7		Bit6	Bit5	Bit4	В	it3	Bit2	Bit1	Bit0	SFR Address:
										0xD4
Bit7.	D۵		⁻ 0 Enable Bit	÷						
Dit/.	0. T	ACO Disal	bled DACO	Output pin is	dicabl	ed: D4	$\Delta C0$ is in low	nower shut	lown mode	
	0. L 1. Г	ACO Enah	led DACO	Dutput pill is	active		is operation	al	iown mode.	
Bits6-3	\cdot IINI	ISED Rea	d = 0000b V	Vrite = don't	care	DITC	o is operation	iui.		
Bits2-0		СОДЕ2-0: Г	DAC0 Data F	ormat Bits	cure					
D102 0	000:	The most	significant ny	whole of the l	DACO	Data V	Vord is in DA	AC0H[3:0]. v	while the least	significant
	000	byte is in	DAC0L.			2		10011[010],		5-8
		-)	DACOH					DACOL		
			MSB					DIICOL]	LSB
	001:	The most	significant 5	bits of the D	AC0 I	Data W	ord is in DA	C0H[4:0], wl	hile the least	significant
		7-bits is ir	n DAC0L[7:1].						
			DAC0H					DAC0L		
			MSB						LSB	
	010:	The most	significant 6-	bits of the D	AC0 I	Data W	ord is in DA	C0H[5:0], wl	hile the least	significant
	-	6-bits is ir	n DAC0L[7:2	2].						
			DAC0H					DAC0L		
		MSB							LSB	
	011:	The most	significant 7-	bits of the D	AC0 E	Data W	ord is in DA	C0H[6:0], wl	hile the least	significant
	1	5-bits is in	n DAC0L[7:3].						
			DAC0H			-		DAC0L		
	1	MSB TIL			COD	4 - X V -		LSB	1	
	IXX:	in in DAC	significant by	yte of the DA	CU Da	ita wo	rd is in DAC	OH, while the	e least signifi	cant nybble
		is in DAC	0L[7:4].					DAGOI		
	MCD	I I	DACOH	T T	1			DACOL		
	MSB							LSB		

Figure 7.5. DAC1H: DAC1 High Byte Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD6
Bits7-0: DA	AC1 Data Wo	rd Most Sigi	nificant Byte.					

Figure 7.6. DAC1L: DAC1 Low Byte Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xD5
Bits7-0: DA	AC1 Data Wo	ord Least Sig	nificant Byte.					

Figure 7.7. DAC1CN: DAC1 Control Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
DAC1EN	-	-	-	-	DAC1DF2	DAC1DF1	DAC1DF0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD7
Bit7: DA	AC1EN: DA	C1 Enable Bit	t					
0:	DAC1 Disa	bled. DAC1	Output pin is	disabled; D.	AC1 is in low	power shutc	lown mode.	
1:	DAC1 Enab	led. DAC1 (Dutput is pin a	active; DAC	1 is operation	nal.		
Bits6-3: UN	NUSED. Rea	ad = 0000b; V	Vrite = don't	care				
Bits2-0: DA	AC1DF2-0: 1	DACI Data Fo	ormat Bits		U 1 D			
00	0: The most	significant n	ybble of the L	DACI Data V	Nord 1s in DA	ACIH[3:0], v	while the least	
	significan	t byte is in D.	ACIL.	1				
	D	AC1H	-		DAC	CIL		
		MSB					LSB	
00	1. 171	· · · · · · · · · · · · · · · · · · ·	L'ALL D			C111[4.0]	1. 1. 1	
00	1: The most	significant 5-	- Dits of the D	ACI Data w	ora is in DA	CIH[4:0], WI	file the least	
-	significan	t /-bits is in I	DACIL[7:1].			~		
	D	AC1H	1		DAC	CIL		
	MSI	3					LSB	
01	0. The most	significant 6	hits of the D	AC1 Data W	ord is in DA	C1H[5:0] w	hile the least	
01	significan	t 6-bits is in I	$\Delta C_{11} [7.2]$	ACI Data W		CIII[5.0], wi	line the least	
	Jigiintean		JACIL[7.2].			711		
	MSB	ACIII			DA			
	MOD			1 1		100		
01	1. The most	significant 7-	bits of the D	AC1 Data W	ord is in DA	C1H[6.0] w	hile the least	
01	significan	t 5-bits is in I	DAC1L[7:3]	liei Duu II		em[0.0],	inte the foust	
T	D		511012[7.5].			711		
MSI						LSB		
		1 1	1 1	1 1				
1x:	x: The most	significant by	vte of the DA	C1 Data Wo	ord is in DAC	1H. while the	e least	
	significan	t nybble is in	DAC1L[7:4]	I.		,		
	D	AC1H			DAG	C1L		
MSB					LSB			
L I		4 1						

Table 8.1. Comparator Electrical Characteristics

VDD = 3.0V, AV + = 3.0V, $-40^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Response Time1	(CP+) - (CP-) = 100mV (Note 1)		4		μs
Response Time2	(CP+) - (CP-) = 10mV (Note 1)		12		μs
Common Mode Rejection			1.5	4	mV/V
Ratio					
Positive Hysteresis1	CPnHYP1-0 = 00		0	1	mV
Positive Hysteresis2	CPnHYP1-0 = 01	2	4.5	7	mV
Positive Hysteresis3	CPnHYP1-0 = 10	4	9	13	mV
Positive Hysteresis4	CPnHYP1-0 = 11	10	17	25	mV
Negative Hysteresis1	CPnHYN1-0 = 00		0	1	mV
Negative Hysteresis2	CPnHYN1-0 = 01	2	4.5	7	mV
Negative Hysteresis3	CPnHYN1-0 = 10	4	9	13	mV
Negative Hysteresis4	CPnHYN1-0 = 11	10	17	25	mV
Inverting or Non-inverting		-0.25		(AV+)	V
Input Voltage Range				+ 0.25	
Input Capacitance			7		pF
Input Bias Current		-5	0.001	+5	nA
Input Offset Voltage		-10		+10	mV
POWER SUPPLY					
Power-up Time	CPnEN from 0 to 1		20		μs
Power Supply Rejection			0.1	1	mV/V
Supply Current	Operating Mode (each comparator) at DC		1.5	10	μA

Note 1: CPnHYP1-0 = CPnHYN1-0 = 00.

9. VOLTAGE REFERENCE

The voltage reference circuit consists of a 1.2V, 15ppm/°C (typical) bandgap voltage reference generator and a gain-of-two output buffer amplifier. The reference voltage on VREF can be connected to external devices in the system, as long as the maximum load seen by the VREF pin is less than 200µA to AGND (see Figure 9.1).

If a different reference voltage is required, an external reference can be connected to the VREF pin and the internal bandgap and buffer amplifier disabled in software. The external reference voltage must still be less than AV+ - 0.3V. The Reference Control Register, REF0CN (defined in Figure 9.2), provides the means to enable or disable the bandgap and buffer amplifier. The BIASE bit in REF0CN enables the bias circuitry for the ADC and DACs while the REFBE bit enables the bandgap reference and buffer amplifier which drive the VREF pin. When disabled, the supply current drawn by the bandgap and buffer amplifier falls to less than 1uA (typical) and the output of the buffer amplifier enters a high impedance state. If the internal bandgap is used as the reference voltage generator, BIASE and REFBE must both be set to 1. If an external reference is used, REFBE must be set to 0 and BIASE must be set to 1. If neither the ADC nor the DAC are being used, both of these bits can be set to 0 to conserve power. The electrical specifications for the Voltage Reference are given in Table 9.1.

The temperature sensor connects to the highest order input of the A/D converter's input multiplexer (see Figure 5.1 and Figure 5.5 for details). The TEMPE bit within REFOCN enables and disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any A/D measurements performed on the sensor while disabled result in meaningless data.

Figure 9.1. Voltage Reference Functional Block Diagram

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's maximum system clock at 25MHz, it has a peak throughput of 25MIPS. The CIP-51 has a total of 109 instructions. The number of instructions versus the system clock cycles required to execute them is as follows:

Instructions	26	50	5	14	7	3	1	2	1
Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8

Programming and Debugging Support

A JTAG-based serial interface is provided for in-system programming of the Flash program memory and communication with on-chip debug support circuitry. The reprogrammable Flash can also be read and changed a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support circuitry facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints and watch points, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive and non-invasive, requiring no RAM, Stack, timers, or other on-chip resources.

The CIP-51 is supported by development tools from Silicon Laboratories and third party vendors. Silicon Labs provides an integrated development environment (IDE) including editor, macro assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via its JTAG interface to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

10.1. INSTRUCTION SET

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51TM instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51TM counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

10.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 10.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

10.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access external data memory. In the CIP-51, the MOVX instruction can access the on-chip program memory space implemented as reprogrammable Flash memory using the control bits in the PSCTL register (see Figure 11.1). This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. For the products with RAM mapped into external data memory space (C8051F005/06/07/15/16/17), MOVX is still used to read/write this memory with the PSCTL

Mnemonic	Description	Bytes	Clock Cycles
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1
SWAP A	Swap nibbles of A	1	1
	DATA TRANSFER		
MOV A,Rn	Move register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A,@Ri	Move indirect RAM to A	1	2
MOV A,#data	Move immediate to A	2	2
MOV Rn,A	Move A to register	1	1
MOV Rn,direct	Move direct byte to register	2	2
MOV Rn,#data	Move immediate to register	2	2
MOV direct,A	Move A to direct byte	2	2
MOV direct,Rn	Move register to direct byte	2	2
MOV direct, direct	Move direct byte to direct	3	3
MOV direct,@Ri	Move indirect RAM to direct byte	2	2
MOV direct,#data	Move immediate to direct byte	3	3
MOV @Ri,A	Move A to indirect RAM	1	2
MOV @Ri,direct	Move direct byte to indirect RAM	2	2
MOV @Ri,#data	Move immediate to indirect RAM	2	2
MOV DPTR,#data16	Load data pointer with 16-bit constant	3	3
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A.@A+PC	Move code byte relative PC to A	1	3
MOVX A.@Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri.A	Move A to external data (8-bit address)	1	3
MOVX A.@DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR,A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A.Rn	Exchange register with A	1	1
XCH A.direct	Exchange direct byte with A	2	2
XCH A.@Ri	Exchange indirect RAM with A	1	2
XCHD A.@Ri	Exchange low nibble of indirect RAM with A	1	2
	BOOLEAN MANIPULATION		<u> </u>
CLR C	Clear carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement carry	1	1
CPL bit	Complement direct bit	2	2
ANL C,bit	AND direct bit to carry	2	2
ANL C,/bit	AND complement of direct bit to carry	2	2
ORL C,bit	OR direct bit to carry	2	2
ORL C,/bit	OR complement of direct bit to carry	2	2
MOV C,bit	Move direct bit to carry	2	2
MOV bit,C	Move carry to direct bit	2	2
JC rel	Jump if carry is set	2	2/3
JNC rel	Jump if carry not set	2	2/3
JB bit,rel	Jump if direct bit is set	3	3/4
JNB bit,rel	Jump if direct bit is not set	3	3/4
JBC bit,rel	Jump if direct bit is set and clear bit	3	3/4

13.4. External Reset

The external /RST pin provides a means for external circuitry to force the MCU into a reset state. Asserting an active-low signal on the /RST pin will cause the MCU to enter the reset state. Although there is a weak internal pullup, it may be desirable to provide an external pull-up and/or decoupling of the /RST pin to avoid erroneous noise-induced resets. The MCU will remain in reset until at least 12 clock cycles after the active-low /RST signal is removed. The PINRSF flag (RSTSRC.0) is set on exit from an external reset. The /RST pin is also 5V tolerant.

13.5. Missing Clock Detector Reset

The Missing Clock Detector is essentially a one-shot circuit that is triggered by the MCU system clock. If the system clock goes away for more than 100μ s, the one-shot will time out and generate a reset. After a Missing Clock Detector reset, the MCDRSF flag (RSTSRC.2) will be set, signifying the MSD as the reset source; otherwise, this bit reads 0. The state of the /RST pin is unaffected by this reset. Setting the MSCLKE bit in the OSCICN register (see Figure 14.2) enables the Missing Clock Detector.

13.6. Comparator 0 Reset

Comparator 0 can be configured as an active-low reset input by writing a 1 to the CORSEF flag (RSTSRC.5). Comparator 0 should be enabled using CPT0CN.7 (see Figure 8.3) at least 20µs prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. When configured as a reset, if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), the MCU is put into the reset state. After a Comparator 0 Reset, the CORSEF flag (RSTSRC.5) will read 1 signifying Comparator 0 as the reset source; otherwise, this bit reads 0. The state of the /RST pin is unaffected by this reset. Also, Comparator 0 can generate a reset with or without the system clock.

13.7. External CNVSTR Pin Reset

The external CNVSTR signal can be configured as an active-low reset input by writing a 1 to the CNVRSEF flag (RSTSRC.6). The CNVSTR signal can appear on any of the P0, P1, or P2 I/O pins as described in Section 15.1. (Note that the Crossbar must be configured for the CNVSTR signal to be routed to the appropriate Port I/O.) The Crossbar should be configured and enabled before the CNVRSEF is set to configure CNVSTR as a reset source. When configured as a reset, CNVSTR is active-low and level sensitive. After a CNVSTR reset, the CNVRSEF flag (RSTSRC.6) will read 1 signifying CNVSTR as the reset source; otherwise, this bit reads 0. The state of the /RST pin is unaffected by this reset.

13.8. Watchdog Timer Reset

The MCU includes a programmable Watchdog Timer (WDT) running off the system clock. The WDT will force the MCU into the reset state when the watchdog timer overflows. To prevent the reset, the WDT must be restarted by application software before the overflow occurs. If the system experiences a software/hardware malfunction preventing the software from restarting the WDT, the WDT will overflow and cause a reset. This should prevent the system from running out of control.

The WDT is automatically enabled and started with the default maximum time interval on exit from all resets. If desired the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the /RST pin is unaffected by this reset.

95

Figure 15.11.	P2: Port2 Register
---------------	--------------------

R/W P2.7	R/W P2.6	R/W P2.5	R/W P2.4	R/W P2.3	R/W P2.2	R/W P2.1	R/W P2.0	Reset Value 11111111	
Bit7	Bit6	Bit	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
							(bit addressable)	0xA0	
 Bits7-0: P2.[7:0] (Write – Output appears on I/O pins per XBR0, XBR1, and XBR2 registers) 0: Logic Low Output. 1: Logic High Output (high-impedance if corresponding PRT2CF.n bit = 0) (Read – Regardless of XBR0, XBR1, and XBR2 Register settings). 0: P2.n is logic low. 1: P2.n is logic high. 									

Figure 15.12. PRT2CF: Port2 Configuration Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	11111111	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
							(bit addressable)	0xB0	
Bits7-0:	P3.[7:0]								
	(Write)								
	0: Logic Low Output.								
	1: Logic High	n Output (hig	h-impedance	if correspond	ding PRT3C	F.n bit = 0			
	(Read)								
	0: $P3.n$ is logi	ic low.							
	$1 \cdot P3 n is logi$	ic high							
	1. 1.5.11 15 10g	ie ingin							

Figure 15.13. P3: Port3 Register

Table 15.2. Port I/O DC Electrical Characteristics

VDD = 2.7 to 3.6V, -40°C to +85°C unless otherwise specified.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output High Voltage	$I_{OH} = -10uA$, Port I/O push-pull	VDD –			V
		0.1			
	$I_{OH} = -3mA$, Port I/O push-pull	VDD –			
		0.7			
	I _{OH} = -10mA, Port I/O push-pull		VDD –		
			0.8		
Output Low Voltage	$I_{OL} = 10uA$			0.1	V
	$I_{OL} = 8.5 \text{mA}$			0.6	
	$I_{OL} = 25 \text{mA}$		1.0		
Input High Voltage		0.7 x			V
		VDD			
Input Low Voltage				0.3 x	V
				VDD	
Input Leakage Current	DGND < Port Pin < VDD, Pin Tri-state				μA
	Weak Pull-up Off			±1	·
	Weak Pull-up On		30		
Capacitive Loading			5		pF

Figure 17.2. Typical SPI Interconnection

17.1. Signal Descriptions

The four signals used by the SPI (MOSI, MISO, SCK, NSS) are described below.

17.1.1. Master Out, Slave In

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. Data is transferred most-significant bit first.

17.1.2. Master In, Slave Out

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. Data is transferred most-significant bit first. A SPI slave places the MISO pin in a high-impedance state when the slave is not selected.

17.1.3. Serial Clock

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines.

17.1.4. Slave Select

The slave select (NSS) signal is an input used to select the SPI module when in slave mode by a master, or to disable the SPI module when in master mode. When in slave mode, it is pulled low to initiate a data transfer and remains low for the duration of the transfer.

R/W

R/W	R/W	R/W	R/W	R/W	R/W		
C/T1	T1M1	T1M0	GATE0	C/T0	T0M1		

Figure 19.5. TMOD: Timer Mode Register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 STR Address: 0x89 Bit7: GATE1: Timer 1 Gate Control. 0: Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level. 1: Timer 1 enabled only when TR1 = 1 AND /INT1 = logic level one. Image: Control Contro	GATE1	C/T	1 T1	IM1 T1N	IO GATE0	C/T0	T0M1	T0M0	00000000		
0x89 Fin: GATE1: Timer 1 Gate Control. Define: 1 enabled when TR1 = 1 irrespective of /INT1 logic level. Define: 1 enabled only when TR1 = 1 AND /INT1 = logic level one. Fin: CT1: Counter/Timer 1 Select. Define: CT1: Counter/Timer 1 select. Counter Function: Timer 1 incremented by clock defined by TIM bit (CKCON.4). Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T). Fits54: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. Fit: Counter/Timer 0 Mode 0: 13-bit counter/timer	Bit7	Bit6	E	Bit5 Bit	4 Bit3	Bit2	Bit1	Bit0	SFR Address:		
 Bif? GATE1: Timer 1 Gate Control. 0. Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level. 1. Timer 1 enabled only when TR1 = 1 AND /INT1 = logic level one. Bit6: C/T1: Counter/Timer 1 Select. 0. Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4). 1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T1). Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. TIMI T1M0 Mode 0 Mode 0: 13-bit counter/timer 1 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: TOM1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Timer 1 T0M1 Mode 1: 16-bit counter/timer 0 1 Mode 0: 13-bit counter/timer 1 Mode 3: Two 8-bit counter/timer									0x89		
 Bit7: GATE1: Timer 1 Gate Control. 0: Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level. 1: Timer 1 enabled only when TR1 = 1 AND /INT1 = logic level one. Bit6: C/T1: Counter/Timer 1 scleet. 0: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4). 1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T1). Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. TIM1 T1M0 Mode 0 1 Mode 0: 13-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit3: GATE0: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter/Timer 9 liner 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Times 1 to Mode 0: 13-bit counter/timer I do Mode 0: 13-bit counter/tim											
 0: Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level. 1: Timer 1 enabled only when TR1 = 1 AND /INT1 = logic level one. Bi6: C/T1: Counter/Timer 1 Select. 0: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4). 1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T1). Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. T1M1 T1M0 Mode 0 1 Mode 0: 13-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. These bits select the Timer 0 operation mode. Total T0M0 Mode 0: 13-bit counter/timer 0 1 Mode 0: 13	Bit7:	GATE1:	Timer 1 G	ate Control.							
 1: Timer 1 enabled only when TR1 = 1 AND /INT1 = logic level one. Biff: C/T1: Counter/Timer 1 Select. 0: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4). 1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T1). Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. TIMI T1M0 Mode 1: 0 Mode 1: 16-bit counter/timer 0: 1 Mode 2: 8-bit counter/timer with auto-reload 1: 1 Mode 3: Timer 1 Incremented by clock defined by T0M bit (CKCON.3). Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Dits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Dits1-0: 1000 Mode 1: 16-bit counter/timer Dit 1 Mode 1: 16-bit counter/timer Dit 1 Mode 1: 16-bit counter/timer Dit 1 Mode 2: 8-bit counter/timer 		0: Timer	1 enabled	when $TR1 = 1$	irrespective of /I	NT1 logic lev	el.				
 Bité: C/T1: Counter/Timer 1 Select. B: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4). 1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T1). Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. TIMI T1M0 Mode 0: 13-bit counter/timer 0 1 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Timer 1 Incremented by clock defined by T0N bit (CKCON.3). B: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 AND /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 logic level. 1: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter/Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Timer 1 0 T0M0 Mode 0: 13-bit counter/timer		1: Timer	1 enabled	only when TR	l = 1 AND /INT1	= logic level	one.				
 Bit6: C/T1: Counter/Timer 1 Select. 0: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4). 1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T1). Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. TIMI T1M0 Mode 0: 13-bit counter/timer 0 0 Mode 0: 13-bit counter/timer 1 0 Mode 1: 16-bit counter/timer 1 1 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer 8elect. 0: Timer Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: TOM1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Total T00M0 Mode 1: 16-bit counter/timer				5		0					
0: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4). 1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T1). Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. <u>T1M1 T1M0 Mode</u> <u>0 Mode 0: 13-bit counter/timer</u> 0 1 Mode 1: 16-bit counter/timer 0 1 Mode 2: 8-bit counter/timer with auto-reload 1 0 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Total Total Mode 1: 16-bit counter/timer 0 0 0 1 0 13-bit counter	Bit6:	C/T1: Co	unter/Time	er 1 Select.							
1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T1). Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. <u>11M1</u> <u>11M0</u> <u>Mode</u> <u>0</u> <u>0 Mode 0: 13-bit counter/timer</u> <u>1 0 Mode 1: 16-bit counter/timer <u>1 1 1 Mode 3: Timer 1 Inactive/stopped</u> Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer 9 Lect. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. <u>101</u> 1 0 0 Mode 0: 13-bit counter/timer <u>101</u> 0 1 Mode 1: 16-bit counter/timer <u>111</u> 0 0 Mode 0: 13-bit counter/timer <u>1111</u> 0 0 Mode 0: 13-bit counter/timer <u>1111</u> 0 0 Mode 0: 13-bit counter/timer </u>		0: Timer	Function:	Timer 1 increm	nented by clock of	lefined by T1	M bit (CKCC	DN.4).			
 (T1). Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. <u>T1M1 T1M0 Mode</u> <u>0 0 Mode 0: 13-bit counter/timer</u> <u>0 1 Mode 1: 16-bit counter/timer</u> <u>1 0 Mode 2: 8-bit counter/timer with auto-reload</u> <u>1 1 Mode 3: Timer 1 Inactive/stopped</u> Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. <u>T0M1 T0M0 Mode</u> 1: 16-bit counter/timer <u>1 0 Mode 2: 8-bit counter/timer</u> <u>1 0 Mode 2: 8-bit counter/timer</u> <u>1 1 Mode 3: Two 8-bit counter/timer</u> 		1: Count	er Functio	n: Timer 1 incr	emented by high	-to-low transit	ions on exter	nal input pin			
Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. Image: T1M1 T1M0 Mode 0 0 Mode 0: 13-bit counter/timer 0 1 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1 T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Image: T10: T10: T10: T10: T10: T10: T10: T10		(T1).									
Bits5-4: T1M1-T1M0: Timer 1 Mode Select. These bits select the Timer 1 operation mode. Image: T1M1 T1M0 Mode 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
These bits select the Timer 1 operation mode. TIMI TIMO Mode 0 Mode 0: 13-bit counter/timer 1 O Mode 2: 8-bit counter/timer 1 Mode 2: 8-bit counter/timer Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 2: 8-bit counter/timer Mode 2: 8-bit counter/timer Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. O: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. ToM1 TOM0 Mode Mode 0: 13-bit counter/timer 0 1 Mode 0: 13-bit counter/timer 1 <th <="" colspan="2" td=""><td>Bits5-4</td><td>: T1M1-T1</td><td>M0: Time</td><td>r 1 Mode Seleo</td><td>ct.</td><td></td><td></td><td></td><td></td></th>	<td>Bits5-4</td> <td>: T1M1-T1</td> <td>M0: Time</td> <td>r 1 Mode Seleo</td> <td>ct.</td> <td></td> <td></td> <td></td> <td></td>		Bits5-4	: T1M1-T1	M0: Time	r 1 Mode Seleo	ct.				
T1M1 T1M0 Mode 0 0 Mode 0: 13-bit counter/timer 0 1 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: TOM1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Image: Toto 1 = 16-bit counter/timer 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td></td><td>These bit</td><td>s select the</td><td>e Timer 1 opera</td><td>ation mode.</td><td></td><td></td><td></td><td></td></t<>		These bit	s select the	e Timer 1 opera	ation mode.						
TIMI TIM0 Mode 0 0 Mode 0: 13-bit counter/timer 0 1 Mode 1: 16-bit counter/timer 0 1 Mode 2: 8-bit counter/timer with auto-reload 1 0 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Tomit to Mode 0: 13-bit counter/timer 0 0 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer 1 0 Mode 2: 8-bit counter/timer				•							
0 0 Mode 0: 13-bit counter/timer 0 1 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Image: the transmitter of transmitter of transmitter of the transmitter of transmitter of transmitter of the transmitter of tran		T1M1	T1M0	Mode							
0 1 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Image: Description of the time of time of the time of t		0	0	Mode 0: 13-1	oit counter/timer						
1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. 1 Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Image: the transmer of transmer of the transmer of		0	1	Mode 1: 16-1	oit counter/timer						
1 1 Mode 3: Timer 1 Inactive/stopped Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. 1 Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Image: Counter for the form of the for		1	0	Mode 2: 8-bi	t counter/timer w	ith auto-reloa	d				
 Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. T0M1 T0M0 Mode 1 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 		1	1	Mode 3: Tim	er 1 Inactive/stop	oped					
 Bit3: GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. ToM1 T0M0 Mode 0 Mode 0: 13-bit counter/timer 0 1 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 0 Mode 3: Two 8-bit counter/timers											
 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. T0M1 T0M0 Mode 0 0 Mode 0: 13-bit counter/timer 0 1 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Two 8-bit counter/timers 	Bit3:	GATE0:	Timer 0 G	ate Control.							
 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one. Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. T0M1 T0M0 Mode 0 0 Mode 0: 13-bit counter/timer 0 1 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Two 8-bit counter/timers 		0: Timer	0 enabled	when $TR0 = 1$	irrespective of /I	NT0 logic lev	el.				
 Bit2: C/T0: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. T0M1 T0M0 Mode 0 0 Mode 0: 13-bit counter/timer 0 1 Mode 1: 16-bit counter/timer 1 0 Mode 3: Two 8-bit counter/timers		1: Timer	0 enabled	only when TR	0 = 1 AND / INT($= \log i c \operatorname{level}$	one.				
Bit2: C/10: Counter/Timer Select. 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. Image: Total and the transition of transition of the transition of transit of transition of transite of transition of	D 1.0	a m a . a		a 1							
 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. T0M1 T0M0 Mode 0 0 Mode 0: 13-bit counter/timer 0 1 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Two 8-bit counter/timers 	Bit2:	C/10: Co	unter/Time	er Select.							
1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (T0). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. 1 1		0: Timer	Function:	Timer 0 increi	nented by clock of	lefined by 10	M bit (CKCC)N.3).			
(10). Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. $\frac{\hline T0M1 T0M0 Mode}{0 0 Mode \ 0: \ 13-bit \ counter/timer} \\ \hline 0 0 Mode \ 0: \ 13-bit \ counter/timer} \\ \hline 1 0 Mode \ 2: \ 8-bit \ counter/timer \ with \ auto-reload} \\ \hline 1 1 Mode \ 3: \ Two \ 8-bit \ counter/timers}$		1: Count	er Functio	n: Timer 0 incr	emented by high	-to-low transit	tions on exter	mal input pin			
Bits1-0: T0M1-T0M0: Timer 0 Mode Select. These bits select the Timer 0 operation mode.T0M1T0M0Mode00Mode 0: 13-bit counter/timer01Mode 1: 16-bit counter/timer10Mode 2: 8-bit counter/timer with auto-reload11Mode 3: Two 8-bit counter/timers		(10).									
Bits1-0: TOM1-TOM0: Timer 0 Mode Select. These bits select the Timer 0 operation mode. TOM1 TOM0 Mode 0 0 Mode 0: 13-bit counter/timer 0 1 Mode 1: 16-bit counter/timer 1 0 Mode 2: 8-bit counter/timer with auto-reload 1 1 Mode 3: Two 8-bit counter/timers	D:4-1 0		MO. T:	. O Mada Sala							
TOM1TOM0Mode00Mode 0: 13-bit counter/timer01Mode 1: 16-bit counter/timer10Mode 2: 8-bit counter/timer with auto-reload11Mode 3: Two 8-bit counter/timers	Bits1-0	These hit	NNU: Time	Timor O oper	cl.						
T0M1T0M0Mode00Mode 0: 13-bit counter/timer01Mode 1: 16-bit counter/timer10Mode 2: 8-bit counter/timer with auto-reload11Mode 3: Two 8-bit counter/timers		These bit	s select the	e Timer 0 opera	ation mode.						
11100Mode 0: 13-bit counter/timer01Mode 1: 16-bit counter/timer10Mode 2: 8-bit counter/timer with auto-reload11Mode 3: Two 8-bit counter/timers		T0M1	томо	Mode							
01Mode 0: 15-bit counter/timer01Mode 1: 16-bit counter/timer10Mode 2: 8-bit counter/timer with auto-reload11Mode 3: Two 8-bit counter/timers		0	0	Mode 0: 13-1	nit counter/timer						
10Mode 1: 10 bit counter/timer10Mode 2: 8-bit counter/timer with auto-reload11Mode 3: Two 8-bit counter/timers		0	1	Mode 1: 16-1	oit counter/timer						
1 1 Mode 2: 0 of counter/timers 1 1 Mode 3: Two 8-bit counter/timers		1	0	Mode 2: 8-bi	t counter/timer w	vith auto-reloa	d				
		1	1	Mode 3: Two	8-bit counter/tir	ners	~				
		1	1	11000 5. 1 W			I				

R/W

Reset Value

21.1. Boundary Scan

The Data Register in the Boundary Scan path is an 87-bit shift register. The Boundary DR provides control and observability of all the device pins as well as the SFR bus and Weak Pullup feature via the EXTEST and SAMPLE commands.

Table 21.1. Boundary Data Register Bit Definitions

EXTEST provides access to both capture and update actions, while Sample only performs a capture.

Bit	Action	Target
0	Capture	Reset Enable from MCU
0	Update	Reset Enable to /RST pin
1	Capture	Reset input from /RST pin
1	Update	Reset output to /RST pin
2	Capture	External Clock from XTAL1 pin
2	Update	Not used
2	Capture	Weak pullup enable from MCU
5	Update	Weak pullup enable to Port Pins
4 11	Capture	SFR Address Bus bit from CIP-51 (e.g. Bit4=SFRA0, Bit5=SFRA1)
4-11	Update	SFR Address Bus bit to SFR Address Bus (e.g. Bit4=XSFRA0, Bit5=XSFRA1)
12 10	Capture	SFR Data Bus bit read from SFR (e.g. Bit12=SFRD0, Bit13=SFRD1)
12-19	Update	SFR Data Bus bit written to SFR (e.g. Bit12=SFRD0, Bit13=SFRD1)
20	Capture	SFR Write Strobe from CIP-51
20	Update	SFR Write Strobe to SFR Bus
21	Capture	SFR Read Strobe from CIP-51
21	Update	SFR Read Strobe to SFR Bus
22	Capture	SFR Read/Modify/Write Strobe from CIP-51
22	Update	SFR Read/Modify/Write Strobe to SFR Bus
23,25,27,29,	Capture	P0.n output enable from MCU (e.g. Bit23=P0.0, Bit25=P0.1, etc.)
31,33,35,37	Update	P0.n output enable to pin (e.g. Bit23=P0.00e, Bit25=P0.10e, etc.)
24,26,28,30,	Capture	P0.n input from pin (e.g. Bit24=P0.0, Bit26=P0.1, etc.)
32,34,36,38	Update	P0.n output to pin (e.g. Bit24=P0.0, Bit26=P0.1, etc.)
39,41,43,45,	Capture	P1.n output enable from MCU (e.g. Bit39=P1.0, Bit41=P1.1, etc.)
47,49,51,53	Update	P1.n output enable to pin (e.g. Bit39=P1.00e, Bit41=P1.10e, etc.)
40,42,44,46,	Capture	P1.n input from pin (e.g. Bit40=P1.0, Bit42=P1.1, etc.)
48,50,52,54	Update	P1.n output to pin (e.g. Bit40=P1.0, Bit42=P1.1, etc.)
55,57,59,61,	Capture	P2.n output enable from MCU (e.g. Bit55=P2.0, Bit57=P2.1, etc.)
63,65,67,69	Update	P2.n output enable to pin (e.g. Bit55=P2.00e, Bit57=P2.10e, etc.)
56,58,60,62,	Capture	P2.n input from pin (e.g. Bit56=P2.0, Bit58=P2.1, etc.)
64,66,68,70	Update	P2.n output to pin (e.g. Bit56=P2.0, Bit58=P2.1, etc.)
71,73,75,77,	Capture	P3.n output enable from MCU (e.g. Bit71=P3.0, Bit73=P3.1, etc.)
79,81,83,85	Update	P3.n output enable to pin (e.g. Bit71=P3.0oe, Bit73=P3.1oe, etc.)
72,74,76,78,	Capture	P3.n input from pin (e.g. Bit72=P3.0, Bit74=P3.1, etc.)
80,82,84,86	Update	P3.n output to pin (e.g. Bit72=P3.0, Bit74=P3.1, etc.)

								Reset Value
WRMD3	WRMD2	WRMD1	WRMD0	RDMD3	RDMD2	RDMD1	RDMD0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
This regis FLASHD	ster determine AT Register.	s how the Fla	ash interface	logic will res	pond to read	s and writes	to the	
Bits7-4: Y	WRMD3-0: W The Write Mo FLASHDAT I 0000: A FLAS ignored 0001: A FLAS comple 0010: A FLAS contain occur. user spa 0x7FFF (All other valu	Vrite Mode S de Select Bit Register per t SHDAT writ SHDAT writ ed by the FL te. SHDAT writ ing the addre FLASHADR ace will be er F). ues for WRM	elect Bits. s control how he following e replaces the e initiates a v ASHADR re e initiates an ss in FLASH is not affect ased (i.e. ent D3-0 are res	w the interfac values: e data in the I write of FLAS gister. FLAS erasure (sets IADR. FLAS ed. If FLAS ire Flash mer erved.)	e logic respon FLASHDAT SHDAT into SHADR is ind all bytes to 0 SHDAT must HADR = 0x7 nory except f	nds to writes register, but the memory (cremented by 0xFF) of the 1 be 0xA5 for DFE – 0x7D for Reserved	to the is otherwise location y one when Flash page the erase to DFF, the entire area 0x7E00	2
Bits3-0: I	RDMD3-0: Re The Read Moo FLASHDAT I 2000: A FLAS ignored 2001: A FLAS if no op 2010: A FLAS operatio FLASH without (All other value	ead Mode Se de Select Bits Register per t SHDAT read SHDAT read peration is cur SHDAT read on is active a IDAT. This i initiating an uses for RDM	lect Bits. s control how he following provides the initiates a re rrently active initiates a re nd any data f mode allows extra read. D3-0 are rese	y the interface values: e data in the F ad of the byt y. This mode ad of the byt rom a previo single bytes erved.)	E logic respon FASHDAT re e addressed b is used for b e addressed b us read has al to be read (or	nds to reads to gister, but is by the FLASI lock reads. by FLASHAI lready been r the last byte	o the otherwise HADR registe DR only if no read from e of a block)	21

Figure 21.3. FLASHCON: JTAG Flash Control Register

