

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	20MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	8
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 4x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f012-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Table 5.1. 12-Bit ADC Electrical Characteristics	
	Table 5.1. 12-Bit ADC Electrical Characteristics	
6	ADC $(10_{\rm B}; C8051F010/1/2/5/6/7 \Omega_{\rm D})$	40
U.	Figure 6.1 10 Bit ADC Functional Block Diagram	TU 40
	Figure 0.1. 10-Bit ADC Functional Block Diagram	40
	6.2 ADC Modes of Operation	40
	5.2. ADC Modes of Operation.	41 /1
	Figure 6.2. To-Bit ADC Track and Conversion Example Timing	41 42
	Figure 6.4. AMXOCE: AMUX Configuration Degister (C8051E01y)	42
	Figure 6.4. AMAOCF: AMOX Configuration Register (C8051F01x)	42
	Figure 6.5. AMIAUSL: AMUA Channel Select Register (C8051F01x).	43
	Figure 6.6. ADCOCH: ADC Configuration Register (CS051F01x)	44
	Figure 6.7. ADCUCN: ADC Control Register (C8051F01x)	45
	Figure 6.8. ADC0H: ADC Data Word MSB Register (C8051F01x)	46
	Figure 6.9. ADCOL: ADC Data Word LSB Register (C8051F01x)	46
	6.3. ADC Programmable Window Detector	47
	Figure 6.10. ADCOGTH: ADC Greater-Than Data High Byte Register (C8051F01x)	47
	Figure 6.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F01x)	47
	Figure 6.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F01x)	47
	Figure 6.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F01x)	47
	Figure 6.14. 10-Bit ADC Window Interrupt Examples, Right Justified Data	48
	Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data	48
	Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data	49
	Table 6.1. 10-Bit ADC Electrical Characteristics	49
	Table 6.1. 10-Bit ADC Electrical Characteristics	50
7.	DACs, 12 BIT VOLTAGE MODE	51
	Figure 7.1. DAC Functional Block Diagram	51
	Figure 7.2. DAC0H: DAC0 High Byte Register	52
	Figure 7.3. DAC0L: DAC0 Low Byte Register	52
	Figure 7.4. DAC0CN: DAC0 Control Register	52
	Figure 7.5. DAC1H: DAC1 High Byte Register	53
	Figure 7.6. DAC1L: DAC1 Low Byte Register	53
	Figure 7.7. DAC1CN: DAC1 Control Register	53
	Table 7.1. DAC Electrical Characteristics	54
8.	COMPARATORS	55
0.	Figure 8.1 Comparator Functional Block Diagram	55
	Figure 8.2. Comparator Hysteresis Plot	56
	Figure 8.3 CPT0CN: Comparator 0 Control Register	57
	Figure 8.4 CPT1CN: Comparator 1 Control Register	58
	Table 8.1 Comparator Electrical Characteristics	59
0	VOI TACE BEFERENCE	60
).	Figure 0.1 Voltage Deference Eurotional Plack Diagram	UU
	Figure 9.1. Voltage Reference Functional Diock Diagram	00
	Table 0.1. Deference Electrical Characteristica	01
10	Table 9.1. Reference Electrical Characteristics	01
10.		62
	Figure 10.1. CIP-51 Block Diagram	62
	10.1. INSTRUCTION SET	63
	Table 10.1. CIP-51 Instruction Set Summary	65
	10.2. MEMORY ORGANIZATION	68
	Figure 10.2. Memory Map.	69
	10.3. SPECIAL FUNCTION REGISTERS	70
	Table 10.2. Special Function Register Memory Map	70
	Table 10.3. Special Function Registers	70
	Figure 10.3. SP: Stack Pointer	74
	Figure 10.4. DPL: Data Pointer Low Byte	74

4. PINOUT AND PACKAGE DEFINITIONS

Table 4.1. Pin Definitions

	Pin	Numb	pers		
Name	F000	F001	F002	Type	Description
1 vanne	F003 F010	F000 F011	F007 F012	турс	Description
	F015	F016	F017		
VDD	31,	23,	18,		Digital Voltage Supply.
	40,	32	20		
	62				
DGND	30.	22.	17.		Digital Ground.
	41	33	21		
	61	27			
	01	19			
AV+	16	13	0		Positive Analog Voltage Supply
	10,	13,	$\frac{2}{20}$		roshive rinding voluge supply.
ACNID	17 5	43	29		Analog Ground
AGND	Э, 1 <i>5</i>	44,	8, 20		Allalog Glound.
marr	15	12	30	D T	
TCK	22	18	14	D In	JTAG Test Clock with internal pull-up.
TMS	21	17	13	D In	JTAG Test-Mode Select with internal pull-up.
TDI	28	20	15	D In	JTAG Test Data Input with internal pull-up. TDI is latched on a rising edge of TCK.
TDO	29	21	16	D Out	JTAG Test Data Output with internal pull-up. Data is shifted out on TDO on the falling edge of TCK TDO output is a tri-state driver
ΧͲΔΤ.1	18	14	10	A Tn	Crystal Input This pin is the return for the internal oscillator circuit for a
	10	14	10		crystal or ceramic resonator. For a precision internal clock, connect a crystal
					or ceramic resonator from XTAL1 to XTAL2. If overdriven by an external
					CMOS clock, this becomes the system clock.
XTAL2	19	15	11	A Out	Crystal Output. This pin is the excitation driver for a crystal or ceramic
					resonator.
/RST	20	16	12	D I/O	Chip Reset. Open-drain output of internal Voltage Supply monitor. Is driven
					low when VDD is < 2.7 V. An external source can force a system reset by
					driving this pin low.
VREF	6	3	3	A I/O	Voltage Reference. When configured as an input, this pin is the voltage
					reference for the MCU. Otherwise, the internal reference drives this pin.
CP0+	4	2	2	A In	Comparator 0 Non-Inverting Input.
CP0-	3	1	1	A In	Comparator 0 Inverting Input.
CP1+	2	45		A In	Comparator 1 Non-Inverting Input.
CP1-	1	46		A In	Comparator 1 Inverting Input.
DAC0	64	48	32	A Out	Digital to Analog Converter Output 0. The DAC0 voltage output. (See
					Section 7 DAC Specification for complete description).
DAC1	63	47	31	A Out	Digital to Analog Converter Output 1. The DAC1 voltage output. (See
					Section 7 DAC Specification for complete description).
AIN0	7	4	4	A In	Analog Mux Channel Input 0. (See ADC Specification for complete
					description).
AINI	8	5	5	A In	Analog Mux Channel Input 1. (See ADC Specification for complete
	_				description).
AIN2	9	6	6	A In	Analog Mux Channel Input 2. (See ADC Specification for complete
ר א ד אד ס	10	-	-	7 T	description).
AIN3	10	/	/	AIN	Analog Mux Channel Input 3. (See ADC Specification for complete
7 T NT /	11	0		<u>λ</u> Τη	Apolog Mux Channel Input 4 (See ADC Specification for complete
1111 <u>1</u>	11	ð		A 111	description)
ATN5	12	0		A Tn	Analog Mux Channel Input 5 (See ADC Specification for complete
11110	12	2			description).
			L		

Figure 4.3. TQFP-48 Pinout Diagram

5 711	5.00	5.00	D (11)	5 411	5.00	D 111		5
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ADCSC2	ADCSC1	ADCSC0	-	-	AMPGN2	AMPGN1	AMPGN0	01100000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBC
Bits7-5: AI	DCSC2-0: AE	DC SAR Con	version Cloc	k Period Bits				
00	0: SAR Conv	version Clock	x = 1 System	Clock				
00	1: SAR Conv	version Clock	x = 2 System	Clocks				
01	0: SAR Conv	version Clock	x = 4 System	Clocks				
01	1: SAR Conv	version Clock	x = 8 System	Clocks				
1x	x: SAR Conv	version Clock	x = 16 System	ns Clocks				
(N	ote: the SAR	Conversion (Clock should	be < 2MHz)			
Bits4-3: UN	JUSED. Rea	d = 00b: Wri	te = don't ca	re	/			
Bits2-0: AN	$\frac{1000}{100}$	DC Internal A	Amplifier Ga	in				
00	0: Gain = 1		impilier Gu					
00	1: $Gain = 2$							
01	0: Gain = 4							
01	1: $Gain = 8$							
10:	x: Gain = 16							
11	x: Gain $= 0.5$	5						
		•						

Figure 5.6. ADC0CF: ADC Configuration Register (C8051F00x)

33

5.3. ADC Programmable Window Detector

The ADC programmable window detector is very useful in many applications. It continuously compares the ADC output to user-programmed limits and notifies the system when an out-of-band condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADWINT in ADCOCN) can also be used in polled mode. The high and low bytes of the reference words are loaded into the ADC Greater-Than and ADC Less-Than registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Figure 5.14 and Figure 5.15 show example comparisons for reference. Notice that the window detector flag can be asserted when the measured data is inside or outside the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx registers.

Figure 5.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F00x)

Figure 5.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F00x)

Figure 5.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F00x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xC7
Bits7-0: The high by	te of the AD	C Less-Than	Data Word.					

Figure 5.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F00x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xC6
Bits7-0: These bits a Definition: ADC Less-7	re the low by Гhan Data Wo	te of the AD ord = ADC0	C Less-Than LTH:ADC0L	Data Word. LTL				

7. DACs, 12 BIT VOLTAGE MODE

The C8051F000 MCU family has two 12-bit voltage-mode Digital to Analog Converters. Each DAC has an output swing of 0V to VREF-1LSB for a corresponding input code range of 0x000 to 0xFFF. Using DAC0 as an example, the 12-bit data word is written to the low byte (DAC0L) and high byte (DAC0H) data registers. Data is latched into DAC0 after a write to the corresponding DAC0H register, **so the write sequence should be DAC0L followed by DAC0H** if the full 12-bit resolution is required. The DAC can be used in 8-bit mode by initializing DAC0L to the desired value (typically 0x00), and writing data to only DAC0H with the data shifted to the left. DAC0 Control Register (DAC0CN) provides a means to enable/disable DAC0 and to modify its input data formatting.

The DAC0 enable/disable function is controlled by the DAC0EN bit (DAC0CN.7). Writing a 1 to DAC0EN enables DAC0 while writing a 0 to DAC0EN disables DAC0. While disabled, the output of DAC0 is maintained in a high-impedance state, and the DAC0 supply current falls to 1μ A or less. Also, the Bias Enable bit (BIASE) in the REF0CN register (see Figure 9.2) must be set to 1 in order to supply bias to DAC0. The voltage reference for DAC0 must also be set properly (see Section 9).

In some instances, input data should be shifted prior to a DAC0 write operation to properly justify data within the DAC input registers. This action would typically require one or more load and shift operations, adding software overhead and slowing DAC throughput. To alleviate this problem, the data-formatting feature provides a means for the user to program the orientation of the DAC0 data word within data registers DAC0H and DAC0L. The three DAC0DF bits (DAC0CN.[2:0]) allow the user to specify one of five data word orientations as shown in the DAC0CN register definition.

DAC1 is functionally the same as DAC0 described above. The electrical specifications for both DAC0 and DAC1 are given in Table 7.1.

Figure 7.1. DAC Functional Block Diagram

Figure 7.5. DAC1H: DAC1 High Byte Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD6
Bits7-0: DA	AC1 Data Wo	rd Most Sigi	nificant Byte.					

Figure 7.6. DAC1L: DAC1 Low Byte Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xD5
Bits7-0: DA	AC1 Data Wo	ord Least Sig	nificant Byte.					

Figure 7.7. DAC1CN: DAC1 Control Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
DAC1EN	-	-	-	-	DAC1DF2	DAC1DF1	DAC1DF0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD7		
Bit7: DA	Bit7: DAC1EN: DAC1 Enable Bit									
0:	0: DAC1 Disabled. DAC1 Output pin is disabled; DAC1 is in low power shutdown mode.									
1:	1: DAC1 Enabled. DAC1 Output is pin active; DAC1 is operational.									
Bits6-3: UN	NUSED. Rea	ad = 0000b; V	Vrite = don't	care						
Bits2-0: DA	AC1DF2-0: 1	DACI Data Fo	ormat Bits		U 1 D					
00	0: The most	significant n	ybble of the L	DACI Data V	Nord is in DA	ACIH[3:0], v	while the least			
	significan	t byte is in D.	ACIL.	1						
	D	AC1H	-		DAC	CIL				
		MSB					LSB			
00	1. 171	· · · · · · · · · · · · · · · · · · ·	L'a Cal D			C111[4.0]	1. 1. 1			
00	1: The most	significant 5-	- Dits of the D	ACI Data w	ora is in DA	CIH[4:0], WI	file the least			
-	significan	t /-bits is in I	DACIL[7:1].			~				
	D	AC1H	1		DAC	CIL				
	MSI	3					LSB			
01	0. The most	significant 6	hits of the D	AC1 Data W	ord is in DA	C1H[5:0] w	hile the least			
01	significan	t 6-bits is in I	$\Delta C_{11} [7.2]$	ACI Data W		CIII[5.0], wi	line the least			
	Jigiintean		JACIL[7.2].			711				
	MSB	ACIII			DA					
	MOD			1 1		200				
01	1. The most	significant 7-	bits of the D	AC1 Data W	ord is in DA	C1H[6.0] w	hile the least			
01	significan	t 5-bits is in I	DAC1L[7:3]	liei Duu II		em[0.0],	inte the foust			
T	D		511012[7.5].			711				
MSI						LSB				
		1 1	1 1	1 1						
1x:	x: The most	significant by	vte of the DA	C1 Data Wo	ord is in DAC	1H. while the	e least			
	significan	t nybble is in	DAC1L[7:4]	I.		,				
	D	AC1H			DAG	C1L				
MSB					LSB					
L I		4 1								

8. COMPARATORS

The MCU family has two on-chip analog voltage comparators as shown in Figure 8.1. The inputs of each Comparator are available at the package pins. The output of each comparator is optionally available at the package pins via the I/O crossbar (see Section 15.1). When assigned to package pins, each comparator output can be programmed to operate in open drain or push-pull modes (see section 15.3).

The hysteresis of each comparator is software-programmable via its respective Comparator control register (CPT0CN, CPT1CN). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage. The output of the comparator can be polled in software, or can be used as an interrupt source. Each comparator can be individually enabled or disabled (shutdown). When disabled, the comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, its interrupt capability is suspended and its supply current falls to less than 1μ A. Comparator 0 inputs can be externally driven from -0.25V to (AV+) + 0.25V without damage or upset.

The Comparator 0 hysteresis is programmed using bits 3-0 in the Comparator 0 Control Register CPT0CN (shown in Figure 8.3). The amount of *negative* hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Figure 8.2, settings of 10, 4 or 2mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of *positive* hysteresis is determined by the setting the CP0HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section 10.4). The CPOFIF flag is set upon a Comparator 0 falling-edge interrupt, and the CPORIF flag is set upon the Comparator 0 rising-edge interrupt. Once set, these bits remain set until cleared by the CPU. The Output State of Comparator 0 can be obtained at any time by reading the CPOOUT bit. Note the comparator output and interrupt should be ignored until the comparator settles after power-up. Comparator 0 is enabled by setting the CPOEN bit, and is disabled by clearing this bit. Note there is a 20usec settling time for the comparator output to stabilize after setting the CPOEN bit or a power-up. Comparator 0 can also be programmed as a reset source. For details, see Section 13.

The operation of Comparator 1 is identical to that of Comparator 0, except the Comparator 1 is controlled by the CPT1CN Register (Figure 8.4). Comparator 1 can not be programmed as a reset source. Also, the input pins for Comparator 1 are not pinned out on the F002, F007, F012, or F017 devices. The complete electrical specifications for the Comparators are given in Table 8.1.

Figure 8.1. Comparator Functional Block Diagram

		,				0			
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
CP0EN	CP0OUT	CP0RIF	CP0FIF	CP0HYP1	CP0HYP0	CP0HYN1	CP0HYN0	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
Bit7:	CP0EN: Com	parator 0 Ena	ıble Bit						
	0: Comparato	r 0 Disabled							
	1: Comparato	r 0 Enabled.							
Bit6:	CP0OUT: Con	mparator 0 O	utput State F	Flag					
	0: Voltage on	CP0+ < CP0)-						
	1: Voltage on	CP0+>CP0)-						
Bit5:	CP0RIF: Com	parator 0 Ris	sing-Edge In	terrupt Flag					
	0: No Compa	rator 0 Risin	g-Edge Inter	rupt has occu	rred since thi	s flag was clo	eared		
	1: Comparato	r 0 Rising-E	dge Interrupt	has occurred	since this fla	ag was cleare	ed		
Bit4:	CP0FIF: Com	parator 0 Fal	ling-Edge In	terrupt Flag					
	0: No Compa	rator 0 Fallin	g-Edge Inter	rupt has occu	irred since th	is flag was cl	leared		
	1: Comparato	r 0 Falling-E	dge Interrup	t has occurred	d since this fl	ag was cleare	ed		
Bit3-2:	CP0HYP1-0:	Comparator) Positive Hy	steresis Cont	trol Bits				
	00: Positive H	Iysteresis Di	sabled						
	01: Positive H	Hysteresis = 2	2mV						
	10: Positive H	Iysteresis = 4	lmV						
	11: Positive H	Iysteresis = 1	0mV						
Bit1-0:	CP0HYN1-0:	Comparator	0 Negative H	Iysteresis Co	ntrol Bits				
	00: Negative	Hysteresis D	isabled						
	01: Negative	Hysteresis =	2mV						
	10: Negative	Hysteresis =	4mV						
	11: Negative	Hysteresis =	10mV						

Figure 8.3. CPT0CN: Comparator 0 Control Register

57

Mnemonic	Inemonic Description			
	ARITHMETIC OPERATIONS			
ADD A,Rn	Add register to A	1	1	
ADD A, direct	Add direct byte to A	2	2	
ADD A,@Ri	Add indirect RAM to A	1	2	
ADD A,#data	Add immediate to A	2	2	
ADDC A,Rn	Add register to A with carry	1	1	
ADDC A, direct	Add direct byte to A with carry	2	2	
ADDC A,@Ri	Add indirect RAM to A with carry	1	2	
ADDC A,#data	Add immediate to A with carry	2	2	
SUBB A,Rn	Subtract register from A with borrow	1	1	
SUBB A, direct	Subtract direct byte from A with borrow	2	2	
SUBB A,@Ri	Subtract indirect RAM from A with borrow	1	2	
SUBB A,#data	Subtract immediate from A with borrow	2	2	
INC A	Increment A	1	1	
INC Rn	Increment register	1	1	
INC direct	Increment direct byte	2	2	
INC @Ri	Increment indirect RAM	1	2	
DEC A	Decrement A	1	1	
DEC Rn	Decrement register	1	1	
DEC direct	Decrement direct byte	2	2	
DEC @Ri	Decrement indirect RAM	1	2	
INC DPTR	Increment Data Pointer	1	1	
MUL AB	Multiply A and B	1	4	
DIV AB	Divide A by B	1	8	
DAA	Decimal Adjust A	1	1	
DITI	LOGICAL OPERATIONS	1	1	
ANL A Rn	AND Register to A	1	1	
ANL A direct	AND direct byte to A	2	2	
ANL A @Ri	AND indirect RAM to A	1	2	
ANL A #data	AND immediate to A	2	2	
ANL direct A	AND A to direct byte	2	2	
ANI direct #data	AND immediate to direct byte	3	3	
ORI A Rn	OR Register to A	1	1	
ORL A direct	OR direct byte to A	2	2	
ORL A @Ri	OR indirect RAM to A	1	2	
ORL A #data	OR immediate to A	2	2	
ORL A;rdata	OR A to direct byte	2	2	
ORL direct #data	OR A to direct byte	3	3	
VPL A Pn	Exclusive OP Pagister to A		1	
XRL A,RII	Exclusive-OK Register to A	- 1	1	
XRL A, dilect	Exclusive-OK direct byte to A		2	
XRL A, @KI	Exclusive-OR indirect RAW to A	- 1	2	
XRL A,#uata	Exclusive-OK initiediate to A	2	2	
XRL direct,A	Exclusive-OK A to direct byte	2	2	
CLD A	Clean A		<u> </u>	
	Crear A	1	1	
CPL A	Complement A			
KL A				
KLC A	Kotate A left through carry	1	1	

Table 10.1. CIP-51 Instruction Set Summary

R/W	R/W	V	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
CY	AC		F0	RS1	RS0	OV	F1	PARITY	00000000			
Bit7	Bite	<u>.</u>	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								(bit addressable)	0xD0			
Bit7:	CY: Carr	y Flag.										
	This bit i	s set whe	n the last	arithmeti	c operation re	sults in a carry	(addition) or	a borrow				
	(subtract	ion). It is	s cleared	to 0 bv al	l other arithm	etic operations.	· /					
Bit6:	AC: Auxiliary Carry Flag.											
	This bit i	s set whe	n the last	arithmeti	c operation re	sults in a carry	into (additio	n) or a				
	borrow fr	rom (sub	traction)	the high o	rder nibble. 1	t is cleared to 0	by all other	arithmetic				
	operation	is.	,	U			•					
	1											
Bit5:	F0: User	Flag 0.										
	This is a	bit-addre	ssable, ge	eneral pui	pose flag for	use under softw	are control.					
Bits4-3:	RS1-RS0): Registe	er Bank S	elect.								
	These bit	s select v	which reg	ister bank	is used durin	g register acces	sses.					
	RS1	RS0	Registe	r Bank	Address							
	0	0	0)	0x00-0x07							
	0	1	1		0x08-0x0F							
	1	0	2	2	0x10-0x17							
	1	1	3	3	0x18-0x1F]						
		•										
	Note: An	y instruc	tion whic	h change	s the RSI-RS) bits must not l	be immediate	ely followed				
	by the "N	AOV Rn,	A" instru	iction.								
D:+0.	OV. Our	eflore El										
DIL2:	This hit i	fillow Fit	ig. under th	a followir	a airaumatan	2001						
				UDD inc	truction course	co.	overflow					
	• All A	ADD, AI	JDC, 01 S	oulta in ar	uucuon cause	s a sign-change	255)					
	• AN	IUL IIISU	uction res		l overnow (re	suit is greater th	ian 233).					
	• AD	hit is also	ction cau	ses a divi		nuluon.	d DIV in star	ations in all				
	other ou		area to o	by the Al	JD, ADDC, S	UDD, MUL, al	la DI V Illstru	ictions in an				
	other cas	ses.										
Rit1.	F1. Usor	Flag 1										
DIT.	This is a	hit-addre	ecable o	eneral nu	mose flag for	use under softw	vare control					
	1 III 5 15 a	Ult-addit	ssable, g	incrai pui	pose mag for	use under softw	are control.					
Bit0.	PARITY	· Parity F	lag									
21101	(Read on	1v)										
	This bit i	s set to 1	if the sur	n of the e	ight bits in the	e accumulator is	s odd and cle	ared if the				
	sum is ev	ven.			ight one in th							
		-										

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PCP1R	PCP1F	PCP0R	PCP0F	PPCA0	PWADC0	PSMB0	PSPI0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF6
					~ .			
Bit7:	PCP1R: Comp	parator 1 (CP	1) Rising Int	errupt Priori	ty Control.			
	I his bit sets tr	interment of	the CP1 inte	rrupt.				
	1. CP1 rising	interrupt set	to high prior	ity level.				
	1. CI I lising							
Bit6:	PCP1F: Comp	arator 1 (CP	1) Falling Int	terrupt Priori	ty Control.			
	This bit sets th	ne priority of	the CP1 inte	rrupt.	•			
	0: CP1 falling	g interrupt set	t to low prior	ity level.				
	1: CP1 falling	g interrupt set	t to high prio	rity level.				
D:+5.	DCD0D, Com	omotom () (CD	0) Dising Int	ammunt Duiani	tr. Control			
DILJ:	This bit sets th	parator 0 (CP	the CP0 inte	rupt Priori	ty Control.			
	0° CP0 rising	interrupt set	to low priori	tv level				
	1: CP0 rising	interrupt set	to high prior	ity level.				
	U	1	0 1					
Bit4:	PCP0F: Comp	oarator 0 (CP	0) Falling Int	terrupt Priori	ty Control.			
	This bit sets th	ne priority of	the CP0 inte	rrupt.				
	0: CP0 falling	g interrupt set	t to low prior	ity level.				
	1: CP0 falling	g interrupt set	t to high prio	rity level.				
Bit3:	PPCA0: Prog	ammable Co	ounter Array	(PCA0) Inter	rupt Priority (Control.		
	This bit sets th	ne priority of	the PCA0 in	terrupt.				
	0: PCA0 inter	rupt set to lo	w priority le	vel.				
	1: PCA0 inter	rupt set to hi	igh priority le	evel.				
D:42		200 W. 1	C	T. (in it. Control			
B1t2:	PWADC0: AI	JCU Window	the ADCO W	Interrupt Pr	fority Control	•		
	0° ADC0 Wir	dow interrur	nt set to low 1	riority level	iupi.			
	1. ADC0 Wir	ndow interrur	ot set to high	priority leve	1			
	1. 112 00 111		or set to high	priority ieve				
Bit1:	PSMB0: SMB	us 0 Interrup	ot Priority Co	ntrol.				
	This bit sets the	ne priority of	the SMBus i	nterrupt.				
	0: SMBus int	errupt set to l	low priority l	evel.				
	1: SMBus int	errupt set to l	high priority	level.				
Bit0:	PSPI0: Serial	Peripheral In	terface 0 Inte	errupt Priorit	v Control.			
21101	This bit sets th	ne priority of	the SPI0 inte	errupt.	, _ 01111011			
	0: SPI0 interr	upt set to low	v priority lev	el.				
	1: SPI0 interr	upt set to hig	h priority lev	/el.				

Figure 10.13. EIP1: Extended Interrupt Priority 1

11.2. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX instruction and read using the MOVC instruction.

The MCU incorporates an additional 128-byte sector of Flash memory located at 0x8000 – 0x807F. This sector can be used for program code or data storage. However, its smaller sector size makes it particularly well suited as general purpose, non-volatile scratchpad memory. Even though Flash memory can be written a single byte at a time, an entire sector must be erased first. In order to change a single byte of a multi-byte data set, the data must be moved to temporary storage. Next, the sector is erased, the data set updated and the data set returned to the original sector. The 128-byte sector-size facilitates updating data without wasting program memory space by allowing the use of internal data RAM for temporary storage. (A normal 512-byte sector is too large to be stored in the 256-byte internal data memory.)

11.3. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as prevent the viewing of proprietary program code and constants. The Program Store Write Enable (PSCTL.0) and the Program Store Erase Enable (PSCTL.1) bits protect the Flash memory from accidental modification by software. These bits must be explicitly set to logic 1 before software can modify the Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the JTAG interface or by software running on the system controller.

A set of security lock bytes stored at 0x7DFE and 0x7DFF protect the Flash program memory from being read or altered across the JTAG interface. Each bit in a security lock-byte protects one 4kbyte block of memory. Clearing a bit to logic 0 in a Read lock byte prevents the corresponding block of Flash memory from being read across the JTAG interface. Clearing a bit in the Write/Erase lock byte protects the block from JTAG erasures and/or writes. The Read lock byte is at location 0x7DFF. The Write/Erase lock byte is located at 0x7DFE. Figure 11.2 shows the location and bit definitions of the security bytes. The 512-byte sector containing the lock bytes can be written to, but not erased by software. Writing to the reserved area should not be performed.

R/W	R/W	R/W	R/W	R/W	R/W	R/W PSEE	R/W PSWF	Reset Value	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0x8F	
Bits7-2	UNUSED. Re	ead = 000000	b, Write = d	lon't care.					
 Bit1: PSEE: Program Store Erase Enable. Setting this bit allows an entire page of the Flash program memory to be erased provided the PSWE bit is also set. After setting this bit, a write to Flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0: Flash program memory erasure disabled. 1: Flash program memory erasure enabled. 									
Bit0:	PSWE: Progra Setting this bit MOVX instruc 0: Write to Fla 1: Write to Fla	m Store Writ allows writi ction. The lo ish program ish program	te Enable. ng a byte of ocation must memory disa memory enal	data to the Fl be erased bef bled. bled.	ash program ore writing o	a memory usir data.	ng the		

13.8.1. Watchdog Usage

The WDT consists of a 21-bit timer running from the programmed system clock. The timer measures the period between specific writes to its control register. If this period exceeds the programmed limit, a WDT reset is generated. The WDT can be enabled and disabled as needed in software, or can be permanently enabled if desired. Watchdog features are controlled via the Watchdog Timer Control Register (WDTCN) shown in Figure 13.3.

Enable/Reset WDT

The watchdog timer is both enabled and the countdown restarted by writing 0xA5 to the WDTCN register. The user's application software should include periodic writes of 0xA5 to WDTCN as needed to prevent a watchdog timer overflow. The WDT is enabled and restarted as a result of any system reset.

Disable WDT

Writing 0xDE followed by 0xAD to the WDTCN register disables the WDT. The following code segment illustrates disabling the WDT.

CLR EA ; disable all interrupts MOV WDTCN,#0DEh ; disable software MOV WDTCN,#0ADh ; watchdog timer SETB EA ; re-enable interrupts

The writes of 0xDE and 0xAD must occur within 4 clock cycles of each other, or the disable operation is ignored. Interrupts should be disabled during this procedure to avoid delay between the two writes.

Disable WDT Lockout

Writing 0xFF to WDTCN locks out the disable feature. Once locked out, the disable operation is ignored until the next system reset. Writing 0xFF does not enable or reset the watchdog timer. Applications always intending to use the watchdog should write 0xFF to WDTCN in their initialization code.

Setting WDT Interval

WDTCN.[2:0] control the watchdog timeout interval. The interval is given by the following equation:

 $4^{3+WDTCN[2:0]} \times T_{SYSCLK}$, (where T_{SYSCLK} is the system clock period).

For a 2MHz system clock, this provides an interval range of 0.032msec to 524msec. WDTCN.7 must be a 0 when setting this interval. Reading WDTCN returns the programmed interval. WDTCN.[2:0] is 111b after a system reset.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
								xxxxx111				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xFF				
Bits7-0	WDT Control											
	Writing 0xA5	both enables	and reloads t	the WDT.								
	Writing 0xDE	followed with	thin 4 clocks	by 0xAD disa	ables the WI	DT.						
	Writing 0xFF locks out the disable feature.											
Bit4:	Watchdog Stat	us Bit (when	Read)									
	Reading the W	DTCN.[4] b	it indicates th	e Watchdog	Timer Status	5.						
	0: WDT is ina	ctive		U								
	1. WDT is act	ive										
Bits2-0	Watchdog Tim	eout Interva	l Rits									
D102 0	The WDTCN	[2:0] bits set	the Watchdo	g Timeout In	terval Whe	n writing the	se hits					
	WDTCN 7 mu	[2.0] one set	the wateried	g Thieout In		ii wiiting the	se ons,					
	wDICIN./IIIu		•									

Figure 13.3. WDTCN: Watchdog Timer Control Register

not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an open-drain output that is driving a 0 to avoid unnecessary power dissipation.

The third and final step is to initialize the individual resources selected using the appropriate setup registers. Initialization procedures for the various digital resources may be found in the detailed explanation of each available function. The reset state of each register is shown in the figures that describe each individual register.

Figure 15.2. Port I/O Cell Block Diagram

Oscillator Frequency (MHz)	Divide Factor	Timer 1 Load Value*	Resulting Baud Rate**
24.0	208	0xF3	115200 (115384)
23.592	205	0xF3	115200 (113423)
22.1184	192	0xF4	115200
18.432	160	0xF6	115200
16.5888	144	0xF7	115200
14.7456	128	0xF8	115200
12.9024	112	0xF9	115200
11.0592	96	0xFA	115200
9.216	80	0xFB	115200
7.3728	64	0xFC	115200
5.5296	48	0xFD	115200
3.6864	32	0xFE	115200
1.8432	16	0xFF	115200
24.576	320	0xEC	76800
25.0	434	0xE5	57600 (57870)
25.0	868	0xCA	28800
24.576	848	0xCB	28800 (28921)
24.0	833	0xCC	28800 (28846)
23.592	819	0xCD	28800 (28911)
22.1184	768	0xD0	28800
18.432	640	0xD8	28800
16.5888	576	0xDC	28800
14.7456	512	0xE0	28800
12.9024	448	0xE4	28800
11.0592	384	0xE8	28800
9.216	320	0xEC	28800
7.3728	256	0xF0	28800
5.5296	192	0xF4	28800
3.6864	128	0xF8	28800
1.8432	64	0xFC	28800

Table 18.2. Oscillator Frequencies for Standard Baud Rates

* Assumes SMOD=1 and T1M=1.

** Numbers in parenthesis show the actual baud rate.

Figure 18.8. SBUF: Serial (UART) Data Buffer Register

19.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. The TL0 holds the count and TH0 holds the reload value. When the count in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0. Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0.

19.3. Timer 3

Timer 3 is a 16-bit timer formed by the two 8-bit SFRs, TMR3L (low byte) and TMR3H (high byte). The input for Timer 3 is the system clock (divided by either one or twelve as specified by the Timer 3 Clock Select bit T3M in the Timer 3 Control Register TMR3CN). Timer 3 is always configured as an auto-reload timer, with the reload value held in the TMR3RLL (low byte) and TMR3RLH (high byte) registers. Timer 3 can be used to start an ADC Data Conversion, for SMBus timing (see Section 16.5), or as a general-purpose timer. Timer 3 does not have a counter mode.

Figure 19.20. TMR3CN: Timer 3 Control Register

Figure 21.5. FLASHDAT: JTAG Flash Data Register

	÷		÷		÷	÷			÷	Reset Value
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	FAIL	FBUSY	000000000
Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
This register is used to read or write data to the Flash memory across the JTAG interface. Bits9-2: DATA7-0: Flash Data Byte.										
 Bit1: FAIL: Flash Fail Bit. 0: Previous Flash memory operation was successful. 1: Previous Flash memory operation failed. Usually indicates the associated memory location was locked. 										
Bit0:	 Bit0: FBUSY: Flash Busy Bit. 0: Flash interface logic is not busy. 1: Flash interface logic is processing a request. Reads or writes while FBUSY = 1 will not initiate another operation 									

Figure 21.6. FLASHSCL: JTAG Flash Scale Register

FOSE Bit7	FRAE Bit6	-								
Bit7	Bit6		-	FLSCL3	FLSCL2	FLSCL1	FLSCL0	00000000		
		Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
This regist timing for	ster controls th r Flash operati	e Flash read ons.	timing circu	it and the pre	scaler require	ed to generate	e the correct			
Bit7:	FOSE: Flash C	One-Shot Ena	able Bit.							
(0: Flash read	strobe is a fu	ll clock-cycle	e wide.						
	1: Flash read s	strobe is 50n	sec.							
Bit6:	FRAE: Flash F	Read Always	Bit.		1					
(0: The Flash of	output enable	e and sense a	mplifier enab	le are on only	y when neede	ed to read the			
	1. The Flash c	ory. Nutnut enable	and sense a	mnlifier enab	le are always	on This ca	n be used to			
	limit the variations in digital supply current due to switching the sense amplifiers, thereby reducing digitally induced noise.									
Bits5-4:	Bits5-4: UNUSED. Read = 00b, Write = don't care.									
Bits3-0:	FLSCL3-0: Fla	ash Prescaler	r Control Bits	S.						
,	The FLSCL3-0	0 bits control	l the prescale	r used to gen	erate timing	signals for Fl	ash			
(operations. Its	s value shoul	d be written	before any Fl	ash operation	ns are initiate	d. The value			
,	written should	be the small	lest integer fo	or which:						
	$FLSCL[3:0] > log_2(f_{SYSCLK} / 50kHz)$									
	Where f_{SYSCLK} is the system clock frequency. All Flash read/write/erase operations are disallowed when FLSCL[3:0] = 1111b.									

21.3. Debug Support

Each MCU has on-chip JTAG and debug circuitry that provide *non-intrusive, full speed, in-circuit debug using the production part installed in the end application* using the four pin JTAG I/F. Silicon Labs' debug system supports inspection and modification of memory and registers, setting breakpoints, watchpoints, single stepping, and run and halt commands. No additional target RAM, program memory, or communications channels are required. All the digital and analog peripherals are functional and work correctly (remain in sync) while debugging. The WDT is disabled when the MCU is halted during single stepping or at a breakpoint.

The C8051F000DK, C8051F005DK, C8051F010DK, and C8051F015DK are development kits with all the hardware and software necessary to develop application code and perform in-circuit debugging with each MCU in the C8051F000 family. Each kit includes an Integrated Development Environment (IDE) which has a debugger and integrated 8051 assembler. It has an RS-232 to JTAG protocol translator module referred to as the EC. There is also a target application board with a C8051F000, F005, F010, or F015 installed and with a large prototyping area. The kit also includes RS-232 and JTAG cables, and wall-mount power supply.

