

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f015-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.2. C8051F001/06/11/16 Block Diagram

5 711	5.00	5.00	D (11)	5 411	5.00	D 111	-	5	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
ADCSC2	ADCSC1	ADCSC0	-	-	AMPGN2	AMPGN1	AMPGN0	01100000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0xBC	
Bits7-5: AI	DCSC2-0: AE	DC SAR Con	version Cloc	k Period Bits					
00	0: SAR Conv	version Clock	x = 1 System	Clock					
00	1: SAR Conv	version Clock	x = 2 System	Clocks					
01	0: SAR Conv	version Clock	x = 4 System	Clocks					
01	1: SAR Conv	version Clock	x = 8 System	Clocks					
1x	x: SAR Conv	version Clock	x = 16 System	ns Clocks					
(N	ote: the SAR	Conversion (Clock should	be < 2MHz)				
Bits4-3: UN	JUSED. Rea	d = 00b: Wri	te = don't ca	re	/				
Bits2-0: AN	$\frac{1000}{100}$	DC Internal A	Amplifier Ga	in					
00	0: Gain = 1		impilier Gu						
00	1: $Gain = 2$								
01	0: Gain $= 4$								
01	1: $Gain = 8$								
10:	1011: $1011 = 010x$: $10x$: $10x$								
11	x: Gain $= 0.5$	5							
		•							

Figure 5.6. ADC0CF: ADC Configuration Register (C8051F00x)

33

Figure 5.15. 12-Bit ADC Window Interrupt Examples, Left Justified Data

Input Voltage (AD0 - AGND)	ADC Data Word	_
REF x (4095/4096)	0xFFF0	
		ADWINT not affected
	0x2010	
REF x (512/4096)	0x2000	ADC0LTH:ADC0LTL
	0x1FF0	
	0x1010	ADWINTET
REF x (256/4096)	0x1000	ADC0GTH:ADC0GTL
	0x0FF0	
		ADWINT not affected
0	0x0000	

Given:

AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1, ADC0LTH:ADC0LTL = 0x2000,ADC0GTH:ADC0GTL = 0x1000.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0x2000 and > 0x1000.

Input Voltage (AD0 - AGND)	ADC Data Word	
REF x (4095/4096)	0xFFF0	ADWINT=1
	0x2010	<u> </u>
REF x (512/4096)	0x2000	ADC0GTH:ADC0GTL
	0x1FF0	ADWINT not affected
	0x1010	
REF x (256/4096)	0x1000	ADC0LTH:ADC0LTL
	0x0FF0	ADWINT=1
0	0x0000]]

Given:

AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1, ADC0LTH:ADC0LTL = 0x1000, ADC0GTH:ADC0GTL = 0x2000.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0x1000 or > 0x2000.

ADC Data

Word

0x7FF0

0x1010

0x1000

0x0FF0

0x0000

0xFFF0

0xFFE0

0x8000

ADWINT=1

ADC0GTH:ADC0GTL

ADC0LTH:ADC0LTL

ADWINT=1

ADWINT not affected

Input Voltage (AD0 - AD1)	ADC Data Word		Input Voltage (AD0 - AD1)
REF x (2047/2048)	0x7FF0		REF x (2047/2048)
		ADWINT not affected	
	0x1010		
REF x (256/2048)	0x1000	ADC0LTH:ADC0LTL	REF x (256/2048)
	0x0FF0 0x0000	ADWINT=1	
REF x (-1/2048)	0xFFF0	ADC0GTH:ADC0GTL	REF x (-1/2048)
	0xFFE0		
		ADWINT not affected	
-REF	0x8000		-REF

Given:

AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 1, ADC0LTH:ADC0LTH = 0xFFF0, ADC0GTH:ADC0GTL = 0x1000.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0x1000 and > 0xFFF0. (Two's Complement math.)

AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 1,

ADC0LTH:ADC0LTL = 0x1000,

ADC0GTH:ADC0GTL = 0xFFF0.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0xFFF0 or > 0x1000. (Two's Complement math.)

Given:

Table 6.1. 10-Bit ADC Electrical Characteristics

VDD = 3.0V, AV + = 3.0V, V	REF = 2.40V (REFBE=0), PGA Gain = 1,	40° C to $+8$	5°C unless	s otherwise	e specified.
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
DC ACCURACY	-				
Resolution			10		bits
Integral Nonlinearity			± 1⁄2	± 1	LSB
Differential Nonlinearity	Guaranteed Monotonic		± ½	± 1	LSB
Offset Error			± 0.5		LSB
Full Scale Error	Differential mode		-1.5 ±		LSB
			0.5		
Offset Temperature			± 0.25		ppm/°C
Coefficient					
DYNAMIC PERFORMANC	CE (10kHz sine-wave input, 0 to –1dB of f	ull scale, 1	00ksps)		
Signal-to-Noise Plus		59	61		dB
Distortion					
Total Harmonic Distortion	Up to the 5 th harmonic	-	-70		dB
Spurious-Free Dynamic			80		dB
Range					
CONVERSION RATE					
Conversion Time in SAR		16			clocks
Clocks	C0051E000 (E001 (E002	-		2.0	
SAR Clock Frequency	C8051F000, 'F001, 'F002			2.0	MHZ
	C8051F005, F006, F007	1.5		2.5	MHZ
Track/Hold Acquisition		1.5			μs
Throughput Pata				100	lana
				100	ksps
Voltage Conversion Pange	Single ended Mode (AINn AGND)	0		VREE	V
Voltage Conversion Range	Differential Mode $ (AINn+) - (AINm-) $	0		- 1LSB	v
Input Voltage	Any AINn pin	AGND		AV+	v
Input Capacitance		TIONE	10	1111	pF
TEMPERATURE SENSOR			10		P-
Linearity			± 0.20		°C
Absolute Accuracy			+ 3		°C
Gain	PGA Gain = 1		2.86		mV/°C
Gain Error $(\pm 1\sigma)$	PGA Gain = 1		+ 33 5		uV/°C
Offset	PGA Gain = 1 Temp = 0°C		<u> </u>		$\frac{\mu v}{c}$
Offset Error $(\pm 1\sigma)$	$PGA Gain = 1$, $Temp = 0^{\circ}C$		+851		mV
POWER SPECIFICATION	S		± 0.71	I	,
Power Supply Current (AV+	Operating Mode 100ksps		450	900	μА
supplied to ADC)	creating mode, roomp		.50	200	μΛ
Power Supply Rejection			± 0.3		mV/V

10.2. MEMORY ORGANIZATION

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. There are 256 bytes of internal data memory and 64K bytes of internal program memory address space implemented within the CIP-51. The CIP-51 memory organization is shown in Figure 10.2.

10.2.1. Program Memory

The CIP-51 has a 64K-byte program memory space. The MCU implements 32896 bytes of this program memory space as in-system, reprogrammable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x807F. Note: 512 bytes (0x7E00 - 0x7FFF) of this memory are reserved for factory use and are not available for user program storage.

Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to Section 11 (Flash Memory) for further details.

10.2.2. Data Memory

The CIP-51 implements 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may be addressed as bytes or as 128 bit locations accessible with the direct-bit addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F will access the upper 128 bytes of data memory. Figure 10.2 illustrates the data memory organization of the CIP-51.

The C8051F005/06/07/15/16/17 also have 2048 bytes of RAM in the external data memory space of the CIP-51, accessible using the MOVX instruction. Refer to Section 12 (External RAM) for details.

10.2.3. General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of generalpurpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in Figure 10.6). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

10.2.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination).

The MCS-51[™] assembly language allows an alternate notation for bit addressing of the form XX. B where XX is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22h.3

moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the user Carry flag.

Address	Register	Description	Page No.
0x89	TMOD	Counter/Timer Mode	143
0x91	TMR3CN	Timer 3 Control	152
0x95	TMR3H	Timer 3 High	153
0x94	TMR3L	Timer 3 Low	153
0x93	TMR3RLH	Timer 3 Reload High	153
0x92	TMR3RLL	Timer 3 Reload Low	153
0xFF	WDTCN	Watchdog Timer Control	96
0xE1	XBR0	Port I/O Crossbar Configuration 1	105
0xE2	XBR1	Port I/O Crossbar Configuration 2	107
0xE3	XBR2	Port I/O Crossbar Configuration 3	108
0x84-86, 0x96-97, 0x9C, 0xA1-A3, 0xA9-AC, 0xAE, 0xB3-B5, 0xB9, 0xBD, 0xC9, 0xCE, 0xDE, 0xE4-E5, 0xE1-E5		Reserved	

* Refers to a register in the C8051F000/1/2/5/6/7 only. ** Refers to a register in the C8051F010/1/2/5/6/7 only. *** Refers to a register in the C8051F005/06/07/15/16/17 only.

Figure 10.7. ACC: Accumulator

Figure 10.8. B: B Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PCP1R	PCP1F	PCP0R	PCP0F	PPCA0	PWADC0	PSMB0	PSPI0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF6
Bit7:	PCP1R: Com	parator 1 (CP	1) Rising Int	errupt Priori	ty Control.			
	This bit sets the	ne priority of	the CP1 inte	rrupt.				
	0: CP1 rising	interrupt set	to low priori	ty level.				
	1: CPI rising	interrupt set	to high prior	ity level.				
Dite	DCD1E. Com	omotom 1 (CD	1) Eolling Int	amment Dui ani	tri Control			
DILO:	This bit sets the	Darator 1 (CP	the CP1 into	rupt Priori	ty Control.			
	0. CP1 falling	interrupt set	t to low prior	ity lovel				
	1. CP1 falling	interrupt set	t to high prio	rity level				
	1. 01 1 141111	5 menupt set	t to high prio	ing ieven.				
Bit5:	PCP0R: Com	parator 0 (CP	0) Rising Int	errupt Priori	ty Control.			
	This bit sets the	he priority of	the CP0 inte	rrupt.	•			
	0: CP0 rising	interrupt set	to low priori	ty level.				
	1: CP0 rising	interrupt set	to high prior	ity level.				
					~ .			
Bit4:	PCP0F: Comp	parator 0 (CP	0) Falling Int	terrupt Priori	ty Control.			
	This bit sets the	ne priority of	the CP0 inte	rrupt.				
	0: CP0 falling	g interrupt set	t to low prior	ity level.				
	1: CPO failing	g interrupt set	t to high prio	nty level.				
Bit3:	PPCA0: Prog	rammable Co	unter Array ((PCA0) Inter	rupt Priority (Control.		
Bitter	This bit sets th	ne priority of	the PCA0 in	terrupt.	raper noney -	controll		
	0: PCA0 inter	rrupt set to lo	w priority le	vel.				
	1: PCA0 inter	rrupt set to hi	gh priority le	evel.				
Bit2:	PWADC0: Al	DC0 Window	Comparator	Interrupt Pr	iority Control	•		
	This bit sets th	ne priority of	the ADC0 W	/indow inter	rupt.			
	0: ADC0 Wit	ndow interrup	pt set to low j	priority level				
	1: ADC0 W1	ndow interrup	pt set to high	priority leve	1.			
Bit1.	PSMB0: SMF	Rus () Interrur	nt Priority Co	ntrol				
Dit1.	This bit sets th	ne priority of	the SMBus i	nterrupt.				
	0: SMBus int	errupt set to l	low priority 1	evel.				
	1: SMBus int	errupt set to l	high priority	level.				
		-	•					
Bit0:	PSPI0: Serial	Peripheral In	terface 0 Inte	errupt Priorit	y Control.			
	This bit sets the	ne priority of	the SPI0 inte	errupt.				
	0: SPI0 interr	upt set to low	v priority lev	el.				
	1: SPI0 interr	upt set to hig	h priority lev	/el.				

Figure 10.13. EIP1: Extended Interrupt Priority 1

13.4. External Reset

The external /RST pin provides a means for external circuitry to force the MCU into a reset state. Asserting an active-low signal on the /RST pin will cause the MCU to enter the reset state. Although there is a weak internal pullup, it may be desirable to provide an external pull-up and/or decoupling of the /RST pin to avoid erroneous noise-induced resets. The MCU will remain in reset until at least 12 clock cycles after the active-low /RST signal is removed. The PINRSF flag (RSTSRC.0) is set on exit from an external reset. The /RST pin is also 5V tolerant.

13.5. Missing Clock Detector Reset

The Missing Clock Detector is essentially a one-shot circuit that is triggered by the MCU system clock. If the system clock goes away for more than 100μ s, the one-shot will time out and generate a reset. After a Missing Clock Detector reset, the MCDRSF flag (RSTSRC.2) will be set, signifying the MSD as the reset source; otherwise, this bit reads 0. The state of the /RST pin is unaffected by this reset. Setting the MSCLKE bit in the OSCICN register (see Figure 14.2) enables the Missing Clock Detector.

13.6. Comparator 0 Reset

Comparator 0 can be configured as an active-low reset input by writing a 1 to the CORSEF flag (RSTSRC.5). Comparator 0 should be enabled using CPT0CN.7 (see Figure 8.3) at least 20µs prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. When configured as a reset, if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), the MCU is put into the reset state. After a Comparator 0 Reset, the CORSEF flag (RSTSRC.5) will read 1 signifying Comparator 0 as the reset source; otherwise, this bit reads 0. The state of the /RST pin is unaffected by this reset. Also, Comparator 0 can generate a reset with or without the system clock.

13.7. External CNVSTR Pin Reset

The external CNVSTR signal can be configured as an active-low reset input by writing a 1 to the CNVRSEF flag (RSTSRC.6). The CNVSTR signal can appear on any of the P0, P1, or P2 I/O pins as described in Section 15.1. (Note that the Crossbar must be configured for the CNVSTR signal to be routed to the appropriate Port I/O.) The Crossbar should be configured and enabled before the CNVRSEF is set to configure CNVSTR as a reset source. When configured as a reset, CNVSTR is active-low and level sensitive. After a CNVSTR reset, the CNVRSEF flag (RSTSRC.6) will read 1 signifying CNVSTR as the reset source; otherwise, this bit reads 0. The state of the /RST pin is unaffected by this reset.

13.8. Watchdog Timer Reset

The MCU includes a programmable Watchdog Timer (WDT) running off the system clock. The WDT will force the MCU into the reset state when the watchdog timer overflows. To prevent the reset, the WDT must be restarted by application software before the overflow occurs. If the system experiences a software/hardware malfunction preventing the software from restarting the WDT, the WDT will overflow and cause a reset. This should prevent the system from running out of control.

The WDT is automatically enabled and started with the default maximum time interval on exit from all resets. If desired the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the /RST pin is unaffected by this reset.

95

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit addressable)	0xB0
Bits7-0:	P3.[7:0]							
	(Write)							
	0: Logic Low	Output.						
	1: Logic High	o Output (hig	h-impedance	if correspond	ding PRT3C	F.n bit = 0		
	(Read)		1	1	U	,		
	0: P3.n is logi	ic low.						
	1: P3.n is logi	ic high.						
	1. 1 2.11 15 108							

Figure 15.13. P3: Port3 Register

Table 15.2. Port I/O DC Electrical Characteristics

VDD = 2.7 to 3.6V, -40°C to +85°C unless otherwise specified.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output High Voltage	$I_{OH} = -10uA$, Port I/O push-pull	VDD –			V
		0.1			
	$I_{OH} = -3mA$, Port I/O push-pull	VDD –			
		0.7			
	I _{OH} = -10mA, Port I/O push-pull		VDD –		
			0.8		
Output Low Voltage	$I_{OL} = 10uA$			0.1	V
	$I_{OL} = 8.5 \text{mA}$			0.6	
	$I_{OL} = 25 \text{mA}$		1.0		
Input High Voltage		0.7 x			V
		VDD			
Input Low Voltage				0.3 x	V
				VDD	
Input Leakage Current	DGND < Port Pin < VDD, Pin Tri-state				μA
	Weak Pull-up Off			±1	·
	Weak Pull-up On		30		
Capacitive Loading			5		pF

16. SMBus / I2C Bus

The SMBus serial I/O interface is compliant with the System Management Bus Specification, version 1.1. It is a two-wire, bi-directional serial bus, which is also compatible with the I^2C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial transfer of the data. Data can be transferred at up to $1/8^{th}$ of the system clock if desired (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is used to accommodate devices with different speed capabilities on the same bus.

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver, and data transfers from an addressed slave transmitter to a master receiver. The master device initiates both types of data transfers and provides the serial clock pulses. The SMBus interface may operate as a master or a slave. Multiple master devices on the same bus are also supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration.

Figure 16.1. SMBus Block Diagram

17. SERIAL PERIPHERAL INTERFACE BUS

The Serial Peripheral Interface (SPI) provides access to a four-wire, full-duplex, serial bus. SPI supports the connection of multiple slave devices to a master device on the same bus. A separate slave-select signal (NSS) is used to select a slave device and enable a data transfer between the master and the selected slave. Multiple masters on the same bus are also supported. Collision detection is provided when two or more masters attempt a data transfer at the same time. The SPI can operate as either a master or a slave. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency.

When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS, and the serial input data synchronously with the system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less that 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of ¹/₄ the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the system clock.

Figure 17.1. SPI Block Diagram

The Timer 2 overflow rate, when in *Baud Rate Generator Mode* and using an internal clock source, is determined solely by the Timer 2 16-bit reload value (RCAP2H:RCAP2L). The Timer 2 clock source is fixed at SYSCLK/2. The Timer 2 overflow rate can be calculated as follows:

 $T2_OVERFLOWRATE = (SYSCLK/2) / (65536 - [RCAP2H:RCAP2L]).$

Timer 2 can be selected as the baud rate generator for RX and/or TX by setting RCLK (T2CON.5) and/or TCLK (T2CON.4), respectively. When either RCLK or TCLK is set to logic 1, Timer 2 interrupts are automatically disabled and the timer is forced into *Baud Rate Generator Mode* with SYSCLK/2 as its clock source. If a different timebase is required, setting the C/T2 bit (T2CON.1) to logic 1 will allow Timer 2 to be clocked from the external input pin T2. See the Timers section for complete timer configuration details.

19.2.1. Mode 0: 16-bit Counter/Timer with Capture

In this mode, Timer 2 operates as a 16-bit counter/timer with capture facility. A high-to-low transition on the T2EX input pin causes the 16-bit value in Timer 2 (TH2, TL2) to be loaded into the capture registers (RCAP2H, RCAP2L).

Timer 2 can use either SYSCLK, SYSCLK divided by 12, or high-to-low transitions on the external T2 pin as its clock source when operating in Counter/Timer with Capture mode. Clearing the C/T2 bit (T2CON.1) selects the system clock as the input for the timer (divided by one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to logic 1, a high-to-low transition at the T2 input pin increments the counter/timer register. As the 16-bit counter/timer register increments and overflows from 0xFFFF to 0x0000, the TF2 timer overflow flag (T2CON.7) is set and an interrupt will occur if the interrupt is enabled.

Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CP/RL2 (T2CON.0) and the Timer 2 Run Control bit TR2 (T2CON.2) to logic 1. The Timer 2 External Enable EXEN2 (T2CON.3) must also be set to logic 1 to enable a capture. If EXEN2 is cleared, transitions on T2EX will be ignored.

Figure 19.11. T2 Mode 0 Block Diagram

20.1.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software.

Figure 20.9.	PCA0MD:	PCA	Mode	Register
--------------	---------	-----	------	----------

R/W	R/W	F	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
CIDL	-		-	-	-	CPS1	CPS0	ECF	00000000	
Bit7	Bit6	Η	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD9	
 Bit7: CIDL: PCA Counter/Timer Idle Control. Specifies PCA behavior when CPU is in Idle Mode. 0: PCA continues to function normally while the system controller is in Idle Mode. 1: PCA operation is suspended while the system controller is in Idle Mode. Bits6-3: UNUSED. Read = 0000b, Write = don't care. Bits2-1: CPS1-CPS0: PCA Counter/Timer Pulse Select. These bits select the timebase source for the PCA counter. 										
	CPS1	CPS0	Time	hase						
	0	0	Syste	m clock divi	ded by 12					
	0	1	Syste	m clock divi	ded by 4					
	1	0	Time	r 0 overflow	-					
	1	1	High-	to-low trans	itions on ECl	(max rate =	system clock	divided by 4))	
1 1 High-to-low transitions on ECI (max rate = system clock divided by 4) Bit0: ECF: PCA Counter/Timer Overflow Interrupt Enable. This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt. 0: Disable the CF interrupt. 1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set.										

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xDA-0xDE		
PCA0CPMn Address: $PCA0CPM0 = 0xDA (n = 0)$										
PCA0CPM1 = 0xDB (n = 1)										
PCA0CPM2 = 0xDC (n = 2)										
	PCA0CPM3 = 0xDD (n = 3)									
		PCA0CPM	4 = 0 xDE (n)	= 4)						
D:+7.	UNUSED D	ad - 0 Writ	a - dan't aar							
DIL/. Bit6:	t/: UNUSED. Read = 0, Write = don't care.									
Dito.	ECOMIN: Comparator Function Enable. This bit enables/disables the comparator function for PCA module <i>n</i>									
	This on endores/disables the comparator function for PCA module n . 0: Disabled									
	1: Enabled.									
Bit5:	CAPPn: Capture Positive Function Enable.									
	This bit enable	es/disables th	e positive ed	tive edge capture for PCA module <i>n</i> .						
	0: Disabled.		1	0 1						
	1: Enabled.									
Bit4:	CAPNn: Capt	ure Negative	Function En	able.						
	This bit enable	es/disables th	e negative ed	lge capture f	or PCA modu	ıle <i>n</i> .				
	0: Disabled.									
	1: Enabled.									
Bit3:	MATn: Match	Function Er	nable.					_		
	This bit enables/disables the match function for PCA module n . When enabled, matches of the PCA counter with a module's capture/compare register cause the CCFn bit in									
	PCA0MD register to be set.									
	0: Disabled.									
Bit?	TOGn: Toggle	Eurotion F	nabla							
DIL2.	Tooli. Toggie fullculoii Eliable. This hit anables/disables the toggle function for PCA module <i>n</i> . When enabled metches									
	of the PCA counter with a module's capture/compare register cause the logic level on the									
	CEXn nin to togole									
	0: Disabled.	- 88								
	1: Enabled.									
Bit1:	PWMn: Pulse	Width Modu	ulation Mode	Enable.						
	This bit enables/disables the comparator function for PCA module n . When enabled, a									
pulse width modulated signal is output on the CEXn pin.										
	0: Disabled.									
D .	1: Enabled.	10								
Bit0:	ECCFn: Captu	ire/Compare	Flag Interrup	ot Enable.						
This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt.										
U: Disable CCFn interrupts. 1: Enable a Canture/Compare Elag interrupt request when CCFn is set										
		apture/Comp	are mag inte	mupi request		15 501.				

Figure 20.10. PCA0CPMn: PCA Capture/Compare Registers

21.1. Boundary Scan

The Data Register in the Boundary Scan path is an 87-bit shift register. The Boundary DR provides control and observability of all the device pins as well as the SFR bus and Weak Pullup feature via the EXTEST and SAMPLE commands.

Table 21.1. Boundary Data Register Bit Definitions

EXTEST provides access to both capture and update actions, while Sample only performs a capture.

Bit	Action	Target		
0	Capture	Reset Enable from MCU		
	Update	Reset Enable to /RST pin		
1	Capture	Reset input from /RST pin		
	Update	Reset output to /RST pin		
2	Capture	External Clock from XTAL1 pin		
	Update	Not used		
3	Capture	Weak pullup enable from MCU		
	Update	Weak pullup enable to Port Pins		
4-11	Capture	SFR Address Bus bit from CIP-51 (e.g. Bit4=SFRA0, Bit5=SFRA1)		
	Update	SFR Address Bus bit to SFR Address Bus (e.g. Bit4=XSFRA0, Bit5=XSFRA1)		
12-19	Capture	SFR Data Bus bit read from SFR (e.g. Bit12=SFRD0, Bit13=SFRD1)		
	Update	SFR Data Bus bit written to SFR (e.g. Bit12=SFRD0, Bit13=SFRD1)		
20	Capture	SFR Write Strobe from CIP-51		
	Update	SFR Write Strobe to SFR Bus		
21	Capture	SFR Read Strobe from CIP-51		
	Update	SFR Read Strobe to SFR Bus		
22	Capture	SFR Read/Modify/Write Strobe from CIP-51		
22	Update	SFR Read/Modify/Write Strobe to SFR Bus		
23,25,27,29,	Capture	P0.n output enable from MCU (e.g. Bit23=P0.0, Bit25=P0.1, etc.)		
31,33,35,37	Update	P0.n output enable to pin (e.g. Bit23=P0.00e, Bit25=P0.10e, etc.)		
24,26,28,30, 32,34,36,38	Capture	P0.n input from pin (e.g. Bit24=P0.0, Bit26=P0.1, etc.)		
	Update	P0.n output to pin (e.g. Bit24=P0.0, Bit26=P0.1, etc.)		
39,41,43,45,	Capture	P1.n output enable from MCU (e.g. Bit39=P1.0, Bit41=P1.1, etc.)		
47,49,51,53	Update	P1.n output enable to pin (e.g. Bit39=P1.0oe, Bit41=P1.1oe, etc.)		
40,42,44,46, 48,50,52,54	Capture	P1.n input from pin (e.g. Bit40=P1.0, Bit42=P1.1, etc.)		
	Update	P1.n output to pin (e.g. Bit40=P1.0, Bit42=P1.1, etc.)		
55,57,59,61, 63,65,67,69	Capture	P2.n output enable from MCU (e.g. Bit55=P2.0, Bit57=P2.1, etc.)		
	Update	P2.n output enable to pin (e.g. Bit55=P2.00e, Bit57=P2.10e, etc.)		
56,58,60,62, 64,66,68,70	Capture	P2.n input from pin (e.g. Bit56=P2.0, Bit58=P2.1, etc.)		
	Update	P2.n output to pin (e.g. Bit56=P2.0, Bit58=P2.1, etc.)		
71,73,75,77, 79,81,83,85	Capture	P3.n output enable from MCU (e.g. Bit71=P3.0, Bit73=P3.1, etc.)		
	Update	P3.n output enable to pin (e.g. Bit71=P3.0oe, Bit73=P3.1oe, etc.)		
72,74,76,78, 80,82,84,86	Capture	P3.n input from pin (e.g. Bit72=P3.0, Bit74=P3.1, etc.)		
	Update	P3.n output to pin (e.g. Bit72=P3.0, Bit74=P3.1, etc.)		

21.1.1. EXTEST Instruction

The EXTEST instruction is accessed via the IR. The Boundary DR provides control and observability of all the device pins as well as the SFR bus and Weak Pullup feature. All inputs to on-chip logic are set to one.

21.1.2. SAMPLE Instruction

The SAMPLE instruction is accessed via the IR. The Boundary DR provides observability and presetting of the scan-path latches.

21.1.3. BYPASS Instruction

The BYPASS instruction is accessed via the IR. It provides access to the standard 1-bit JTAG Bypass data register.

21.1.4. IDCODE Instruction

The IDCODE instruction is accessed via the IR. It provides access to the 32-bit Device ID register.

Figure 21.2. DEVICEID: JTAG Device ID Register

Version		Part Number		Manufacturer ID			1	Reset Value (Varies)	
Bit31	Bit28	Bit27	Bit12	Bit11		Bit1	Bit0	1	
Version = 0000b (Revision A) or = 0001b (Revision B)									
Part Number = 0000 0000 0000 0000b or = 0000 0000 0000 0010b									
Manufacturer ID = 0010 0100 001b (Silicon Laboratories)									

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories and "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com