

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f015-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.8. Comparators and DACs

The C8051F000 MCU Family has two 12-bit DACs and two comparators on chip (the second comparator, CP1, is not bonded out on the F002, F007, F012, and F017). The MCU data and control interface to each comparator and DAC is via the Special Function Registers. The MCU can place any DAC or comparator in low power shutdown mode.

The comparators have software programmable hysteresis. Each comparator can generate an interrupt on its rising edge, falling edge, or both. The comparators' output state can also be polled in software. These interrupts are capable of waking up the MCU from idle mode. The comparator outputs can be programmed to appear on the Port I/O pins via the Crossbar.

The DACs are voltage output mode and use the same voltage reference as the ADC. They are especially useful as references for the comparators or offsets for the differential inputs of the ADC.

Figure 1.11. Comparator and DAC Diagram

Figure 5.4. AMX0CF: AMUX Configuration Register (C8051F00x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
-	-	-	-	AIN67IC	AIN45IC	AIN23IC	AIN01IC	00000000			
Bit7	Bit6	Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR A									
								0xBA			
Bits7-4	Bits7-4: UNUSED. Read = 0000b; Write = don't care										
Bit3:	3: AIN67IC: AIN6. AIN7 Input Pair Configuration Bit										
	0: AIN6 and A	N7 are inder	pendent singl	ed-ended inn	uts						
	$1 \cdot AIN6 AIN7$	are (respecti	velv) + - dif	ferential inpu	ut pair						
Bit2.	AIN45IC · AIN4	L AIN5 Inpu	t Pair Config	uration Bit	n puii						
D1(2)	0 AIN4 and Al	N5 are inder	endent singl	ed-ended inn	uts						
	1. Λ IN/4 Λ IN/5	are (respecti	$v_{alv} \perp dif$	forential input	uto it pair						
Dit1.	AIN22IC: AIN2	AIN3 Inpu	t Dair Config	uration Bit	n pan						
DITI.	AIN25IC. AIN2	N2 are inder	t Fail Coiling	ad and ad inn	uto						
	$\begin{array}{c} 0. \text{AIN2} \text{allu} \text{AIN2} \\ 1. \text{AIN2} \text{AIN2} \end{array}$	and (machine)	volu) - dif	formatical input	uis						
D:40	1: AIN2, AIN3	are (respecti	very) +, - dil	ierential inpl	it pair						
B1t0:	AINUTIC: AINU), AINT Inpu	t Pair Config	uration Bit							
	0: AINO and A	INI are indep	pendent singl	ed-ended inp	uts						
	1: AIN0, AIN1	are (respecti	vely) +, - dif	ferential inpu	it pair						
NOTE.	The ADC Date V	Word is in 2'		t format for	honnala oon	figured og dif	Formatio				
NOTE:	The ADC Data	word is in 2	s complemen	it format for (channels con	ingured as dif	Terential.				

Table 7.1. DAC Electrical Characteristics

VDD = 3.0V, AV + = 3.0V, R	EF = 2.40V (REFBE=0), No Output Load un	less other	wise speci	fied.			
PARAMETER	CONDITIONS MIN TYP MAX						
STATIC PERFORMANCE							
Resolution		12					
Integral Nonlinearity	For Data Word Range 0x014 to 0xFEB		±2		LSB		
Differential Nonlinearity	Guaranteed Monotonic (codes 0x014 to			±1	LSB		
	0xFEB)						
Output Noise	No Output Filter		250		μVrms		
	100kHz Output Filter		128				
	10kHz Output Filter		41				
Offset Error	Data Word = $0x014$		±3	±30	mV		
Offset Tempco			6		ppm/°C		
Full-Scale Error			±20	±60	mV		
Full-Scale Error Tempco			10		ppm/°C		
VDD Power-Supply			-60		dB		
Rejection Ratio							
Output Impedance in	DACnEN=0		100		kΩ		
Shutdown Mode							
Output Cumont			+300		uА		
Output Current			1300		μΑ		
Output Short Circuit Current	Data Word = $0xFFF$		15		mA		
DYNAMIC PERFORMANC	CE						
Voltage Output Slew Rate	Load = 40 pF		0.44		V/µs		
Output Settling Time To ¹ / ₂	Load = 40pF, Output swing from code		10		μs		
LSB	0xFFF to 0x014						
Output Voltage Swing		0		REF-	V		
				1LSB			
Startup Time	DAC Enable asserted		10		μs		
ANALOG OUTPUTS							
Load Regulation	$I_L = 0.01 \text{mA}$ to 0.3mA at code 0xFFF		60		ppm		
CURRENT CONSUMPTIO	N (each DAC)						
Power Supply Current (AV+	Data Word = $0x7FF$		110	400	μA		
supplied to DAC)							

register configured for accessing the external data memory space. Refer to Section 11 (Flash Memory) for further details.

Figure 10.2. Memory Map

10.2.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

The MCUs also have built-in hardware for a stack record. The stack record is a 32-bit shift register, where each Push or increment SP pushes one record bit onto the register, and each Call or interrupt pushes two record bits onto the register. (A Pop or decrement SP pops one record bit, and a Return pops two record bits, also.) The stack record circuitry can also detect an overflow or underflow on the Stack, and can notify the debug software even with the MCU running full-speed debug.

Interrupt Source	InterruptPriorityVectorOrder		Interrupt-Pending Flag	Enable	
Reset	0x0000	Тор	None	Always enabled	
External Interrupt 0 (/INT0)	0x0003	0	IE0 (TCON.1)	EX0 (IE.0)	
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	ET0 (IE.1)	
External Interrupt 1 (/INT1)	0x0013	2	IE1 (TCON.3)	EX1 (IE.2)	
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	ET1 (IE.3)	
Serial Port (UART)	0x0023	4	RI (SCON.0)	ES (IE.4)	
			TI (SCON.1)		
Timer 2 Overflow (or EXF2)	0x002B	5	TF2 (T2CON.7)	ET2 (IE.5)	
Serial Peripheral Interface	0x0033	6	SPIF (SPI0CN.7)	ESPI0 (EIE1.0)	
			WCOL (SPI0CN.6)		
			MODF (SPI0CN.5)		
			RXOVRN (SPI0CN.4)		
SMBus Interface	0x003B	7	SI (SMB0CN.3)	ESMB0 (EIE1.1)	
ADC0 Window Comparison	0x0043	8	ADWINT (ADC0CN.2)	EWADC0 (EIE1.2)	
Programmable Counter Array 0	0x004B	9	CF (PCA0CN.7)	EPCA0 (EIE1.3)	
			CCFn (PCA0CN.n)		
Comparator 0 Falling Edge	0x0053	10	CP0FIF (CPT0CN.4)	ECP0F (EIE1.4)	
Comparator 0 Rising Edge	0x005B	11	CPORIF (CPT0CN.5)	ECPOR (EIE1.5)	
Comparator 1 Falling Edge	0x0063	12	CP1FIF (CPT1CN.4)	ECP1F (EIE1.6)	
Comparator 1 Rising Edge	0x006B	13	CP1RIF (CPT1CN.5)	ECP1R (EIE1.7)	
Timer 3 Overflow	0x0073	14	TF3 (TMR3CN.7)	ET3 (EIE2.0)	
ADC0 End of Conversion	0x007B	15	ADCINT (ADC0CN.5)	EADC0 (EIE2.1)	
External Interrupt 4	0x0083	16	IE4 (PRT1IF.4)	EX4 (EIE2.2)	
External Interrupt 5	0x008B	17	IE5 (PRT1IF.5)	EX5 (EIE2.3)	
External Interrupt 6	0x0093	18	IE6 (PRT1IF.6)	EX6 (EIE2.4)	
External Interrupt 7	0x009B	19	IE7 (PRT1IF.7)	EX7 (EIE2.5)	
Unused Interrupt Location	0x00A3	20	None	Reserved (EIE2.6)	
External Crystal OSC Ready	0x00AB	21	XTLVLD (OSCXCN.7)	EXVLD (EIE2.7)	

Table 10.4. Interrupt Summary

10.4.3. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP-EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate.

10.4.4. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Figure 10.10. IP: Interrupt Priority

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
-	-	PT2	PS	PT1	PX1	PT0	PX0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
							(on addressable)	UXDO			
Dito7 6	Bits7-6: UNUSED Read = 11b Write = don't care										
Dits/-0.	57-0. UNUSED. Read -110 , white $-$ doin t care.										
Bit5:	PT2 Timer 2 Interrupt Priority Control.										
	This bit sets th	ne priority of	the Timer 2 i	interrupts.							
	0: Timer 2 int	errupts set to	low priority	level.							
	1: Timer 2 int	errupts set to	high priority	v level.							
Bit4:	PS: Serial Por	t (UART) Int	terrupt Priorit	ty Control.							
	This bit sets th	e priority of	the Serial Po	rt (UARI) ir	iterrupts.						
	1: UART Inte	rrupts set to	low priority I	lovol							
	1. UARI IIIC	inupis set to	ingii priority	ievei.							
Bit3:	PT1: Timer 1	Interrupt Pric	ority Control.								
	This bit sets th	ne priority of	the Timer 1 i	interrupts.							
	0: Timer 1 int	errupts set to	low priority	level.							
	1: Timer 1 int	errupts set to	high priority	v level.							
D 1.0											
Bit2:	PX1: External	Interrupt 1 F	riority Contr	ol.							
	I his bit sets th	termint 1 set	the External	Interrupt 1 if	iterrupts.						
	1. External In	terrupt 1 set	to high priori	ty level.							
	1. External III	terrupt i set	to ingli priori	ity ievei.							
Bit1:	PT0: Timer 0	Interrupt Price	ority Control.								
	This bit sets th	ne priority of	the Timer 0 i	interrupts.							
	0: Timer 0 int	errupt set to	low priority l	level.							
	1: Timer 0 int	errupt set to	high priority	level.							
DYO				. 1							
Bit0:	PAU: External	Interrupt 0 H	TIOPITY CONTR	UI. Intorment 0 :-	torminto						
	This bit sets the priority of the External Interrupt 0 interrupts.										
	0: External Interrupt 0 set to low priority level.										
	1: External interrupt 0 set to high priority level.										

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
PCP1R	PCP1F	PCP0R	PCP0F	PPCA0	PWADC0	PSMB0	PSPI0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xF6				
Bit7:	PCP1R: Comparator 1 (CP1) Rising Interrupt Priority Control.											
	This bit sets the	This bit sets the priority of the CP1 interrupt.										
	0: CP1 rising	interrupt set	to low priori	ty level.								
	1: CPI rising	interrupt set	to high prior	ity level.								
Dite	DCD1E. Com	omotom 1 (CD	1) Eolling Int	amment Dui ani	tri Control							
DILO:	This bit sets the	Darator 1 (CP	the CP1 into	rupt Priori	ty Control.							
	0. CP1 falling	interrupt set	t to low prior	ity lovel								
	1. CP1 falling	interrupt set	t to high prio	rity level								
	1. 01 1 141111	5 menupt set	t to high prio	ing ieven.								
Bit5:	PCP0R: Com	parator 0 (CP	0) Rising Int	errupt Priori	ty Control.							
	This bit sets the	he priority of	the CP0 inte	rrupt.	•							
	0: CP0 rising	interrupt set	to low priori	ty level.								
	1: CP0 rising	interrupt set	to high prior	ity level.								
					~ .							
Bit4:	PCP0F: Comp	parator 0 (CP	0) Falling Int	terrupt Priori	ty Control.							
	This bit sets the	ne priority of	the CP0 inte	rrupt.								
	0: CP0 falling	g interrupt set	t to low prior	ity level.								
	1: CPO failing	g interrupt set	t to high prio	nty level.								
Bit3:	PPCA0: Prog	rammable Co	unter Array ((PCA0) Inter	rupt Priority (Control.						
Bitter	This bit sets th	ne priority of	the PCA0 in	terrupt.	raper noney -	controll						
	0: PCA0 inter	rrupt set to lo	w priority le	vel.								
	1: PCA0 inter	rrupt set to hi	gh priority le	evel.								
Bit2:	PWADC0: Al	DC0 Window	Comparator	Interrupt Pr	iority Control	•						
	This bit sets th	ne priority of	the ADC0 W	/indow inter	rupt.							
	0: ADC0 Wit	ndow interrup	pt set to low j	priority level								
	1: ADC0 W1	ndow interrup	pt set to high	priority leve	1.							
Bit1.	PSMB0: SMF	Rus () Interrur	nt Priority Co	ntrol								
Dit1.	This bit sets th	ne priority of	the SMBus i	nterrupt.								
	0: SMBus int	errupt set to l	low priority 1	evel.								
	1: SMBus int	errupt set to l	high priority	level.								
		-	•									
Bit0:	PSPI0: Serial	Peripheral In	terface 0 Inte	errupt Priorit	y Control.							
	This bit sets the	ne priority of	the SPI0 inte	errupt.								
	0: SPI0 interr	upt set to low	v priority lev	el.								
	1: SPI0 interr	upt set to hig	h priority lev	/el.								

Figure 10.13. EIP1: Extended Interrupt Priority 1

Figure 15.11.	P2: Port2 Register
---------------	--------------------

R/W P2.7	R/W P2.6	R/W P2.5	R/W P2.4	R/W P2.3	R/W P2.2	R/W P2.1	R/W P2.0	Reset Value 11111111
Bit7	Bit6	Bit	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit addressable)	0xA0
Bits7-0: F (1 (0 1 (0 1	P2.[7:0] Write – Outp): Logic Low : Logic High Read – Regar): P2.n is logi : P2.n is logi	ut appears or Output. 1 Output (hig rdless of XBI ic low. ic high.	h I/O pins per h-impedance R0, XBR1, ar	XBR0, XBR if correspond nd XBR2 Reg	R1, and XBR ding PRT2Cl gister settings	2 registers) F.n bit = 0) s).		

Figure 15.12. PRT2CF: Port2 Configuration Register

Figure 16.2 shows a typical SMBus configuration. The SMBus interface will work at any voltage between 3.0V and 5.0V and different devices on the bus may operate at different voltage levels. The SCL (serial clock) and SDA (serial data) lines are bi-directional. They must be connected to a positive power supply voltage through a pull-up resistor or similar circuit. When the bus is free, both lines are pulled high. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus will not exceed 300ns and 1000ns, respectively.

16.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The *I*²*C*-bus and how to use it (including specifications), Philips Semiconductor.
- 2. The I²C-Bus Specification -- Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification -- Version 1.1, SBS Implementers Forum.

R/W SCR7	R/W SCR6	R/W SCR5	R/W SCR4	R/W SCR3	R/W SCR2	R/W SCR1	R/W SCR0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x9D
Bits7-0: S	SCR7-SCR0: These bits detector figured for version of the $f_{SCK} = 0.5 * f_{S}$	SPI Clock Ra ermine the fr master mode system clock _{YSCLK} / (SPI0	ate equency of th e operation. c, and is give CKR + 1),	he SCK outpu The SCK clo n in the follow for 0	at when the S ck frequency wing equatio 0 ≤ SPI0CKF	PI module is y is a divided ns: $R \le 255$,	down	

Figure 17.7. SPI0CKR: SPI Clock Rate Register

18. UART

The UART is a serial port capable of asynchronous transmission. The UART can function in full duplex mode. In all modes, receive data is buffered in a holding register. This allows the UART to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART has an associated Serial Control Register (SCON) and a Serial Data Buffer (SBUF) in the SFRs. The single SBUF location provides access to both transmit and receive registers. Reads access the Receive register and writes access the Transmit register automatically.

The UART is capable of generating interrupts if enabled. The UART has two sources of interrupts: a Transmit Interrupt flag, TI (SCON.1) set when transmission of a data byte is complete, and a Receive Interrupt flag, RI (SCON.0) set when reception of a data byte is complete. The UART interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software. This allows software to determine the cause of the UART interrupt (transmit complete or receive complete).

19.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. The TL0 holds the count and TH0 holds the reload value. When the count in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0. Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0.

R/W

	Inguiv				515001	
R/W	R/W	R/W	R/W	R/W	R/W	_
C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	

Figure 19.5. TMOD: Timer Mode Register

GATE1	C/T	1 T1	IM1 T1M	0 GATE0	C/T0	T0M1	T0M0	00000000			
Bit7	Bit6	E	Bit5 Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0x89			
Bit7:	GATE1: Timer 1 Gate Control.										
	0: Timer 1 enabled when $TR1 = 1$ irrespective of /INT1 logic level.										
	1: Timer	1: Timer 1 enabled only when $TR1 = 1$ AND /INT1 = logic level one.									
Bit6:	C/T1: Co	unter/Time	er 1 Select.								
	0: Timer	Function:	Timer 1 increm	ented by clock d	efined by T11	M bit (CKCC	DN.4).				
	1: Count	er Functio	n: Timer 1 incre	mented by high-	to-low transit	ions on exter	nal input pin				
	(T1).										
Bits5-4	: T1M1-T1	M0: Time	r 1 Mode Selec	t.							
	These bit	s select the	e Timer 1 opera	tion mode.							
	T1M1	T1M0	Mode								
	0	0	Mode 0: 13-b	it counter/timer							
	0	1	Mode 1: 16-b	it counter/timer							
	1	0	Mode 2: 8-bit	counter/timer w	ith auto-reloa	d					
	1	1	Mode 3: Time	er 1 Inactive/stop	ped						
Bit3:	GATE0:	Timer 0 G	ate Control.								
	0: Timer	0 enabled	when $TR0 = 1$ i	rrespective of /II	NTO logic leve	el.					
	1: Timer	0 enabled	only when TR0	= 1 AND / INT0	= logic level	one.					
D'/0		· / T .	G 1 <i>i</i>								
Bit2:	C/10: Co	unter/11me	er Select.		C 11 TO						
	0: Timer	Function:	Timer 0 increm	iented by clock d	effned by 10	VI DIT (CKCC	JN.3).				
	1: Count	er Functio	n: 11mer 0 incre	emented by high-	to-low transit	ions on exter	mai input pin				
	(10).										
Dital 0	. TOM1 TO	MO: Time	• O Modo Soloo	+							
DIIST-0	Those bit	s soloot the	Timor 0 operation	tion mode							
	These on	s select the	e Timer O Opera	non mode.							
	T0M1	TOMO	Mode								
	0	0	Mode 0: 13-b	it counter/timer							
	0	1	Mode 1: 16-b	it counter/timer							
	1	0	Mode 2: 8-bit	counter/timer w	ith auto-reloa	d					
	1	1	Mode 3: Two	8-bit counter/tin	ners						
		•	•								

R/W

Reset Value

19.2. Timer 2

Timer 2 is a 16-bit counter/timer formed by the two 8-bit SFRs: TL2 (low byte) and TH2 (high byte). As with Timers 0 and 1, Timer 2 can use either the system clock or transitions on an external input pin as its clock source. The Counter/Timer Select bit C/T2 bit (T2CON.1) selects the clock source for Timer 2. Clearing C/T2 selects the system clock as the input for the timer (divided by either one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to 1, high-to-low transitions at the T2 input pin increment the counter/timer register. (Refer to Section 14 for information on selecting and configuring external I/O pins.) Timer 2 can also be used to start an ADC Data Conversion.

Timer 2 offers capabilities not found in Timer 0 and Timer 1. It operates in one of three modes: 16-bit Counter/Timer with Capture, 16-bit Counter/Timer with Auto-Reload or Baud Rate Generator Mode. Timer 2's operating mode is selected by setting configuration bits in the Timer 2 Control (T2CON) register. Below is a summary of the Timer 2 operating modes and the T2CON bits used to configure the counter/timer. Detailed descriptions of each mode follow.

RCLK	TCLK	CP/RL2	TR2	Mode
0	0	1	1	16-bit Counter/Timer with Capture
0	0	0	1	16-bit Counter/Timer with Auto-Reload
0	1	Х	1	Baud Rate Generator for TX
1	0	Х	1	Baud Rate Generator for RX
1	1	Х	1	Baud Rate Generator for TX and RX
Х	Х	Х	0	Off

19.2.1. Mode 0: 16-bit Counter/Timer with Capture

In this mode, Timer 2 operates as a 16-bit counter/timer with capture facility. A high-to-low transition on the T2EX input pin causes the 16-bit value in Timer 2 (TH2, TL2) to be loaded into the capture registers (RCAP2H, RCAP2L).

Timer 2 can use either SYSCLK, SYSCLK divided by 12, or high-to-low transitions on the external T2 pin as its clock source when operating in Counter/Timer with Capture mode. Clearing the C/T2 bit (T2CON.1) selects the system clock as the input for the timer (divided by one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to logic 1, a high-to-low transition at the T2 input pin increments the counter/timer register. As the 16-bit counter/timer register increments and overflows from 0xFFFF to 0x0000, the TF2 timer overflow flag (T2CON.7) is set and an interrupt will occur if the interrupt is enabled.

Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CP/RL2 (T2CON.0) and the Timer 2 Run Control bit TR2 (T2CON.2) to logic 1. The Timer 2 External Enable EXEN2 (T2CON.3) must also be set to logic 1 to enable a capture. If EXEN2 is cleared, transitions on T2EX will be ignored.

Figure 19.11. T2 Mode 0 Block Diagram

20. PROGRAMMABLE COUNTER ARRAY

The Programmable Counter Array (PCA) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and five 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (see Section 15.1 for details on configuring the Crossbar). The counter/timer is driven by a configurable timebase that can select between four inputs as its source: system clock divided by twelve, system clock divided by four, Timer 0 overflow, or an external clock signal on the ECI line. The PCA is configured and controlled through the system controller's Special Function Registers. The basic PCA block diagram is shown in Figure 20.1.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xDA-0xDE		
PCA0C	CPMn Address:	PCA0CPM0 = 0xDA (n = 0)								
		PCA0CPM1 = 0xDB (n = 1)								
		PCA0CPM	12 = 0 xDC (n)	= 2)						
		PCA0CPM3 = 0xDD (n = 3)								
		PCA0CPM	4 = 0 xDE (n)	= 4)						
D:+7.	UNUSED D	ad - 0 Writ	a - dan't aar							
DIL/. Bit6:	ECOMn: Comparator Function Enable									
Dito.	This hit enables/disables the comparator function for PCA module <i>n</i>									
	0. Disabled	25/disables th	ie comparato	I CA IIIouui	с п.					
	1: Enabled.									
Bit5:	CAPPn: Capture Positive Function Enable.									
	This bit enables/disables the positive edge capture for PCA module <i>n</i> .									
	0: Disabled.									
	1: Enabled.									
Bit4:	CAPNn: Capt	ure Negative	Function En	able.						
	This bit enables/disables the negative edge capture for PCA module n .									
	0: Disabled.									
	1: Enabled.									
Bit3:	: MATn: Match Function Enable.						_			
	This bit enables/disables the match function for PCA module n . When enabled, matches of									
	the PCA counter with a module's capture/compare register cause the CCFn bit in									
	PCAUMD register to be set.									
	0: Disabled.									
Bit?	TOGn: Toggle	Eurotion F	nabla							
DIL2.	This hit enables/disables the toggle function for PCA module <i>n</i> . When enabled matches									
	of the PCA counter with a module's capture/compare register cause the logic level on the									
	CEXn pin to toggle.									
	0: Disabled.	- 88								
	1: Enabled.									
Bit1:	PWMn: Pulse	Width Modu	ulation Mode	Enable.						
	This bit enable	es/disables th	e comparato	r function for	PCA modul	e n. When er	nabled, a			
	pulse width modulated signal is output on the CEXn pin.									
	0: Disabled.									
D .	1: Enabled.	10								
Bit0:	ECCFn: Captu	ire/Compare	Flag Interrup	ot Enable.						
	I his bit sets the masking of the Capture/Compare Flag (CCFn) interrupt.									
 Disable CCTII IIICHUPS. 1: Enable a Capture/Compare Elag interrupt request when CCEn is set 										
		apture/Comp	are mag inte	mupi request		15 501.				

Figure 20.10. PCA0CPMn: PCA Capture/Compare Registers

21.1. Boundary Scan

The Data Register in the Boundary Scan path is an 87-bit shift register. The Boundary DR provides control and observability of all the device pins as well as the SFR bus and Weak Pullup feature via the EXTEST and SAMPLE commands.

Table 21.1. Boundary Data Register Bit Definitions

EXTEST provides access to both capture and update actions, while Sample only performs a capture.

Bit	Action	Target			
0	Capture	Reset Enable from MCU			
	Update	Reset Enable to /RST pin			
1	Capture	Reset input from /RST pin			
	Update	Reset output to /RST pin			
2	Capture	External Clock from XTAL1 pin			
	Update	Not used			
3	Capture	Weak pullup enable from MCU			
	Update	Weak pullup enable to Port Pins			
4-11	Capture	SFR Address Bus bit from CIP-51 (e.g. Bit4=SFRA0, Bit5=SFRA1)			
	Update	SFR Address Bus bit to SFR Address Bus (e.g. Bit4=XSFRA0, Bit5=XSFRA1)			
12-19	Capture	SFR Data Bus bit read from SFR (e.g. Bit12=SFRD0, Bit13=SFRD1)			
	Update	SFR Data Bus bit written to SFR (e.g. Bit12=SFRD0, Bit13=SFRD1)			
20	Capture	SFR Write Strobe from CIP-51			
	Update	SFR Write Strobe to SFR Bus			
21	Capture	SFR Read Strobe from CIP-51			
21	Update	SFR Read Strobe to SFR Bus			
22	Capture	SFR Read/Modify/Write Strobe from CIP-51			
22	Update	SFR Read/Modify/Write Strobe to SFR Bus			
23,25,27,29, 31,33,35,37	Capture	P0.n output enable from MCU (e.g. Bit23=P0.0, Bit25=P0.1, etc.)			
	Update	P0.n output enable to pin (e.g. Bit23=P0.00e, Bit25=P0.10e, etc.)			
24,26,28,30, 32,34,36,38	Capture	P0.n input from pin (e.g. Bit24=P0.0, Bit26=P0.1, etc.)			
	Update	P0.n output to pin (e.g. Bit24=P0.0, Bit26=P0.1, etc.)			
39,41,43,45,	Capture	P1.n output enable from MCU (e.g. Bit39=P1.0, Bit41=P1.1, etc.)			
47,49,51,53	Update	P1.n output enable to pin (e.g. Bit39=P1.00e, Bit41=P1.10e, etc.)			
40,42,44,46, 48,50,52,54	Capture	P1.n input from pin (e.g. Bit40=P1.0, Bit42=P1.1, etc.)			
	Update	P1.n output to pin (e.g. Bit40=P1.0, Bit42=P1.1, etc.)			
55,57,59,61, 63,65,67,69	Capture	P2.n output enable from MCU (e.g. Bit55=P2.0, Bit57=P2.1, etc.)			
	Update	P2.n output enable to pin (e.g. Bit55=P2.00e, Bit57=P2.10e, etc.)			
56,58,60,62, 64,66,68,70	Capture	P2.n input from pin (e.g. Bit56=P2.0, Bit58=P2.1, etc.)			
	Update	P2.n output to pin (e.g. Bit56=P2.0, Bit58=P2.1, etc.)			
71,73,75,77,	Capture	P3.n output enable from MCU (e.g. Bit71=P3.0, Bit73=P3.1, etc.)			
79,81,83,85	Update	P3.n output enable to pin (e.g. Bit71=P3.0oe, Bit73=P3.1oe, etc.)			
72,74,76,78, 80,82,84,86	Capture	P3.n input from pin (e.g. Bit72=P3.0, Bit74=P3.1, etc.)			
	Update	P3.n output to pin (e.g. Bit72=P3.0, Bit74=P3.1, etc.)			

21.3. Debug Support

Each MCU has on-chip JTAG and debug circuitry that provide *non-intrusive, full speed, in-circuit debug using the production part installed in the end application* using the four pin JTAG I/F. Silicon Labs' debug system supports inspection and modification of memory and registers, setting breakpoints, watchpoints, single stepping, and run and halt commands. No additional target RAM, program memory, or communications channels are required. All the digital and analog peripherals are functional and work correctly (remain in sync) while debugging. The WDT is disabled when the MCU is halted during single stepping or at a breakpoint.

The C8051F000DK, C8051F005DK, C8051F010DK, and C8051F015DK are development kits with all the hardware and software necessary to develop application code and perform in-circuit debugging with each MCU in the C8051F000 family. Each kit includes an Integrated Development Environment (IDE) which has a debugger and integrated 8051 assembler. It has an RS-232 to JTAG protocol translator module referred to as the EC. There is also a target application board with a C8051F000, F005, F010, or F015 installed and with a large prototyping area. The kit also includes RS-232 and JTAG cables, and wall-mount power supply.

