Silicon Labs - C8051F016 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	32KB (32K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f016

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.	SYSTEM OVERVIEW	. 8
	Table 1.1. Product Selection Guide	8
	Figure 1.1. C8051F000/05/10/15 Block Diagram	9
	Figure 1.2. C8051F001/06/11/16 Block Diagram	.10
	Figure 1.3. C8051F002/07/12/17 Block Diagram	.11
	1.1. CIP-51 TM CPU	.12
	Figure 1.4. Comparison of Peak MCU Execution Speeds	.12
	Figure 1.5. On-Board Clock and Reset	.13
	1.2. On-Board Memory	.14
	Figure 1.6. On-Board Memory Map	.14
	1.3. JTAG Debug and Boundary Scan	.15
	Figure 1.7. Debug Environment Diagram	.15
	1.4. Programmable Digital I/O and Crossbar	16
	Figure 1.8. Digital Crossbar Diagram	16
	1.5. Programmable Counter Array	.17
	Figure 1.9. PCA Block Diagram	.17
	1.6. Serial Ports	.17
	1.7. Analog to Digital Converter	18
	Figure 1.10. ADC Diagram	18
	1.8. Comparators and DACs	.19
_	Figure 1.11. Comparator and DAC Diagram.	.19
2.	ABSOLUTE MAXIMUM RATINGS*	20
3.	GLOBAL DC ELECTRICAL CHARACTERISTICS	20
4.	PINOUT AND PACKAGE DEFINITIONS	21
	Table 4.1. Pin Definitions	.21
	Figure 4.1. TQFP-64 Pinout Diagram	.23
	Figure 4.2. TQFP-64 Package Drawing	.24
	Figure 4.3. TQFP-48 Pinout Diagram	.25
	Figure 4.4. TQFP-48 Package Drawing	.26
	Figure 4.5. LQFP-32 Pinout Diagram	.27
	Figure 4.6. LQFP-32 Package Drawing	.28
5.	ADC (12-Bit, C8051F000/1/2/5/6/7 Only)	29
	Figure 5.1. 12-Bit ADC Functional Block Diagram	.29
	5.1. Analog Multiplexer and PGA	.29
	5.2. ADC Modes of Operation	.30
	Figure 5.2. 12-Bit ADC Track and Conversion Example Timing	.30
	Figure 5.3. Temperature Sensor Transfer Function	.31
	Figure 5.4. AMX0CF: AMUX Configuration Register (C8051F00x)	.31
	Figure 5.5. AMX0SL: AMUX Channel Select Register (C8051F00x)	.32
	Figure 5.6. ADC0CF: ADC Configuration Register (C8051F00x)	.33
	Figure 5.7. ADC0CN: ADC Control Register (C8051F00x)	.34
	Figure 5.8. ADC0H: ADC Data Word MSB Register (C8051F00x)	.35
	Figure 5.9. ADC0L: ADC Data Word LSB Register (C8051F00x)	.35
	5.3. ADC Programmable Window Detector	.36
	Figure 5.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F00x)	.36
	Figure 5.11. ADCOGTL: ADC Greater-Than Data Low Byte Register (C8051F00x)	.36
	Figure 5.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F00x)	.36
	Figure 5.15. ADCULIL: ADC Less-Inan Data Low Byte Register (C8051F00x)	.36
	Figure 5.14. 12-Bit ADC Window Interrupt Examples, Kight Justified Data	.31
	Figure 5.15. 12-Bit ADC Window Interrupt Examples, Left Justified Data	.)/
	Figure 5.15. 12-Bit ADC window interrupt Examples, Left Justified Data	.30

1. SYSTEM OVERVIEW

The C8051F000 family are fully integrated mixed-signal System on a Chip MCUs with a true 12-bit multi-channel ADC (F000/01/02/05/06/07), or a true 10-bit multi-channel ADC (F010/11/12/15/16/17). See the Product Selection Guide in Table 1.1 for a quick reference of each MCUs' feature set. Each has a programmable gain pre-amplifier, two 12-bit DACs, two voltage comparators (except for the F002/07/12/17, which have one), a voltage reference, and an 8051-compatible microcontroller core with 32kbytes of FLASH memory. There are also I2C/SMBus, UART, and SPI serial interfaces implemented in hardware (not "bit-banged" in user software) as well as a Programmable Counter/Timer Array (PCA) with five capture/compare modules. There are also 4 general-purpose 16-bit timers and 4 byte-wide general-purpose digital Port I/O. The C8051F000/01/02/10/11/12 have 256 bytes of RAM and execute up to 20MIPS, while the C8051F005/06/07/15/16/17 have 2304 bytes of RAM and execute up to 25MIPS.

With an on-board VDD monitor, WDT, and clock oscillator, the MCUs are truly stand-alone System-on-a-Chip solutions. Each MCU effectively configures and manages the analog and digital peripherals. The FLASH memory can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. Each MCU can also individually shut down any or all of the peripherals to conserve power.

On-board JTAG debug support allows non-intrusive (uses no on-chip resources), full speed, in-circuit debug using the production MCU installed in the final application. This debug system supports inspection and modification of memory and registers, setting breakpoints, watchpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional when using JTAG debug.

Each MCU is specified for 2.7V-to-3.6V operation over the industrial temperature range (-45C to +85C). The Port I/Os, /RST, and JTAG pins are tolerant for input signals up to 5V. The C8051F000/05/10/15 are available in the 64-pin TQFP (see block diagram in Figure 1.1). The C8051F001/06/11/16 are available in the 48-pin TQFP (see block diagram in Figure 1.2). The C8051F002/07/12/17 are available in the 32-pin LQFP (see block diagram in Figure 1.3).

	MIPS (Peak)	FLASH Memory	RAM	SMBus/I2C	IdS	UART	Timers (16-bit)	Programmable Counter Array	Digital Port I/O's	ADC Resolution (bits)	ADC Max Speed (ksps)	ADC Inputs	Voltage Reference	Temperature Sensor	DAC Resolution	DAC Outputs	Voltage Comparators	Package
C8051F000	20	32k	256	\checkmark	\checkmark	\checkmark	4	\checkmark	32	12	100	8	\checkmark	\checkmark	12	2	2	64TQFP
C8051F001	20	32k	256	\checkmark	\checkmark	\checkmark	4	\checkmark	16	12	100	8	\checkmark	\checkmark	12	2	2	48TQFP
C8051F002	20	32k	256	\checkmark	\checkmark	\checkmark	4	\checkmark	8	12	100	4	\checkmark	\checkmark	12	2	1	32LQFP
C8051F005	25	32k	2304		\checkmark	\checkmark	4	\checkmark	32	12	100	8	\checkmark	\checkmark	12	2	2	64TQFP
C8051F006	25	32k	2304		\checkmark	\checkmark	4		16	12	100	8	\checkmark	\checkmark	12	2	2	48TQFP
C8051F007	25	32k	2304		\checkmark	\checkmark	4	\checkmark	8	12	100	4	\checkmark	\checkmark	12	2	1	32LQFP
C8051F010	20	32k	256		\checkmark	\checkmark	4	\checkmark	32	10	100	8	\checkmark	\checkmark	12	2	2	64TQFP
C8051F011	20	32k	256	\checkmark	\checkmark	\checkmark	4	\checkmark	16	10	100	8	\checkmark	\checkmark	12	2	2	48TQFP
C8051F012	20	32k	256				4		8	10	100	4	\checkmark	\checkmark	12	2	1	32LQFP
C8051F015	25	32k	2304		\checkmark	\checkmark	4	\checkmark	32	10	100	8	\checkmark	\checkmark	12	2	2	64TQFP
C8051F016	25	32k	2304		\checkmark	\checkmark	4	\checkmark	16	10	100	8	\checkmark	\checkmark	12	2	2	48TQFP
C8051F017	25	32k	2304		\checkmark	\checkmark	4	\checkmark	8	10	100	4	\checkmark	\checkmark	12	2	1	32LQFP

 Table 1.1. Product Selection Guide

Figure 4.4. TQFP-48 Package Drawing

Figure 4.5. LQFP-32 Pinout Diagram

5. ADC (12-Bit, C8051F000/1/2/5/6/7 Only)

The ADC subsystem for the C8051F000/1/2/5/6/7 consists of a 9-channel, configurable analog multiplexer (AMUX), a programmable gain amplifier (PGA), and a 100ksps, 12-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see block diagram in Figure 5.1). The AMUX, PGA, Data Conversion Modes, and Window Detector are all configurable under software control via the Special Function Register's shown in Figure 5.1. The ADC subsystem (ADC, track-and-hold and PGA) is enabled only when the ADCEN bit in the ADC Control register (ADC0CN, Figure 5.7) is set to 1. The ADC subsystem is in low power shutdown when this bit is 0. The Bias Enable bit (BIASE) in the REF0CN register (see Figure 9.2) must be set to 1 in order to supply bias to the ADC.

5.1. Analog Multiplexer and PGA

Eight of the AMUX channels are available for external measurements while the ninth channel is internally connected to an on-board temperature sensor (temperature transfer function is shown in Figure 5.3). Note that the PGA gain is applied to the temperature sensor reading. AMUX input pairs can be programmed to operate in either the differential or single-ended mode. This allows the user to select the best measurement technique for each input channel, and even accommodates mode changes "on-the-fly". The AMUX defaults to all single-ended inputs upon reset. There are two registers associated with the AMUX: the Channel Selection register AMX0SL (Figure 5.5), and the Configuration register AMX0CF (Figure 5.4). The table in Figure 5.5 shows AMUX functionality by channel for each possible configuration. The PGA amplifies the AMUX output signal by an amount determined by the AMPGN2-0 bits in the ADC Configuration register, ADC0CF (Figure 5.6). The PGA can be software-programmed for gains of 0.5, 1, 2, 4, 8 or 16. It defaults to unity gain on reset.

		0						•	
R/W	<i>.</i>	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ADCI	EN A	DCTM	ADCINT	ADBUSY	ADSTM1	ADSTM0	ADWINT	ADLJST	00000000
Bit7		Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								(bit addressable)	0xE8
Bit7:	ADCE	N: ADC	Enable Bit						
	0: AD	C Disable	ed. ADC is i	n low power	shutdown.				
	1: AD	C Enable	d. ADC is a	ctive and rea	dy for data co	onversions.			
Bit6:	ADCT	M: ADC	Track Mode	Bit	5				
	0: Wh	en the Al	DC is enabled	l, tracking is	always done	unless a con-	version is in	process	
	1: Tra	cking De	fined by ADS	STM1-0 bits	2			1	
		ADST	M1-0:						
		00: Tr	acking starts	with the writ	e of 1 to AD	BUSY and la	sts for 3 SA	R clocks	
		01: Tr	acking starte	d by the over	flow of Time	er 3 and last f	or 3 SAR clo	ocks	
		10: AI	OC tracks on	ly when CNV	/STR input is	s logic low			
		11: Tr	acking started	d by the over	flow of Time	er 2 and last f	or 3 SAR clo	ocks	
Bit5:	ADCIN	NT: ADC	Conversion	Complete In	terrupt Flag				
	(Must l	be cleared	d by software	e)					
	0: AD	C has not	t completed a	data convers	sion since the	e last time this	s flag was cl	eared	
	1: AD	C has con	mpleted a dat	a conversion					
Bit4:	ADBU	SY: ADO	C Busy Bit						
	Read								
	0: AD	C Conve	rsion comple	te or no valid	l data has bee	en converted a	since a reset.	The falling	
	edg	e of ADE	BUSY genera	tes an interru	pt when ena	bled.			
	1: AD	C Busy c	onverting dat	ta					
	Write								
	0: No	effect							
	1: Star	ts ADC (Conversion if	ADSTM1-0	0 = 00b				
Bits3-2	: ADST	M1-0: AI	DC Start of C	onversion M	ode Bits				
	00: AI	DC conve	ersion started	upon every	write of 1 to 1	ADBUSY			
	01: AI	DC conve	ersions taken	on every ove	erflow of Tim	her 3			
	10: AI	DC conve	ersion started	upon every i	rising edge of	f CNVSTR			
	11: AI	DC conve	ersions taken	on every ove	erflow of Tim	her 2			
Bit1:	ADWI	NT: ADC	Window Co	ompare Inter	rupt Flag				
	(Must	be cleared	d by software	e)					
	0: AD	C Windo	w Compariso	on Data mate	h has not occ	urred			
DUO	I: AD	C Windo	w Compariso	on Data mate	h occurred				
Bit0:	ADLIS	SI: ADC	Left Justify I	Data Bit					
	U: Dat	a in ADC	UH:ADCOL	Registers is i	ignt justified				
	1: Dat	a in ADC	UH:ADCOL	Registers is l	ert justified				

Figure 5.7. ADC0CN: ADC Control Register (C8051F00x)

5.3. ADC Programmable Window Detector

The ADC programmable window detector is very useful in many applications. It continuously compares the ADC output to user-programmed limits and notifies the system when an out-of-band condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADWINT in ADCOCN) can also be used in polled mode. The high and low bytes of the reference words are loaded into the ADC Greater-Than and ADC Less-Than registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Figure 5.14 and Figure 5.15 show example comparisons for reference. Notice that the window detector flag can be asserted when the measured data is inside or outside the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx registers.

Figure 5.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F00x)

Figure 5.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F00x)

Figure 5.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F00x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xC7
Bits7-0: The high by	te of the AD	C Less-Than	Data Word.					

Figure 5.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F00x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xC6
Bits7-0: These bits a Definition: ADC Less-7	re the low by Гhan Data Wo	te of the AD ord = ADC0	C Less-Than LTH:ADC0L	Data Word. LTL				

10. CIP-51 CPU

The MCUs' system CPU is the CIP-51. The CIP-51 is fully compatible with the MCS-51TM instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are four 16-bit counter/timers (see description in Section 19), a full-duplex UART (see description in Section 18), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (see Section 10.3), and four byte-wide I/O Ports (see description in Section 14). The CIP-51 also includes on-chip debug hardware (see description in Section 21), and interfaces directly with the MCUs' analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

Features

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 10.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput with 25MHz Clock
- 0 to 25MHz Clock Frequency (on 'F0x5/6/7)
- Four Byte-Wide I/O Ports
- Extended Interrupt Handler

- Reset Input
- Power Management Modes
- On-chip Debug Circuitry
- Program and Data Memory Security

Mnemonic	Description	Bytes	Clock Cycles
	PROGRAM BRANCHING		
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A,#data,rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn,#data,rel	Compare immediate to register and jump if not equal	3	3/4
CJNE @Ri,#data,rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn,rel	Decrement register and jump if not zero	2	2/3
DJNZ direct,rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through register R0-R1

rel - 8-bit, signed (two's compliment) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00-0x7F) or an SFR (0x80-0xFF).

#data - 8-bit constant

#data 16 - 16-bit constant

bit - Direct-addressed bit in Data RAM or SFR.

addr 11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2K-byte page of program memory as the first byte of the following instruction.

addr 16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 64K-byte program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an open-drain output that is driving a 0 to avoid unnecessary power dissipation.

The third and final step is to initialize the individual resources selected using the appropriate setup registers. Initialization procedures for the various digital resources may be found in the detailed explanation of each available function. The reset state of each register is shown in the figures that describe each individual register.

Figure 15.2. Port I/O Cell Block Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit addressable)	0xB0
Bits7-0:	P3.[7:0]							
	(Write)							
	0: Logic Low	Output.						
	1: Logic High	o Output (hig	h-impedance	if correspond	ding PRT3C	F.n bit = 0		
	(Read)		1	1	U	,		
	0: P3.n is logi	ic low.						
	1: P3.n is logi	ic high.						
	1. 1.0.110 100							

Figure 15.13. P3: Port3 Register

Table 15.2. Port I/O DC Electrical Characteristics

VDD = 2.7 to 3.6V, -40°C to +85°C unless otherwise specified.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output High Voltage	$I_{OH} = -10uA$, Port I/O push-pull	VDD –			V
		0.1			
	$I_{OH} = -3mA$, Port I/O push-pull	VDD –			
		0.7			
	I _{OH} = -10mA, Port I/O push-pull		VDD –		
			0.8		
Output Low Voltage	$I_{OL} = 10uA$			0.1	V
	$I_{OL} = 8.5 \text{mA}$			0.6	
	$I_{OL} = 25 \text{mA}$		1.0		
Input High Voltage		0.7 x			V
		VDD			
Input Low Voltage				0.3 x	V
				VDD	
Input Leakage Current	DGND < Port Pin < VDD, Pin Tri-state				μA
	Weak Pull-up Off			±1	·
	Weak Pull-up On		30		
Capacitive Loading			5		pF

16.6.3. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been received. Data remains stable in the register as long as SI is set to logic 1. Software can safely read or write to the data register when the SI flag is set. Software should not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0 since the hardware may be in the process of shifting a byte of data in or out of the register.

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously being shifted in. Therefore, SMB0DAT always contains the last data byte present on the bus. Thus, in the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data in SMB0DAT.

Figure 16.6. SMB0DAT: SMBus Data Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	00000000 SFR Address: 0xC2
Bits7-0: S	SMB0DAT: S The SMB0DA interface or a l read from or w to logic one. T When the SI f CPU should n	MBus Data. Tregister co byte that has vrite to this re The serial dat lag is not set, ot attempt to	ontains a byte just been rec egister when ta in the regis the system r access this re	e of data to be eived on the s ever the SI set ster remains s may be in the egister.	transmitted SMBus seria rial interrup table as long process of s	on the SMBu al interface. T t flag (SMB0 g as the SI fla hifting data in	us serial The CPU can CN.3) is set g is set. n/out and the	2

16.6.4. Address Register

The SMB0ADR Address register holds the slave address for the SMBus interface. In slave mode, the seven mostsignificant bits hold the 7-bit slave address. The least significant bit, bit 0, is used to enable the recognition of the general call address (0x00). If bit 0 is set to logic 1, the general call address will be recognized. Otherwise, the general call address is ignored. The contents of this register are ignored when the SMBus hardware is operating in master mode.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SLVO	SLV5	SLV4	SLV3	SLV2	SLVI	SLVU	GC	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xC3
Bits /-1:	SLV6-SLV0:	SMBus Slave	e Address.					
	These bits are	loaded with	the 7-bit slav	e address to	which the SN	IBus will res	pond when	
	operating as a	slave transm	itter or slave	receiver SI	V6 is the mo	st significant	t bit of the	
	operating as a	macronda to	the first hit	of the oddress	buto monitor	d on the SM	Due	
	address and co	orresponds to	the first bit o	of the address	byte receive	a on the SM	Dus.	
Bit0:	GC: General C	Call Address	Enable.					
	This bit is use	d to enable g	eneral call ad	ldress (0x00)	recognition.			
	0: General cal	l address is id	mored	· · · ·	0			
	1. Constant cal	1 address 15 1g						
	1: General cal	address is re	ecognized.					

Figure 1	16.7.	SMB0ADR:	SMBus	Address	Register
I Igui C I			DIVIDUS	11001035	Register

0x00 All Bus Error (i.e. illegal START, illegal STOP,) 0x08 Master Transmitter/Receiver START condition transmitted. 0x10 Master Transmitter/Receiver Repeated START condition transmitted. 0x10 Master Transmitter Slave address + W transmitted. ACK received. 0x20 Master Transmitter Data byte transmitted. ACK received. 0x33 Master Transmitter Data byte transmitted. NACK received. 0x40 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x50 Master Receiver Data byte received. ACK transmitted. 0x50 Master Receiver Data byte received. ACK transmitted. 0x60 Slave Receiver Data byte received. ACK transmitted. 0x61 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x80 Slave Receiver SMB0's own slave address + W received. 0x80 <t< th=""><th>Status Code (SMB0STA)</th><th>Mode</th><th>SMBus State</th></t<>	Status Code (SMB0STA)	Mode	SMBus State
0x08 Master Transmitter/Receiver START condition transmitted. 0x10 Master Transmitter/Receiver Repeated START condition transmitted. 0x18 Master Transmitter Slave address + W transmitted. ACK received. 0x20 Master Transmitter Data byte transmitted. ACK received. 0x28 Master Transmitter Data byte transmitted. ACK received. 0x30 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x48 Master Receiver Slave address + R transmitted. ACK received. 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. ACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver General call address (0x00) received. ACK transmitted. 0x70 Slave Receiver General call address received. ACK transmitted. 0x78 Slave Receiver General call address received. ACK transmitted. 0x80 Slave Receiver General call address received. ACK transmitted. 0x80<	0x00	All	Bus Error (i.e. illegal START, illegal STOP,)
0x10 Master Transmitter/Receiver Repeated START condition transmitted. 0x18 Master Transmitter Slave address + W transmitted. ACK received. 0x20 Master Transmitter Slave address + W transmitted. ACK received. 0x30 Master Transmitter Data byte transmitted. ACK received. 0x33 Master Transmitter Data byte transmitted. ACK received. 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x50 Master Receiver Data byte received. ACK transmitted. 0x60 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x68 Slave Receiver General call address (0x00) received. ACK transmited. 0x78 Slave Receiver SMB0's own slave address + W received. 0x80 Slave Receiver SMB0's own slave address + W received. 0x88 Slave Receiver General call address (0x00) received. 0x90	0x08	Master Transmitter/Receiver	START condition transmitted.
0x18 Master Transmitter Slave address + W transmitted. ACK received. 0x20 Master Transmitter Slave address + W transmitted. NACK received. 0x28 Master Transmitter Data byte transmitted. ACK received. 0x30 Master Transmitter Data byte transmitted. ACK received. 0x38 Master Receiver Slave address + R transmitted. ACK received. 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x48 Master Receiver Data byte received. ACK transmitted. 0x50 Master Receiver Data byte received. ACK transmitted. 0x60 Slave Receiver Data byte received. ACK transmitted. 0x61 Slave Receiver Oata byte received. NACK transmitted. 0x62 Slave Receiver Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x80 Slave Receiver General call address (0x00) received. Data byte received. 0x88 Slave Receiver SMB0's own slave address + W received.	0x10	Master Transmitter/Receiver	Repeated START condition transmitted.
0x20 Master Transmitter Slave address + W transmitted. NACK received. 0x28 Master Transmitter Data byte transmitted. ACK received. 0x30 Master Transmitter Data byte transmitted. NACK received. 0x38 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. NACK received. 0x48 Master Receiver Data byte received. ACK transmitted. 0x50 Master Receiver Data byte received. NACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver Own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x70 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x70 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x88 Slave Receiver General call address (0x00) recei	0x18	Master Transmitter	Slave address + W transmitted. ACK received.
0x28 Master Transmitter Data byte transmitted. ACK received. 0x30 Master Transmitter Data byte transmitted. NACK received. 0x38 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. NACK received. 0x40 Master Receiver Data byte received. ACK transmitted. 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver Data byte received. NACK transmitted. 0x68 Slave Receiver General call address (0x00) received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x90 Slave Receiver General call address (0x00) received. Data byte received. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. <td>0x20</td> <td>Master Transmitter</td> <td>Slave address + W transmitted. NACK received.</td>	0x20	Master Transmitter	Slave address + W transmitted. NACK received.
0x30 Master Transmitter Data byte transmitted. NACK received. 0x38 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x48 Master Receiver Slave address + R transmitted. NACK received 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. ACK transmitted. 0x60 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x68 Slave Receiver General call address (0x00) received. ACK transmitted. 0x70 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x80 Slave Receiver General call address (0x00) received. Data byte received. 0x90 Slave Receiver General call address (0x00) received. Data byte received. 0x90 Slave Receiver General call address (0x00) received. Data byte received. 0x88 Slave Receiver General call address (0x00) received. Data byte received.	0x28	Master Transmitter	Data byte transmitted. ACK received.
0x38 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x48 Master Receiver Slave address + R transmitted. NACK received 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK returned. 0x78 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x40 Slave Receiver A STOP or repeated START received while addressed as a slave. Own slave address +	0x30	Master Transmitter	Data byte transmitted. NACK received.
0x40 Master Receiver Slave address + R transmitted. ACK received. 0x48 Master Receiver Slave address + R transmitted. NACK received 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x90 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. <	0x38	Master Transmitter	Arbitration lost
0x48 Master Receiver Slave address + R transmitted. NACK received 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. OxA8 0xA0 Slave Transmitter SMB0's own slave address + R received. ACK transmitted.	0x40	Master Receiver	Slave address + R transmitted. ACK received.
0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address (0x00) received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA8 Slave Transmitter A STOP or repe	0x48	Master Receiver	Slave address + R transmitted. NACK received
0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x40 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. NACK transmitted. 0xB0 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Data byte transmitted. ACK transmitted.	0x50	Master Receiver	Data byte received. ACK transmitted.
0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver Arbitration lost in transmitting slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Data byte transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted.	0x58	Master Receiver	Data byte received. NACK transmitted.
0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK returned. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x40 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. Own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 <td>0x60</td> <td>Slave Receiver</td> <td>SMB0's own slave address + W received. ACK transmitted.</td>	0x60	Slave Receiver	SMB0's own slave address + W received. ACK transmitted.
Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK returned. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x40 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. OxA8 0xA8 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted (AA=0). ACK received.	0x68	Slave Receiver	Arbitration lost in transmitting slave address + R/W as master.
0x70 Slave Receiver General call address (0x00) received. ACK returned. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x80 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x80 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x80 Slave Receiver A STOP or repeated START received while addressed as a slave. Own slave address + R received. ACK transmitted. 0x80 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received.			Own slave address + W received. ACK transmitted.
0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x40 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted (AA=0). ACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. <td>0x70</td> <td>Slave Receiver</td> <td>General call address (0x00) received. ACK returned.</td>	0x70	Slave Receiver	General call address (0x00) received. ACK returned.
General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xC0 Slave Transmitter Data byte transmitted. ACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xC8 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1) 0xE9 All Ide	0x78	Slave Receiver	Arbitration lost in transmitting slave address + R/W as master.
0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1) 0xE9 All			General call address received. ACK transmitted.
ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0x80	Slave Receiver	SMB0's own slave address + W received. Data byte received.
0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1) 0xE8 All Idla			ACK transmitted.
0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0x88	Slave Receiver	SMB0's own slave address + W received. Data byte received.
0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0.00		NACK transmitted.
International construction International construction International construction 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0x90	Slave Receiver	General call address (0x00) received. Data byte received. ACK
0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0.09	Class David and	transmitted.
0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. 0xB8 Slave Transmitter Data byte transmitted. ACK transmitted. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0x98	Slave Receiver	General call address (0x00) received. Data byte received.
0xA0 Slave Receiver A STOP of repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0	Slave Deceiver	A STOD or repeated STADT received while addressed as a clave
OxAs Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0xA0	Slave Receiver	SMD0's sum slave address + D received while addressed as a slave.
0xB0 Slave Transmitter Arbitration fost in transmitting slave address + R/w as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)		Slave Transmitter	SWIDU'S OWII Slave address + K lecelved. ACK transmitted.
0xB8 Slave Transmitter Data byte transmitted. ACK transmitted. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0XB0	Slave Transmitter	Arotitration lost in transmitting slave address $+ R/W$ as master.
OxDo Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	OvB8	Slave Transmitter	Data byte transmitted ACK received
OxCo Data byte transmitted OxAck received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1) 0xE8 All Idla		Slave Transmitter	Data byte transmitted NACK received
OxD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1) 0xE2 All Idla	0xC8	Slave Transmitter	Last data byte transmitted (AA=0) ACK received
$0_{\rm V}$ EQ All Idla		Slave Transmitter/Receiver	SCL Clock High Timer per SMB0CR timed out (FTE-1)
	0xF8		Idle

Table 16.1. SMBus Status Codes

19. TIMERS

Each MCU implements four counter/timers: three are 16-bit counter/timers compatible with those found in the standard 8051, and one is a 16-bit timer for use with the ADC, SMBus, or for general purpose use. These can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 offers additional capabilities not available in Timers 0 and 1. Timer 3 is similar to Timer 2, but without the capture or Baud Rate Generator modes.

Timer 0 and Timer 1:	Timer 2:	Timer 3:
13-bit counter/timer	16-bit counter/timer with auto-reload	16-bit timer with auto-reload
16-bit counter/timer	16-bit counter/timer with capture	
8-bit counter/timer with auto-reload	Baud rate generator	
Two 8-bit counter/timers (Timer 0 only)		

When functioning as a timer, the counter/timer registers are incremented on each clock tick. Clock ticks are derived from the system clock divided by either one or twelve as specified by the Timer Clock Select bits (T2M-T0M) in CKCON. The twelve-clocks-per-tick option provides compatibility with the older generation of the 8051 family. Applications that require a faster timer can use the one-clock-per-tick option.

When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin for T0, T1, or T2. Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is sampled.

19.1. Timer 0 and Timer 1

Timer 0 and Timer 1 are accessed and controlled through SFRs. Each counter/timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control (TCON) register is used to enable Timer 0 and Timer 1 as well as indicate their status. Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits M1-M0 in the Counter/Timer Mode (TMOD) register. Each timer can be configured independently. Following is a detailed description of each operating mode.

19.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as a 13-bit counter/timer in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. Clearing C/T selects the system clock as the input for the timer. When C/T0 is set to logic 1, high-to-low transitions at the selected input pin increment the timer register. (Refer to Port I/O Section 15.1 for information on selecting and configuring external I/O pins.)

Figure 19.7. TL0: Timer 0 Low Byte

Figure 19.8. TL1: Timer 1 Low Byte

Figure 19.9. TH0: Timer 0 High Byte

Figure 19.10. TH1: Timer 1 High Byte

19.2. Timer 2

Timer 2 is a 16-bit counter/timer formed by the two 8-bit SFRs: TL2 (low byte) and TH2 (high byte). As with Timers 0 and 1, Timer 2 can use either the system clock or transitions on an external input pin as its clock source. The Counter/Timer Select bit C/T2 bit (T2CON.1) selects the clock source for Timer 2. Clearing C/T2 selects the system clock as the input for the timer (divided by either one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to 1, high-to-low transitions at the T2 input pin increment the counter/timer register. (Refer to Section 14 for information on selecting and configuring external I/O pins.) Timer 2 can also be used to start an ADC Data Conversion.

Timer 2 offers capabilities not found in Timer 0 and Timer 1. It operates in one of three modes: 16-bit Counter/Timer with Capture, 16-bit Counter/Timer with Auto-Reload or Baud Rate Generator Mode. Timer 2's operating mode is selected by setting configuration bits in the Timer 2 Control (T2CON) register. Below is a summary of the Timer 2 operating modes and the T2CON bits used to configure the counter/timer. Detailed descriptions of each mode follow.

RCLK	TCLK	CP/RL2	TR2	Mode
0	0	1	1	16-bit Counter/Timer with Capture
0	0	0	1	16-bit Counter/Timer with Auto-Reload
0	1	Х	1	Baud Rate Generator for TX
1	0	Х	1	Baud Rate Generator for RX
1	1	Х	1	Baud Rate Generator for TX and RX
Х	Х	Х	0	Off

19.2.1. Mode 0: 16-bit Counter/Timer with Capture

In this mode, Timer 2 operates as a 16-bit counter/timer with capture facility. A high-to-low transition on the T2EX input pin causes the 16-bit value in Timer 2 (TH2, TL2) to be loaded into the capture registers (RCAP2H, RCAP2L).

Timer 2 can use either SYSCLK, SYSCLK divided by 12, or high-to-low transitions on the external T2 pin as its clock source when operating in Counter/Timer with Capture mode. Clearing the C/T2 bit (T2CON.1) selects the system clock as the input for the timer (divided by one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to logic 1, a high-to-low transition at the T2 input pin increments the counter/timer register. As the 16-bit counter/timer register increments and overflows from 0xFFFF to 0x0000, the TF2 timer overflow flag (T2CON.7) is set and an interrupt will occur if the interrupt is enabled.

Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CP/RL2 (T2CON.0) and the Timer 2 Run Control bit TR2 (T2CON.2) to logic 1. The Timer 2 External Enable EXEN2 (T2CON.3) must also be set to logic 1 to enable a capture. If EXEN2 is cleared, transitions on T2EX will be ignored.

Figure 19.11. T2 Mode 0 Block Diagram

19.2.3. Mode 2: Baud Rate Generator

Timer 2 can be used as a baud rate generator for the serial port (UART) when the UART is operated in modes 1 or 3 (refer to Section 18.1 for more information on UART operational modes). In Baud Rate Generator mode, Timer 2 works similarly to the auto-reload mode. On overflow, the 16-bit value held in the two capture registers (RCAP2H, RCAP2L) is automatically loaded into the counter/timer register. However, the TF2 overflow flag is not set and no interrupt is generated. Instead, the overflow event is used as the input to the UART's shift clock. Timer 2 overflows can be used to generate baud rates for transmit and/or receive independently.

The Baud Rate Generator mode is selected by setting RCLK (T2CON.5) and/or TCLK (T2CON.4) to logic one. When RCLK or TCLK is set to logic 1, Timer 2 operates in the auto-reload mode regardless of the state of the CP/RL2 bit. The baud rate for the UART, when operating in mode 1 or 3, is determined by the Timer 2 overflow rate:

Baud Rate = Timer 2 Overflow Rate / 16.

Note, in all other modes, the timebase for the timer is the system clock divided by one or twelve as selected by the T2M bit in CKCON. However, in Baud Rate Generator mode, the timebase is the system clock divided by two. No other divisor selection is possible. If a different time base is required, setting the C/T2 bit to logic 1 will allow the timebase to be derived from the external input pin T2. In this case, the baud rate for the UART is calculated as:

Baud Rate = FCLK / [32 * (65536 – [RCAP2H:RCAP2L])]

Where FCLK is the frequency of the signal supplied to T2 and [RCAP2H:RCAP2L] is the 16-bit value held in the capture registers.

As explained above, in Baud Rate Generator mode, Timer 2 does not set the TF2 overflow flag and therefore cannot generate an interrupt. However, if EXEN2 is set to logic 1, a high-to-low transition on the T2EX input pin will set the EXF2 flag and a Timer 2 interrupt will occur if enabled. Therefore, the T2EX input may be used as an additional external interrupt source.

Figure 19.13. T2 Mode 2 Block Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
Bit7:	TF2: Timer 2 Overflow Flag. Set by hardware when Timer 2 overflows from 0xFFFF to 0x0000 or reload value. When									
	the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software. TF2 will not be set when RCLK and/or TCLK are logic 1.									
Bit6:	EXF2: Timer 2 External Flag. Set by hardware when either a capture or reload is caused by a high-to-low transition on the T2EX input pin and EXEN2 is logic 1. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 Interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.									
Bit5:	RCLK: Receive Clock Flag.Selects which timer is used for the UART's receive clock in modes 1 or 3.0: Timer 1 overflows used for receive clock.1: Timer 2 overflows used for receive clock.									
Bit4:	TCLK: Transmit Clock Flag.Selects which timer is used for the UART's transmit clock in modes 1 or 3.0: Timer 1 overflows used for transmit clock.1: Timer 2 overflows used for transmit clock.									
Bit3:	 EXEN2: Timer 2 External Enable. Enables high-to-low transitions on T2EX to trigger captures or reloads when Timer 2 is not operating in Baud Rate Generator mode. 0: High-to-low transitions on T2EX ignored. 1: High-to-low transitions on T2EX cause a capture or reload. 									
Bit2:	TR2: Timer 2 Run Control.This bit enables/disables Timer 2.0: Timer 2 disabled.1: Timer 2 enabled.									
Bit1:	C/T2: Counter/Timer Select.0: Timer Function: Timer 2 incremented by clock defined by T2M (CKCON.5).1: Counter Function: Timer 2 incremented by high-to-low transitions on external input pin (T2).									
Bit0:	 CP/RL2: Capture/Reload Select. This bit selects whether Timer 2 functions in capture or auto-reload mode. EXEN2 must be logic 1 for high-to-low transitions on T2EX to be recognized and used to trigger captures or reloads. If RCLK or TCLK is set, this bit is ignored and Timer 2 will function in auto-reload mode. 0: Auto-reload on Timer 2 overflow or high-to-low transition at T2EX (EXEN2 = 1). 1: Capture on high-to-low transition at T2EX (EXEN2 = 1). 									

								Reset Value	
WRMD3	WRMD2	WRMD1	WRMD0	RDMD3	RDMD2	RDMD1	RDMD0	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
This register determines how the Flash interface logic will respond to reads and writes to the FLASHDAT Register.									
 Bits7-4: WRMD3-0: Write Mode Select Bits. The Write Mode Select Bits control how the interface logic responds to writes to the FLASHDAT Register per the following values: 0000: A FLASHDAT write replaces the data in the FLASHDAT register, but is otherwise ignored. 0001: A FLASHDAT write initiates a write of FLASHDAT into the memory location addressed by the FLASHADR register. FLASHADR is incremented by one when complete. 0010: A FLASHDAT write initiates an erasure (sets all bytes to 0xFF) of the Flash page containing the address in FLASHADR. FLASHDAT must be 0xA5 for the erase to occur. FLASHADR is not affected. If FLASHADR = 0x7DFE – 0x7DFF, the entire user space will be erased (i.e. entire Flash memory except for Reserved area 0x7E00 – 0x7FFF). 									
 Bits3-0: RDMD3-0: Read Mode Select Bits. The Read Mode Select Bits control how the interface logic responds to reads to the FLASHDAT Register per the following values: 0000: A FLASHDAT read provides the data in the FASHDAT register, but is otherwise ignored. 0001: A FLASHDAT read initiates a read of the byte addressed by the FLASHADR register if no operation is currently active. This mode is used for block reads. 0010: A FLASHDAT read initiates a read of the byte addressed by FLASHADR only if no operation is active and any data from a previous read has already been read from FLASHDAT. This mode allows single bytes to be read (or the last byte of a block) without initiating an extra read. (All other values for RDMD3-0 are reserved.) 									

Figure 21.3. FLASHCON: JTAG Flash Control Register

