E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f016r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 21.1. Boundary Data Register Bit Definitions	165
Figure 21.2. DEVICEID: JTAG Device ID Register	166
21.2. Flash Programming Commands	167
Figure 21.3. FLASHCON: JTAG Flash Control Register	168
Figure 21.4. FLASHADR: JTAG Flash Address Register	168
Figure 21.5. FLASHDAT: JTAG Flash Data Register	169
Figure 21.6. FLASHSCL: JTAG Flash Scale Register	169
21.3. Debug Support	170

Figure 1.2. C8051F001/06/11/16 Block Diagram

1.2. On-Board Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general-purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

The CIP-51 in the C8051F005/06/07/15/16/17 MCUs additionally has a 2048 byte RAM block in the external data memory address space. This 2048 byte block can be addressed over the entire 64k external data memory address range (see Figure 1.6).

The MCU's program memory consists of 32k + 128 bytes of FLASH. This memory may be reprogrammed insystem in 512 byte sectors, and requires no special off-chip programming voltage. The 512 bytes from addresses 0x7E00 to 0x7FFF are reserved for factory use. There is also a single 128-byte sector at address 0x8000 to 0x807F, which may be useful as a small table for software constants or as additional program space. See Figure 1.6 for the MCU system memory map.

Figure 1.6. On-Board Memory Map

Figure 5.4. AMX0CF: AMUX Configuration Register (C8051F00x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
-	-	-	-	AIN67IC	AIN45IC	AIN23IC	AIN01IC	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xBA			
Bits7-4	UNUSED. Rea	d = 0000b; V	Vrite = don't	care							
Bit3:	AIN67IC: AIN6	5. AIN7 Inpu	t Pair Config	uration Bit							
0: AIN6 and AIN7 are independent singled-ended inputs											
	1: AIN6, AIN7 are (respectively) +, - differential input pair										
Bit2.	Bit2: AIN/5IC: AIN/ AIN5 Input Pair Configuration Bit										
D1(2)	12. AIN45IC: AIN4, AIN5 input Pair Configuration Bit 0: AIN4 and AIN5 are independent singled_ended inputs										
	1. Λ IN/4 Λ IN/5	are (respecti	$v_{alv} \perp dif$	forential input	uto it pair						
Dit1.	AIN22IC: AIN2	AIN3 Inpu	t Dair Config	uration Bit	n pan						
DITI.	AIN25IC. AIN2	N2 are inder	t Fair Coinig	ad and ad inn	uto						
	$\begin{array}{c} 0. \text{AIN2} \text{allu} \text{AIN2} \\ 1. \text{AIN2} \text{AIN2} \end{array}$	and (machine)	volu) - dif	formatical input	uis						
D:40	1: AIN2, AIN3	are (respecti	very) +, - dil	ierential inpl	it pair						
B1t0:	AINUTIC: AINU), AINT Inpu	t Pair Config	uration Bit							
	0: AINO and A	INI are indep	pendent singl	ed-ended inp	uts						
	1: AIN0, AIN1	are (respecti	vely) +, - dif	ferential inpu	it pair						
NOTE.	The ADC Date V	Word is in 2'		t format for	honnala oon	figured og dif	Formatio				
NOTE:	The ADC Data	word is in 2	s complemen	it format for (channels con	ingured as dif	Terential.				

D 711	5.00	5.00	D (11)	5 411	5.000	D 111	-	5		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
ADCSC2	ADCSC1	ADCSC0	-	-	AMPGN2	AMPGN1	AMPGN0	01100000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xBC		
Bits7-5: AI	DCSC2-0: AE	DC SAR Con	version Cloc	k Period Bits						
000: SAR Conversion Clock = 1 System Clock										
00	001: SAR Conversion Clock = 2 System Clocks									
01	0: SAR Conv	version Clock	x = 4 System	Clocks						
01	1: SAR Conv	version Clock	x = 8 System	Clocks						
1x	x: SAR Conv	version Clock	x = 16 System	ns Clocks						
(N	ote: the SAR	Conversion (Clock should	be < 2MHz)					
Bits4-3: UN	JUSED. Rea	d = 00b: Wri	te = don't ca	re	/					
Bits2-0: AN	$\frac{1000}{100}$	DC Internal A	Amplifier Ga	in						
00	0: Gain = 1		impilier Gu							
00	1: $Gain = 2$									
01	0: Gain $= 4$									
01	1: $Gain = 8$									
10:	x: Gain = 16									
11	x: Gain $= 0.5$	5								
		•								

Figure 5.6. ADC0CF: ADC Configuration Register (C8051F00x)

33

r	0				0	· · · · · · · · · · · · · · · · · · ·	/	
R/W	V R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ADC	EN ADCTM	ADCINT	ADBUSY	ADSTM1	ADSTM0	ADWINT	ADLJST	0000000
Bit7	7 Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit addressable)	0xE8
Bit7:	ADCEN: ADC	Enable Bit						
	0: ADC Disabl	ed. ADC is	in low power	shutdown.				
	1: ADC Enable	ed. ADC is a	ctive and rea	dy for data co	onversions.			
Bit6:	ADCTM: ADC	Track Mode	Bit	•				
	0: When the A	DC is enable	d, tracking is	always done	unless a con	version is in	process	
	1: Tracking De	fined by AD	STM1-0 bits					
	ADST	M1-0:						
	00: Ti	acking starts	with the writ	te of 1 to AD	BUSY and la	asts for 3 SA	R clocks	
	01: Ti	acking starte	d by the over	flow of Time	er 3 and last f	for 3 SAR clo	ocks	
	10: A	DC tracks on	ly when CNV	/STR input is	s logic low			
	11: Ti	acking starte	d by the over	flow of Time	er 2 and last f	for 3 SAR clo	ocks	
Bit5:	ADCINT: ADC	C Conversion	Complete In	terrupt Flag				
	(Must be cleare	d by softwar	e)					
	0: ADC has no	t completed a	a data conver	sion since the	e last time thi	s flag was cl	eared	
D:44.	1: ADC has co	mpleted a da	ta conversion					
Б114:	ADBUST: AD	C Busy Bit						
	0: ADC Convo	rsion comple	to or no valid	l data has has	n convorted	since a reset	The felling	
	0. ADC Collive	BUSV gener	ates an interr	i uata nas bee	bled	since a reset.	The failing	
	1. ADC Busy of	converting da	ta	ipt when that	bicu.			
	Write	converting du	itu					
	0: No effect							
	1: Starts ADC	Conversion i	f ADSTM1-0	0 = 00b				
Bits3-2	2: ADSTM1-0: A	DC Start of C	Conversion M	lode Bits				
	00: ADC conv	ersion started	l upon every	write of 1 to 2	ADBUSY			
	01: ADC conv	ersions taken	on every over	erflow of Tim	ner 3			
	10: ADC conv	ersion started	l upon every i	rising edge of	f CNVSTR			
	11: ADC conv	ersions taken	on every ove	erflow of Tim	ner 2			
Bit1:	ADWINT: AD	C Window C	ompare Inter	rupt Flag				
	(Must be cleare	d by softwar	e)					
	0: ADC Windo	ow Compariso	on Data mate	h has not occ	urred			
DHO	I: ADU Windo	w Comparis	on Data mate	n occurred				
B110:	ADLJST: ADC	COLLADCOL	Data Bit					
	1. Data III ADO		Registers is 1	laft instified	L			
	1. Data ili ADC		Registers is i	ien justineu				

Figure 6.7. ADC0CN: ADC Control Register (C8051F01x)

6.3. ADC Programmable Window Detector

The ADC programmable window detector is very useful in many applications. It continuously compares the ADC output to user-programmed limits and notifies the system when an out-of-band condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADWINT in ADC0CN) can also be used in polled mode. The high and low bytes of the reference words are loaded into the ADC Greater-Than and ADC Less-Than registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Figure 6.14 and Figure 6.15 show example comparisons for reference. Notice that the window detector flag can be asserted when the measured data is inside or outside the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx registers.

Figure 6.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F01x)

Figure 6.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F01x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 1111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xC4
Bits7-0: The low by Definition: ADC Great	te of the ADC er-Than Data	Greater-Th Word = AD	an Data Word C0GTH:ADC	d. COGTL				

Figure 6.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F01x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xC7
Bits7-0: The high by	te of the AD	C Less-Than	Data Word.					

Figure 6.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F01x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	00000000 SFR Address: 0xC6			
Bits7-0: These bits are the low byte of the ADC Less-Than Data Word.											
Definition: ADC Less-'	Than Data W	ord = ADC0	LTH:ADC0L	LTL							
								5)			

SILICON LABS

Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data

Table 7.1. DAC Electrical Characteristics

VDD = 3.0V, AV+ = 3.0V, REF = 2.40V (REFBE=0), No Output Load unless otherwise specified.									
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS				
STATIC PERFORMANCE									
Resolution			12		bits				
Integral Nonlinearity	For Data Word Range 0x014 to 0xFEB		±2		LSB				
Differential Nonlinearity	Guaranteed Monotonic (codes 0x014 to			±1	LSB				
	0xFEB)								
Output Noise	No Output Filter		250		μVrms				
	100kHz Output Filter		128						
	10kHz Output Filter		41						
Offset Error	Data Word = $0x014$		±3	±30	mV				
Offset Tempco			6		ppm/°C				
Full-Scale Error			±20	±60	mV				
Full-Scale Error Tempco			10		ppm/°C				
VDD Power-Supply			-60		dB				
Rejection Ratio									
Output Impedance in	DACnEN=0		100		kΩ				
Shutdown Mode									
Output Cumont			+300		uА				
Output Current			1300		μΑ				
Output Short Circuit Current	Data Word = $0xFFF$		15		mA				
DYNAMIC PERFORMANC	CE								
Voltage Output Slew Rate	Load = 40 pF		0.44		V/µs				
Output Settling Time To ¹ / ₂	Load = 40pF, Output swing from code		10		μs				
LSB	0xFFF to 0x014								
Output Voltage Swing		0		REF-	V				
				1LSB					
Startup Time	DAC Enable asserted		10		μs				
ANALOG OUTPUTS									
Load Regulation	$I_L = 0.01 \text{mA}$ to 0.3mA at code 0xFFF		60		ppm				
CURRENT CONSUMPTIO	N (each DAC)								
Power Supply Current (AV+	Data Word = $0x7FF$		110	400	μA				
supplied to DAC)									

Table 8.1. Comparator Electrical Characteristics

VDD = 3.0V, AV + = 3.0V, $-40^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Response Time1	(CP+) - (CP-) = 100mV (Note 1)		4		μs
Response Time2	(CP+) - (CP-) = 10mV (Note 1)		12		μs
Common Mode Rejection			1.5	4	mV/V
Ratio					
Positive Hysteresis1	CPnHYP1-0 = 00		0	1	mV
Positive Hysteresis2	CPnHYP1-0 = 01	2	4.5	7	mV
Positive Hysteresis3	CPnHYP1-0 = 10	4	9	13	mV
Positive Hysteresis4	CPnHYP1-0 = 11	10	17	25	mV
Negative Hysteresis1	CPnHYN1-0 = 00		0	1	mV
Negative Hysteresis2	CPnHYN1-0 = 01	2	4.5	7	mV
Negative Hysteresis3	CPnHYN1-0 = 10	4	9	13	mV
Negative Hysteresis4	CPnHYN1-0 = 11	10	17	25	mV
Inverting or Non-inverting		-0.25		(AV+)	V
Input Voltage Range				+ 0.25	
Input Capacitance			7		pF
Input Bias Current		-5	0.001	+5	nA
Input Offset Voltage		-10		+10	mV
POWER SUPPLY					
Power-up Time	CPnEN from 0 to 1		20		μs
Power Supply Rejection			0.1	1	mV/V
Supply Current	Operating Mode (each comparator) at DC		1.5	10	μA

Note 1: CPnHYP1-0 = CPnHYN1-0 = 00.

		0				0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
-	-	-	-	-	TEMPE	BIASE	REFBE	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xD1		
Bits7-3	: UNUSED. Rea	d = 00000b;	Write = don'	t care						
Bit2: TEMPE: Temperature Sensor Enable Bit										
	0: Internal Temperature Sensor Off.									
1: Internal Temperature Sensor On.										
Bit1:	BIASE: Bias Enable Bit for ADC and DAC's									
	0: Internal Bias	Off.								
	1: Internal Bias	On (require	d for use of A	ADC or DAC	's).					
Bit0:	REFBE: Interna	l Voltage Re	ference Buff	er Enable Bit						
	0: Internal Refe	erence Buffer	Off. Systen	n reference ca	an be driven t	from external	source on			
	VREF pin.		-							
	1: Internal Refe	erence Buffer	On. System	n reference pr	ovided by in	ternal voltage	e reference.			
			-	_	-	-				

Figure 9.2. REF0CN: Reference Control Register

Table 9.1. Reference Electrical Characteristics

 $VDD = 3.0V, AV + = 3.0V, -40^{\circ}C \text{ to } +85^{\circ}C \text{ unless otherwise specified.}$

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
INTERNAL REFERENCE	$(\mathbf{REFBE} = 1)$				
Output Voltage	25°C ambient	2.34	2.43	2.50	V
VREF Short Circuit Current				30	mA
VREF Power Supply			50		μΑ
Current (supplied by AV+)					-
VREF Temperature			15		ppm/°C
Coefficient					
Load Regulation	Load = $(0-to-200\mu A)$ to AGND (Note 1)		0.5		ppm/µA
VREF Turn-on Time1	4.7µF tantalum, 0.1µF ceramic bypass		2		ms
VREF Turn-on Time2	0.1µF ceramic bypass		20		μs
VREF Turn-on Time3	no bypass cap		10		μs
EXTERNAL REFERENCE	$(\mathbf{REFBE} = 0)$				
Input Voltage Range		1.00		(AV+)	V
				-0.3V	
Input Current			0	1	μA

Note 1: The reference can only source current. When driving an external load, it is recommended to add a load resistor to AGND.

Figure 10.10. IP: Interrupt Priority

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	PT2	PS	PT1	PX1	PT0	PX0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(on addressable)	UXDO
Dito7 6	UNUSED D	d = 11h W	rita – don't a	0.70				
Dits /-0.	UNUSED. Ke	au - 110, w	1100 - 0011 t C	ale.				
Bit5:	PT2 Timer 2 I	nterrupt Prio	rity Control.					
	This bit sets th	ne priority of	the Timer 2 i	interrupts.				
	0: Timer 2 int	errupts set to	low priority	level.				
	1: Timer 2 int	errupts set to	high priority	v level.				
Bit4:	PS: Serial Por	t (UART) Int	terrupt Priorit	ty Control.				
	This bit sets th	e priority of	the Serial Po	rt (UARI) ir	iterrupts.			
	1: UART Inte	rrupts set to	low priority I	lovol				
	1. UARI IIIC	inupis set to	ingii priority	ievei.				
Bit3:	PT1: Timer 1	Interrupt Pric	ority Control.					
	This bit sets th	ne priority of	the Timer 1 i	interrupts.				
	0: Timer 1 int	errupts set to	low priority	level.				
	1: Timer 1 int	errupts set to	high priority	v level.				
D 1.0								
Bit2:	PX1: External	Interrupt 1 F	riority Contr	ol.				
	I his bit sets th	termint 1 set	the External	Interrupt 1 if	iterrupts.			
	1. External In	terrupt 1 set	to high priori	ty level.				
	1. External III	terrupt i set	to ingli priori	ity ievei.				
Bit1:	PT0: Timer 0	Interrupt Price	ority Control.					
	This bit sets th	ne priority of	the Timer 0 i	interrupts.				
	0: Timer 0 int	errupt set to	low priority l	level.				
	1: Timer 0 int	errupt set to	high priority	level.				
DYO				. 1				
Bit0:	PAU: External	Interrupt 0 H	TIOPITY CONTR	UI. Intorment 0 :-	torminto			
	0: External In	torrupt 0 sot	to low priorit	merrupt 0 ff	iterrupis.			
	1. External In	terrunt () set	to high priori	ty level				
	1. External III	lenupt 0 set	to ingli priori					

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PXVLD	-	PX7	PX6	PX5	PX4	PADC0	PT3	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF7
Bit7:	PXVLD: Exte	rnal Clock S	ource Valid ((XTLVLD) I	nterrupt Prio	rity Control.		
Ditt	This bit sets th	ne priority of	the XTLVL	D interrupt.				
	0: XTLVLD	interrupt set	to low priorit	v level.				
	1: XTLVLD	interrupt set	to high priori	tv level.				
		··· · · · ·	8 F					
Bit6:	Reserved: Mu	st write 0. R	eads 0.					
Bit5:	PX7: External	Interrupt 7 I	Priority Cont	rol.				
	This bit sets th	ne priority of	the External	Interrupt 7.				
	0: External In	iterrupt 7 set	to low priori	ty level.				
	1: External In	iterrupt 7 set	to high prior	ity level.				
Bit4:	PX6: External	Interrupt 6 I	Priority Cont	rol.				
	This bit sets the	ne priority of	the External	Interrupt 6.				
	0: External In	terrupt 6 set	to low priori	ty level.				
	1: External In	terrupt 6 set	to high prior	ity level.				
D1.0								
Bit3:	PX5: External	Interrupt 5 I	Priority Cont	rol.				
	This bit sets th	ne priority of	the External	Interrupt 5.				
	0: External In	iterrupt 5 set	to low priori	ty level.				
	1: External In	iterrupt 5 set	to high prior	ity level.				
Bit2.	PYA. External	Interrupt / I	Priority Cont	rol				
DIL2.	This bit sets th	e priority of	the External	Interrunt A				
	0. External In	terrunt 4 set	to low priori	tv level				
	1: External In	iterrupt 4 set	to high prior	ity level				
	1. External II	lientupt i set	to ingli prior	ity it vol.				
Bit1:	PADC0: ADC	C End of Con	version Inter	rupt Priority	Control.			
	This bit sets th	ne priority of	the ADC0 E	nd of Conver	sion Interrup	ot.		
	0: ADC0 End	l of Conversi	on interrupt	set to low pri	ority level.			
	1: ADC0 End	l of Conversi	on interrupt	set to high pr	iority level.			
			-		•			
Bit0:	PT3: Timer 3	Interrupt Prie	ority Control					
	This bit sets th	ne priority of	the Timer 3	interrupts.				
	0: Timer 3 int	terrupt set to	low priority	level.				
	1: Timer 3 int	terrupt set to	high priority	level.				

Figure 10.14. EIP2: Extended Interrupt Priority 2

R	R/W	R/W	R/W	R	R	R/W	R	Reset Value
JTAGRS	Γ CNVRSEF	CORSEF	SWRSEF	WDTRSF	MCDRSF	PORSF	PINRSF	XXXXXXXX
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xEF
(Note:	Do not use read.	-modify_writ	te operations	on this regist	er)			
(1000.	Do not use read	-mouny-win	te operations	on this regist				
Bit7.	ITAGEST IT	AG Reset F	أعم					
Dit/.	0. ITAG is no	t ourrontly in	n rosot stato					
	1: ITAG is in	reset state	Tieset state.					
D:+6.	1. JIAO IS III	reset state.	Pasat Sourca	Enable and I	Zlog			
Dito.	Write	Start Start	Reset Source		lag			
	WITTE							
	U: CNVSIK IS	s not a reset	source					
	I: UNVSIKIS	s a reset sour	ce (active lo	w)				
	Read	·		NUCTO				
	0: Source of p	rior reset wa	is not from C	NVSIK				
D	1: Source of p	rior reset wa	is from CNV	STR				
Bit5:	CORSEF: Com	parator 0 Re	eset Enable a	nd Flag				
	Write	.						
	0: Comparator	0 is not a re	eset source					
	1: Comparator	0 1s a reset	source (activ	e low)				
	Read	1.6	CODGEE :	. 1 6 1 1 6	a	0.1		
	Note: The valu	e read from	CORSEF 1s r	ot defined if	Comparator	0 has not bee	en enabled as	
	a reset source.	•						
	0: Source of p	rior reset wa	is not from C	omparator 0				
	1: Source of p	rior reset wa	is from Comp	parator 0				
Bit4:	SWRSF: Softv	vare Reset F	orce and Flag	5				
	Write							
	0: No Effect							
	1: Forces an in	nternal reset.	/RST pin is	not effected.				
	Read							
	0: Prior reset s	source was n	ot from write	e to the SWR	SF bit.			
	1: Prior reset s	source was fi	rom write to	the SWRSF t	bit.			
Bit3:	WDTRSF: Wa	tchdog Time	er Reset Flag					
	0: Source of p	rior reset wa	is not from W	DT timeout.				
	1: Source of p	rior reset wa	is from WDT	timeout.				
Bit2:	MCDRSF: Mis	ssing Clock	Detector Flag	5				
	0: Source of p	rior reset wa	is not from N	lissing Clock	Detector tim	eout.		
	1: Source of p	rior reset wa	is from Missi	ng Clock De	tector timeou	t.		
Bit1:	PORSF: Power	r-On Reset F	Force and Fla	g				
	Write							
	0: No effect							
	1: Forces a Po	wer-On Res	et. /RST is d	riven low.				
	Read							
	0: Source of p	rior reset wa	is not from P	OR.				
	1: Source of p	rior reset wa	is from POR.					
Bit0:	PINRSF: HW	Pin Reset Fl	ag					
	0: Source of p	rior reset wa	is not from /F	RST pin.				
	1: Source of p	rior reset wa	is from /RST	pın.				

Figure 13.4. RSTSRC: Reset Source Register

15.3. General Purpose Port I/O

Each MCU has four byte-wide, bi-directional parallel ports that can be used general purpose I/O. Each port is accessed through a corresponding special function register (SFR) that is both byte addressable and bit addressable. When writing to a port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the port's input pins are returned regardless of the XBRn settings (i.e. even when the pin is assigned to another signal by the Crossbar, the Port Register can always still read its corresponding Port I/O pin). The exception to this is the execution of the *read-modify-write* instructions. The *read-modify-write* instructions when operating on a port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SET, when the destination is an individual bit in a port SFR. For these instructions, the value of the port register (not the pin) is read, modified, and written back to the SFR.

15.4. Configuring Ports Which are not Pinned Out

P2 and P3 are not pinned out on the F001/06/11/16. P1, P2, and P3 are not pinned out on the F002/07/12/17. These port registers (and corresponding interrupts, where applicable) are still available for software use in these reduced pin count MCUs. Whether used or not in software, it is recommended not to let these port drivers go to high impedance state. This is prevented after reset by having the weak pull-ups enabled as described in the XBR2 register. It is recommended that each output driver for ports not pinned out should be configured as push-pull using the corresponding PRTnCF register. This will inhibit a high impedance state even if the weak pull-up is disabled.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
FU.7	FU.0 Bit6	FU.J Dit5	FU.4	FU.3 Dit2	FU.2 Dit2	FU.1	F U.U Bit0	SFR Address
DIL/	DIIO	БЦЭ	DII4	БЦЭ	DII2	DILI		Orreo
							(bit addressable)	0200
Bits7-0: P	0.[7:0]							
C	Write – Outp	ut appears on	I/O pins per	XBR0, XBR	R1, and XBR2	2 Registers)		
Ô	: Logic Low	Output.	1 1	,	,	<i>U</i> ,		
1	: Logic High	Output (hig	h-impedance	if correspond	ding PRT0CI	F.n bit $= 0$)		
0	Read – Regar	dless of XBF	R0. XBR1. ar	nd XBR2 Reg	gister settings	.).		
Ó	0. P0 n nin is logic low							
1: P0 n pin is logic high								
1	· • • • • • • • • • • • • • • • • • • •	iogie ingli.						

Figure	15.6.	P0:	Port0	Register
	10.00	- • •	1 01 00	LUGIOUU

Figure 15.7. PRT0CF: Port0 Configuration Register

Figure 15.11.	P2: Port2 Register
---------------	--------------------

R/W P2.7	R/W P2.6	R/W P2.5	R/W P2.4	R/W P2.3	R/W P2.2	R/W P2.1	R/W P2.0	Reset Value 11111111
Bit7	Bit6	Bit	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit addressable)	0xA0
Bits7-0: F (1 ((1 (1	2.[7:0] Write – Outp): Logic Low : Logic High Read – Regar): P2.n is logi : P2.n is logi	ut appears or Output. a Output (hig rdless of XBF ic low. ic high.	1 I/O pins per h-impedance R0, XBR1, ar	XBR0, XBR if correspond nd XBR2 Reg	81, and XBR2 ding PRT2CI gister settings	2 registers) F.n bit = 0) 5).		

Figure 15.12. PRT2CF: Port2 Configuration Register

Figure 17.2. Typical SPI Interconnection

17.1. Signal Descriptions

The four signals used by the SPI (MOSI, MISO, SCK, NSS) are described below.

17.1.1. Master Out, Slave In

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. Data is transferred most-significant bit first.

17.1.2. Master In, Slave Out

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. Data is transferred most-significant bit first. A SPI slave places the MISO pin in a high-impedance state when the slave is not selected.

17.1.3. Serial Clock

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines.

17.1.4. Slave Select

The slave select (NSS) signal is an input used to select the SPI module when in slave mode by a master, or to disable the SPI module when in master mode. When in slave mode, it is pulled low to initiate a data transfer and remains low for the duration of the transfer.

20.1.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software.

20.2. PCA Counter/Timer

The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H at the same time. By reading the PCA0L Register first, this allows the PCA0H value to be held (at the time PCA0L was read) until the user reads the PCA0H Register. Reading PCA0H or PCA0L does not disturb the counter operation. The CPS1 and CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 20.2.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit in EIE1 to logic 1.) Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the microcontroller core is in Idle mode.

CPS1	CPS0	Timebase
0	0	System clock divided by 12
0	1	System clock divided by 4
1	0	Timer 0 overflow
1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)

 Table 20.2.
 PCA Timebase Input Options

Figure 20.7. PCA Counter/Timer Block Diagram

21. JTAG (IEEE 1149.1)

Each MCU has an on-chip JTAG interface and logic to support boundary scan for production and in-system testing, Flash read and write operations, and non-intrusive in-circuit debug. The JTAG interface is fully compliant with the IEEE 1149.1 specification. Refer to this specification for detailed descriptions of the Test Interface and Boundary-Scan Architecture. Access of the JTAG Instruction Register (IR) and Data Registers (DR) are as described in the Test Access Port and Operation of the IEEE 1149.1 specification.

The JTAG interface is via four dedicated pins on the MCU, which are TCK, TMS, TDI, and TDO. These pins are all 5V tolerant.

Through the 16-bit JTAG Instruction Register (IR), any of the eight instructions shown in Figure 21.1 can be commanded. There are three Data Registers (DR's) associated with JTAG Boundary-Scan, and four associated with Flash read/write operations on the MCU.

															Reset Val
Bit15						L					1			Bit0	
IR value	Instruc	ction		Des	criptio	n									
0x0000	EXTE	ST		Sele	cts the	Boun	dary [Data Re	gister	for co	ntrol a	nd obs	servab	ility of	all
				devi	ce pin	S									
0x0002	SAME	PLE/		Sele	cts the	Boun	dary [Data Re	gister	for ob	servab	oility a	nd pre	esetting	; the
	PREL	OAD		scar	-path	latches	3								
0x0004	IDCO	DE		Sele	cts de	vice II) Regi	ster							
0xFFFF	BYPA	'SS		Sele	cts By	pass I	Data Re	egister							
0x0082	Flash	Contr	ol	Sele	cts FL	ASHC	CON R	egister	to con	ntrol h	ow the	e interf	face lo	gic res	ponds to
				read	s and	writes	to the	FLAS	HDAT	Regi	ster				
0x0083	Flash	Data		Sele	cts FL	ASHE	DAT R	egister	for re	ads an	d write	es to th	ne Fla	sh men	nory
0x0084	Flash .	Addre	ess	Sele	cts FL	ASHA	ADR R	legister	whicl	n hold	s the ad	ddress	of all	Flash	read,
				writ	e, and	erase	operati	ions							
0x0085	Flash	Scale		Sele	cts FL	ASHS	CL Re	egister	which	contr	ols the	presca	aler us	sed to g	enerate
				timi	ng sig	nals fo	r Flasł	n opera	tions						

Figure 21.1.	IR: JTAG	Instruction	Register
0			

