

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	8
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 4x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f017-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.3. Additional Features

The C8051F000 MCU family has several key enhancements both inside and outside the CIP-51 core to improve its overall performance and ease of use in the end applications.

The extended interrupt handler provides 21 interrupt sources into the CIP-51 (as opposed to 7 for the standard 8051), allowing the numerous analog and digital peripherals to interrupt the controller. An interrupt driven system requires less intervention by the MCU, giving it more effective throughput. The extra interrupt sources are very useful when building multi-tasking, real-time systems.

There are up to seven reset sources for the MCU: an on-board VDD monitor, a Watchdog Timer, a missing clock detector, a voltage level detection from Comparator 0, a forced software reset, the CNVSTR pin, and the /RST pin. The /RST pin is bi-directional, accommodating an external reset, or allowing the internally generated POR to be output on the /RST pin. Each reset source except for the VDD monitor and Reset Input Pin may be disabled by the user in software. The WDT may be permanently enabled in software after a power-on reset during MCU initialization.

The MCU has an internal, stand alone clock generator which is used by default as the system clock after any reset. If desired, the clock source may be switched on the fly to the external oscillator, which can use a crystal, ceramic resonator, capacitor, RC, or external clock source to generate the system clock. This can be extremely useful in low power applications, allowing the MCU to run from a slow (power saving) external crystal source, while periodically switching to the fast (up to 16MHz) internal oscillator as needed.

Figure 1.5. On-Board Clock and Reset

5 711	5.00	5.00	D (11)	5 411	5.000	D 111	-	5	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
ADCSC2	ADCSC1	ADCSC0	-	-	AMPGN2	AMPGN1	AMPGN0	01100000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0xBC	
Bits7-5: AI	DCSC2-0: AE	DC SAR Con	version Cloc	k Period Bits					
00	0: SAR Conv	version Clock	x = 1 System	Clock					
00	1: SAR Conv	version Clock	x = 2 System	Clocks					
010: SAR Conversion Clock = 4 System Clocks									
011: SAR Conversion Clock = 4 System Clocks									
1x	x: SAR Conv	version Clock	x = 16 System	ns Clocks					
(N	ote: the SAR	Conversion (Clock should	be < 2MHz)				
Bits4-3: UN	JUSED. Rea	d = 00b: Wri	te = don't ca	re	/				
Bits2-0: AN	$\frac{1000}{100}$	DC Internal A	Amplifier Ga	in					
00	0: Gain = 1		impilier Gu						
00	1: $Gain = 2$								
01	0: Gain = 4								
01	010: Gain = 8								
10:	x: Gain = 16								
11	x: Gain $= 0.5$	5							
		•							

Figure 5.6. ADC0CF: ADC Configuration Register (C8051F00x)

33

6. ADC (10-Bit, C8051F010/1/2/5/6/7 Only)

The ADC subsystem for the C8051F010/1/2/5/6/7 consists of a 9-channel, configurable analog multiplexer (AMUX), a programmable gain amplifier (PGA), and a 100ksps, 10-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see block diagram in Figure 6.1). The AMUX, PGA, Data Conversion Modes, and Window Detector are all configurable under software control via the Special Function Register's shown in Figure 6.1. The ADC subsystem (ADC, track-and-hold and PGA) is enabled only when the ADCEN bit in the ADC Control register (ADC0CN, Figure 6.7) is set to 1. The ADC subsystem is in low power shutdown when this bit is 0. The Bias Enable bit (BIASE) in the REF0CN register (see Figure 9.2) must be set to 1 in order to supply bias to the ADC.

6.1. Analog Multiplexer and PGA

Eight of the AMUX channels are available for external measurements while the ninth channel is internally connected to an on-board temperature sensor (temperature transfer function is shown in Figure 6.3). Note that the PGA gain is applied to the temperature sensor reading. AMUX input pairs can be programmed to operate in either the differential or single-ended mode. This allows the user to select the best measurement technique for each input channel, and even accommodates mode changes "on-the-fly". The AMUX defaults to all single-ended inputs upon reset. There are two registers associated with the AMUX: the Channel Selection register AMX0SL (Figure 6.5), and the Configuration register AMX0CF (Figure 6.4). The table in Figure 6.5 shows AMUX functionality by channel for each possible configuration. The PGA amplifies the AMUX output signal by an amount determined by the AMPGN2-0 bits in the ADC Configuration register, ADC0CF (Figure 6.6). The PGA can be software-programmed for gains of 0.5, 1, 2, 4, 8 or 16. It defaults to unity gain on reset.

Figure 6.4. AMX0CF: AMUX Configuration Register (C8051F01x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	AIN67IC	AIN45IC	AIN23IC	AIN01IC	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBA
Bits7-4:	UNUSED. Rea	d = 0000b; V	Vrite = don't	care				
Bit3:	AIN67IC: AIN6	5, AIN7 Inpu	t Pair Config	uration Bit				
	0: AIN6 and Al	N7 are inde	pendent singl	ed-ended inp	uts			
	1: AIN6. AIN7	are (respecti	velv) + dif	ferential inpu	t pair			
Bit2:	AIN45IC: AIN4	. AIN5 Inpu	t Pair Config	uration Bit	o puil			
2	0: AIN4 and Al	N5 are inder	pendent singl	ed-ended inp	uts			
	$1 \cdot AIN4 AIN5$	are (respecti	velv) + - dif	ferential inpu	ut nair			
Bit1.	AIN23IC · AIN2	AIN3 Inpu	t Pair Config	uration Bit	n pull			
DR1.	0: AIN2 and Al	N3 are inder	endent singl	ed-ended inn	uts			
	$1 \cdot \Delta IN2 \Delta IN3$	are (respecti	$velv) \perp - dif$	ferential inpu	ut nair			
BitO	AINOLIC: AINO) AIN1 Inpu	t Pair Config	uration Bit	n pan			
Dito.	0. AINO and Al	N1 ara inda	ondont singl	ad and ad inn	ute			
	1. AINO AINI		volv) – dif	formatical input	uis			
	1: AINO, AINT	are (respecti	very) +, - dif	ierentiai inpu	n pair			
NOTE	The ADC Dete V	Word is in ?	a aomniaman	t format for	hannala com	figurad as dif	fformation	
NOTE:	The ADC Data	word is in 2	s complemen	it format for (channels con	ingured as dil	lierential.	

	riguit 0.0	b. ADCU	I. ADC D	ala wolu	MOD KCg		JITUIAJ	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBF
Bits7-0. AL	C Data Word	1 Bits						
DIG/ 0. TIL								
For	r ADLJST = 1	1: Upper 8-b	its of the 10-	bit ADC Dat	a Word.			
For	· ADI IST – (). Bits7-2 ar	e the sign ext	ension of Bi	1 Bits 1-0 a	are the upper	2-bits of the	
10	ADLJSI = 0	5. DR57-2 a	e the sign ext	clision of Di	1. Dits 1-0.0	are the upper	2-0113 01 1110	
10-	bit ADC Dat	a Word.						

Figure 6.8. ADC0H: ADC Data Word MSB Register (C8051F01x)

8. COMPARATORS

The MCU family has two on-chip analog voltage comparators as shown in Figure 8.1. The inputs of each Comparator are available at the package pins. The output of each comparator is optionally available at the package pins via the I/O crossbar (see Section 15.1). When assigned to package pins, each comparator output can be programmed to operate in open drain or push-pull modes (see section 15.3).

The hysteresis of each comparator is software-programmable via its respective Comparator control register (CPT0CN, CPT1CN). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage. The output of the comparator can be polled in software, or can be used as an interrupt source. Each comparator can be individually enabled or disabled (shutdown). When disabled, the comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, its interrupt capability is suspended and its supply current falls to less than 1μ A. Comparator 0 inputs can be externally driven from -0.25V to (AV+) + 0.25V without damage or upset.

The Comparator 0 hysteresis is programmed using bits 3-0 in the Comparator 0 Control Register CPT0CN (shown in Figure 8.3). The amount of *negative* hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Figure 8.2, settings of 10, 4 or 2mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of *positive* hysteresis is determined by the setting the CP0HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section 10.4). The CPOFIF flag is set upon a Comparator 0 falling-edge interrupt, and the CPORIF flag is set upon the Comparator 0 rising-edge interrupt. Once set, these bits remain set until cleared by the CPU. The Output State of Comparator 0 can be obtained at any time by reading the CPOOUT bit. Note the comparator output and interrupt should be ignored until the comparator settles after power-up. Comparator 0 is enabled by setting the CPOEN bit, and is disabled by clearing this bit. Note there is a 20usec settling time for the comparator output to stabilize after setting the CPOEN bit or a power-up. Comparator 0 can also be programmed as a reset source. For details, see Section 13.

The operation of Comparator 1 is identical to that of Comparator 0, except the Comparator 1 is controlled by the CPT1CN Register (Figure 8.4). Comparator 1 can not be programmed as a reset source. Also, the input pins for Comparator 1 are not pinned out on the F002, F007, F012, or F017 devices. The complete electrical specifications for the Comparators are given in Table 8.1.

Figure 8.1. Comparator Functional Block Diagram

Figure 10.10. IP: Interrupt Priority

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	PT2	PS	PT1	PX1	PT0	PX0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(on addressable)	UXDO
Dito7 6	UNUSED D	d = 11h W	rita – don't a	0.70				
Dits/-0.	UNUSED. Ke	au - 110, w	1100 - 0011 t C	ale.				
Bit5:	PT2 Timer 2 I	nterrupt Prio	rity Control.					
	This bit sets th	ne priority of	the Timer 2 i	interrupts.				
	0: Timer 2 int	errupts set to	low priority	level.				
	1: Timer 2 int	errupts set to	high priority	v level.				
Bit4:	PS: Serial Por	t (UART) Int	terrupt Priorit	ty Control.				
	This bit sets th	e priority of	the Serial Po	rt (UARI) ir	iterrupts.			
	1: UART Inte	rrupts set to	low priority I	lovol				
	1. UARI IIIC	inupis set to	ingii priority	ievei.				
Bit3:	PT1: Timer 1	Interrupt Pric	ority Control.					
	This bit sets th	ne priority of	the Timer 1 i	interrupts.				
	0: Timer 1 int	errupts set to	low priority	level.				
	1: Timer 1 int	errupts set to	high priority	v level.				
D 1.0								
Bit2:	PX1: External	Interrupt 1 F	riority Contr	ol.				
	I his bit sets th	termint 1 set	the External	Interrupt 1 if	iterrupts.			
	1. External In	terrupt 1 set	to high priori	ty level.				
	1. External III	terrupt i set	to ingli priori	ity ievei.				
Bit1:	PT0: Timer 0	Interrupt Price	ority Control.					
	This bit sets th	ne priority of	the Timer 0 i	interrupts.				
	0: Timer 0 int	errupt set to	low priority l	level.				
	1: Timer 0 int	errupt set to	high priority	level.				
DYO				. 1				
Bit0:	PAU: External	Interrupt 0 H	TIOPITY CONTR	UI. Intorment 0 :-	torminto			
	0: External In	torrupt 0 sot	to low priorit	merrupt 0 ff	iterrupis.			
	1. External In	terrupt 0 set	to high priori	ty level				
	1. External III	lenupt 0 set	to ingli priori					

Figure 11.2. Flash Program Memory Security Bytes

The Flash Access Limit security feature (see Figure 11.3) protects proprietary program code and data from being read by software running on the C8051F005/06/07/15/16/17 MCUs. This feature provides support for OEMs that wish to program the MCU with proprietary value-added firmware before distribution. The value-added firmware can be protected while allowing additional code to be programmed in remaining program memory space later.

The Software Read Limit (SRL) is a 16-bit address that establishes two logical partitions in the program memory space. The first is an upper partition consisting of all the program memory locations at or above the SRL address, and the second is a lower partition consisting of all the program memory locations starting at 0x0000 up to (but excluding) the SRL address. Software in the upper partition can execute code in the lower partition, but is

prohibited from reading locations in the lower partition using the MOVC instruction. (Executing a MOVC instruction from the upper partition with a source address in the lower partition will always return a data value of 0x00.) Software running in the lower partition can access locations in both the upper and lower partition without restriction.

The Value-added firmware should be placed in the lower partition. On reset, control is passed to the value-added firmware via the reset vector. Once the value-added firmware completes its initial execution, it branches to a predetermined location in the upper partition. If entry points are published, software running in the upper partition may execute program code in the lower partition, but it cannot read the contents of the lower partition. Parameters may be passed to the program code running in the lower partition either through the typical method of placing them on the stack or in registers before the call or by placing them in prescribed memory locations in the upper partition.

The SRL address is specified using the contents of the Flash Access Register. The 16-bit SRL address is calculated as 0xNN00, where NN is the contents of the SRL Security Register. Thus, the SRL can be located on 256-byte boundaries anywhere in program memory space. However, the 512-byte erase sector size essentially requires that a 512 boundary be used. The contents of a non-initialized SRL security byte is 0x00, thereby setting the SRL address to 0x0000 and allowing read access to all locations in program memory space by default.

Figure 11.3. FLACL: Flash Access Limit (C8051F005/06/07/15/16/17 only)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
								00000000		
Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 0xB7 Bits 7-0: FLACL: Flash Access Limit									
Bits 7-0: F	Bits 7-0: FLACL: Flash Access Limit.									
ſ	his register h	olds the high	byte of the	16-bit program	m memory re	ead/write/eras	se limit			
a	ddress. The	entire 16-bit	access limit a	address value	is calculated	as 0xNN00	where NN 1s			
r	replaced by contents of FLACL. A write to this register sets the Flash Access Limit. This									
register can only be written once after any reset. Any subsequent writes are ignored										
u	intil the next	10501.								

14.1. External Crystal Example

If a crystal or ceramic resonator were used to generate the system clock for the MCU, the circuit would be as shown in Figure 14.1, Option 1. For an ECS-110.5-20-4 crystal, the resonate frequency is 11.0592MHz, the intrinsic capacitance is 7pF, and the ESR is 60Ω . The compensation capacitors should be 33pF each, and the PWB parasitic capacitance is estimated to be 2pF. The appropriate External Oscillator Frequency Control value (XFCN) from the Crystal column in the table in Figure 14.3 (OSCXCN Register) should be 111b.

Because the oscillator detect circuitry needs time to settle after the crystal oscillator is enabled, software should wait at least 1ms between enabling the crystal oscillator and polling the XTLVLD bit. The recommend procedure is:

- 1. Enable the external oscillator
- 2. Wait at least 1 ms
- 3. Poll for XTLVLD '0' => '1'
- 4. Switch to the external oscillator

Switching to the external oscillator before the crystal oscillator has stabilized could result in unpredictable behavior.

NOTE: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device, keeping the traces as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

14.2. External RC Example

If an external RC network were used to generate the system clock for the MCU, the circuit would be as shown in Figure 14.1, Option 2. The capacitor must be no greater than 100pF, but using a very small capacitor will increase the frequency drift due to the PWB parasitic capacitance. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100kHz, let $R = 246k\Omega$ and C = 50pF:

 $f = 1.23(10^3)/RC = 1.23(10^3) / [246 * 50] = 0.1MHz = 100kHz$

$$\begin{split} XFCN &\geq \log_2(f/25kHz) \\ XFCN &\geq \log_2(100kHz/25kHz) = \log_2(4) \\ XFCN &\geq 2, \text{ or code } 010 \end{split}$$

14.3. External Capacitor Example

If an external capacitor were used to generate the system clock for the MCU, the circuit would be as shown in Figure 14.1, Option 3. The capacitor must be no greater than 100pF, but using a very small capacitor will increase the frequency inaccuracy due to the PWB parasitic capacitance. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the equations below. Assume AV + = 3.0V and C = 50pF:

f = KF / (C * VDD) = KF / (50 * 3)f = KF / 150

If a frequency of roughly 90kHz is desired, select the K Factor from the table in Figure 14.3 as KF = 13:

f = 13 / 150 = 0.087 MHz, or 87 kHz

Therefore, the XFCN value to use in this example is 011.

DAV	D/W	D/W	D/W	DAV	D/W/	D/W	D/W/	Pagat Valua		
CP00EN	ECIE	K/ W	PCAOME	K/ W	UARTEN	SPIOOEN	SMB0OFN	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xE1		
Bit7:	CP00EN: Cor	mparator 0 C	Output Enable	Bit						
	0: CP0 unavailable at Port pin.									
	1: CP0 routed	l to Port Pin.	1							
Bit6:	ECIE: PCA0 (Counter Inpu	t Enable Bit							
	0: ECI unavai	ilable at Port	pin.							
	1: ECI routed	to Port Pin.	-							
Bits3-5:	PCA0ME: PC	A Module I/	O Enable Bits							
	000: All PCA	I/O unavail	able at Port pi	ns.						
	001: CEX0 rd	outed to Port	Pin.							
	010: CEX0, C	CEX1 routed	to 2 Port Pins	•						
	011: CEX0, C	CEX1, CEX2	2 routed to 3 P	ort Pins.						
	100: CEX0, C	CEX1, CEX2	2, CEX3 routed	d to 4 Port F	Pins.					
	101: CEX0, C	CEX1, CEX2	2, CEX3, CEX	4 routed to	5 Port Pins.					
	110: RESERV	VED								
	111: RESERV	VED								
Bit2:	UARTEN: UA	ART I/O Ena	ble Bit							
	0: UART I/O	unavailable	at Port pins.							
	1: RX, TX ro	uted to 2 Por	rt Pins.							
Bit1:	SPIOOEN: SP	I Bus I/O En	able Bit							
	0: SPI I/O unavailable at Port pins.									
	1: MISO, MC	OSI, SCK, an	d NSS routed	to 4 Port Pi	ns.					
Bit0:	SMB0OEN: S	MBus Bus I	O Enable Bit							
	0: SMBus I/C) unavailable	at P0.0, P0.1.							
	1: SDA route	d to P0.0, SC	CL routed to P	0.1.						

Figure 15.3. XBR0: Port I/O CrossBar Register 0

DAV	D (11)	DAU	DAV	DAV	DAU	DAV	DAV	D 111				
R/W		R/W T2E	R/W	R/W TIE	R/W	R/W TOE	R/W CDIOEN	Reset Value				
Bit7	E IZEAE Bit6	12E Bit5	Bit4	Bit3	Bit2	Rit1	Bit0	SFR Address				
Ditt	Dito	0xE2										
Bit7.	SYSCKE SY	SCLK Outp	ut Enable Bit									
Dit/.	0. SYSCLK1	mavailable a	at Port pin									
		utput routed	to Port Pin									
Bit6.	T2EXE T2EX	CEnable Bit										
Dito.	0. T2EX una	vailable at Po	ort nin									
	1. T2EX rout	ed to Port Pi	n									
Bit5.	T2E: T2 Enab	le Bit										
Dito.	0. T2 unavail	able at Port	nin									
	1. T2 muted f	o Port Pin	pin.									
Bit4.	INTIE: /INTI	Enable Bit										
Dit i.	0° /INT1 una	vailable at Po	ort pin									
	1. /INT1 rout	ed to Port Pi	n									
Bit3.	T1E: T1 Enab	le Rit										
Dito.	0. T1 unavail	able at Port	nin									
	1. T1 routed t	o Port Pin	pin.									
Bit2.	INTOE: /INTO	Enable Bit										
DR2.	0 /INTO up a	vailable at P	ort nin									
	1: /INT0 rout	ed to Port Pi	n									
Bit1.	TOE: TO Enab	le Bit										
Ditt.	0. T0 unavail	able at Port	nin									
	1. T0 routed f	o Port Pin	pin.									
Bit0.	CP10EN: Co	mparator 1 ()utnut Enable	Bit								
Dito.	0° CP1 upava	ilable at Por	t nin	Dit								
	1: CP1 routed	to Port Pin	t pin.									

Figure 15.4. XBR1: Port I/O CrossBar Register 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
WEAKPUD	XBARE	-	-	-	-	-	CNVSTE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE3
Bit7:	WEAKPUD: I	Port I/O Wea	k Pull-up Di	sable Bit				
(0: Weak Pull-	ups Enabled	(except for l	Ports whose I	/O are config	gured as push	-pull)	
	1: Weak Pull-	ups Disabled	1		e e		1 /	
Bit6:	XBARE: Cros	sbar Enable	Bit					
(0: Crossbar D	isabled						
	1: Crossbar E	nabled						
Bits5-1:	UNUSED. Re	ead = 00000t	, Write $=$ do	n't care.				
Bit0:	CNVSTE: AD	C Convert S	tart Input En	able Bit				
(0: CNVSTR u	inavailable a	t Port pin.					
	1: CNVSTR r	outed to Por	t Pin.					
Example	Usage of XBI	<u>R0, XBR1, X</u>	BR2:					
When sel	lected, the dig	ital resource	s fill the Po	rt I/O pins in	order (top t	to bottom as	shown in	
Table 15	.1) starting w	vith P0.0 thr	ough P0.7,	and then P1	.0 through I	P1.7, and fin	ally P2.0	
through I	P2.7. If the di	igital resourc	es are not m	apped to the	Port I/O pin	s, they defau	lt to their	
matching	internal Port	Register bits.						
Example	1: If XBR0 = 0	0x11, XBR1	= 0x00, and	XBR2 = 0x4	0:			
P0.0=SD	A, P0.1=SCL,	P0.2=CEX0	, P0.3=CEX	1, P0.4 P2	.7 map to co	rresponding l	Port I/O.	
Example2	2: If XBR0 = 0	0x80, XBR1	= 0x04, and	XBR2 = 0x4	1:			
P0.0=CP0	0, P0.1=/INT0	$P_{0}, P_{0}.2 = CN^{2}$	VSTR, P0.3	P2.7 map	to correspond	ding Port I/O	•	

Figure 15.5. XBR2: Port I/O CrossBar Register 2

Figure 16.2 shows a typical SMBus configuration. The SMBus interface will work at any voltage between 3.0V and 5.0V and different devices on the bus may operate at different voltage levels. The SCL (serial clock) and SDA (serial data) lines are bi-directional. They must be connected to a positive power supply voltage through a pull-up resistor or similar circuit. When the bus is free, both lines are pulled high. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus will not exceed 300ns and 1000ns, respectively.

16.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The *I*²*C*-bus and how to use it (including specifications), Philips Semiconductor.
- 2. The I²C-Bus Specification -- Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification -- Version 1.1, SBS Implementers Forum.

Figure 16.4	. SMB0CN:	SMBus	Control	Register
-------------	-----------	--------------	---------	----------

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
BUSY	ENSMB	STA	STO	SI	AA	FTE	TOE	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
							(bit addressable)	0xC0		
Bit7:	BUSY: Busy S	Status Flag.								
	0: SMBus is fr	ee								
	1: SMBus is busy									
Bit6:	ENSMB: SME	Bus Enable.								
	This bit enable	es/disables th	e SMBus ser	rial interface.						
	0: SMBus disa	ıbled.								
	1: SMBus enal	bled.								
Bit5:	STA: SMBus	Start Flag.								
	0: No START	condition is	transmitted.							
	1: When opera	ting as a ma	ster, a STAR	T condition i	s transmitted	if the bus is	free. (If the			
	bus is not free.	, the START	is transmitte	d after a STO	OP is received	1.) If STA is	set after one			
	or more bytes	have been tra	ansmitted or	received and	before a STC	OP is receive	d, a repeated			
	START condit	tion is transn	nitted. STO	should be exi	olicitly cleare	d before sett	ing STA to			
	logic 1.			,	5		0			
Bit4:	STO: SMBus	Stop Flag.								
	0: No STOP c	ondition is tr	ansmitted.							
	1: Setting STC) to logic 1 c	auses a STO	P condition to	be transmitt	ted. When a	STOP			
	condition is re	ceived, hard	ware clears S	TO to logic). If both ST	A and STO a	re set. a			
	STOP condition	on is transmit	ted followed	bv a STAR	condition.	In slave mod	e. setting the			
	STO flag caus	es SMBus to	behave as if	a STOP con	dition was re	ceived.	.,			
Bit3:	SI: SMBus Se	rial Interrupt	Flag.							
	This bit is set l	by hardware	when one of	27 possible 3	SMBus states	is entered.	Status code			
	0xF8 does not	cause SI to l	be set.) Whe	n the SI inter	rupt is enable	ed, setting thi	s bit causes			
	the CPU to ve	ctor to the SI	ABus interru	pt service rou	tine. This bi	it is not autor	natically			
	cleared by har	dware and m	ust be cleare	d by software	2.		5			
Bit2:	AA: SMBus A	ssert Ackno	wledge Flag.	5						
	This bit define	s the type of	acknowledg	e returned du	ring the ackn	owledge cyc	le on the			
	SCL line.	J			8					
	0: A "not ackn	owledge" (h	igh level on	SDA) is retu	ned during th	ne acknowled	lge cycle.			
	1: An "acknow	vledge" (low	level on SD.	A) is returned	l during the a	cknowledge	cvcle.			
Bit1:	FTE: SMBus I	Free Timer E	nable Bit	,	U	e	5			
	0: No timeout	when SCL i	s high							
	1: Timeout wl	hen SCL hig	h time excee	ds limit speci	fied by the S	MB0CR valu	ie.			
Bit0:	TOE: SMBus	Timeout Ena	ble Bit	1	5					
	0: No timeout	when SCL i	s low.							
	1: Timeout wl	hen SCL low	time exceed	ls limit specif	ied by Timer	3, if enabled	l.			
					2					

17. SERIAL PERIPHERAL INTERFACE BUS

The Serial Peripheral Interface (SPI) provides access to a four-wire, full-duplex, serial bus. SPI supports the connection of multiple slave devices to a master device on the same bus. A separate slave-select signal (NSS) is used to select a slave device and enable a data transfer between the master and the selected slave. Multiple masters on the same bus are also supported. Collision detection is provided when two or more masters attempt a data transfer at the same time. The SPI can operate as either a master or a slave. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency.

When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS, and the serial input data synchronously with the system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less that 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of ¹/₄ the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the system clock.

Figure 17.1. SPI Block Diagram

19. TIMERS

Each MCU implements four counter/timers: three are 16-bit counter/timers compatible with those found in the standard 8051, and one is a 16-bit timer for use with the ADC, SMBus, or for general purpose use. These can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 offers additional capabilities not available in Timers 0 and 1. Timer 3 is similar to Timer 2, but without the capture or Baud Rate Generator modes.

Timer 0 and Timer 1:	Timer 2:	Timer 3:
13-bit counter/timer	16-bit counter/timer with auto-reload	16-bit timer with auto-reload
16-bit counter/timer	16-bit counter/timer with capture	
8-bit counter/timer with auto-reload	Baud rate generator	
Two 8-bit counter/timers (Timer 0 only)		

When functioning as a timer, the counter/timer registers are incremented on each clock tick. Clock ticks are derived from the system clock divided by either one or twelve as specified by the Timer Clock Select bits (T2M-T0M) in CKCON. The twelve-clocks-per-tick option provides compatibility with the older generation of the 8051 family. Applications that require a faster timer can use the one-clock-per-tick option.

When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin for T0, T1, or T2. Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is sampled.

19.1. Timer 0 and Timer 1

Timer 0 and Timer 1 are accessed and controlled through SFRs. Each counter/timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control (TCON) register is used to enable Timer 0 and Timer 1 as well as indicate their status. Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits M1-M0 in the Counter/Timer Mode (TMOD) register. Each timer can be configured independently. Following is a detailed description of each operating mode.

19.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as a 13-bit counter/timer in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. Clearing C/T selects the system clock as the input for the timer. When C/T0 is set to logic 1, high-to-low transitions at the selected input pin increment the timer register. (Refer to Port I/O Section 15.1 for information on selecting and configuring external I/O pins.)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
- D:47	- D:+6	12M	Dit4	10M Dit2	Reserved	Reserved	Reserved	SEP Address
Bit/	BIIO	BID	B1t4	BIts	BIt2	BIU	BIIO	Ov 8F
								OXOL
		1 001 11						
Bits /-6:	UNUSED. Re	ead = 00b, W	rite = don't d	care.				
D:45	T2) (. T:	Clash Calas						
BID:	Bit5: T2M: Timer 2 Clock Select.							
	when the time	r is in boud r	on of the syst	mode or our	pried to Time	$c_{\rm C}/T_{\rm T}^2 = 1$	is ignored	
	0. Timor 2 us	as the system	ale generator	d by 12	inter mode (1.	e. $C/12 = 1$).		
	U: 11mer 2 uses the system clock divided by 12.							
	1. Thiler 2 uses the system clock.							
Bit4:	T1M: Timer 1 Clock Select							
	This bit controls the division of the system clock supplied to Timer 1.							
	0: Timer 1 uses the system clock divided by 12.							
	1: Timer 1 uses the system clock.							
		2						
Bit3:	T0M: Timer 0 Clock Select.							
	This bit controls the division of the system clock supplied to Counter/Timer 0.							
	0: Counter/Timer uses the system clock divided by 12.							
	1: Counter/Timer uses the system clock.							
Bits2-0: Reserved. Read = 0000, Must write = 000.								

Figure 19.6. CKCON: Clock Control Register

20.1. Capture/Compare Modules

Each module can be configured to operate independently in one of four operation modes: Edge-triggered Capture, Software Timer, High Speed Output, or Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 20.1 summarizes the bit settings in the PCA0CPMn registers used to place the PCA capture/compare modules into different operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit (EIE1.3) to logic 1. See Figure 20.2 for details on the PCA interrupt configuration.

				-	-		
ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
Х	1	0	0	0	0	Х	Capture triggered by positive edge on CEXn
Х	0	1	0	0	0	Х	Capture triggered by negative edge on

0

0

0

1

Х

Х

Х

Х

0

1

1

Х

0

0

1

0

Table 20.1	PCA0CPM Register	Settings for PCA	Canture/Compare	Modules
1 aut 20.1.	I CAUCI INI INERISICI	Schungs for I CA	Captul C/Compare	

X = Don't Care

1

0

0

0

1

0

0

0

Х

1

1

1

Capture triggered by transition on CEXn

Software Timer

High Speed Output

Pulse Width Modulator

155

20.2. PCA Counter/Timer

The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H at the same time. By reading the PCA0L Register first, this allows the PCA0H value to be held (at the time PCA0L was read) until the user reads the PCA0H Register. Reading PCA0H or PCA0L does not disturb the counter operation. The CPS1 and CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 20.2.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit in EIE1 to logic 1.) Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the microcontroller core is in Idle mode.

CPS1	CPS0	Timebase
0	0	System clock divided by 12
0	1	System clock divided by 4
1	0	Timer 0 overflow
1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)

 Table 20.2.
 PCA Timebase Input Options

Figure 20.7. PCA Counter/Timer Block Diagram

