

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SPI, UART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	55
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-25
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4400f100f512abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4400 series devices.

The document describes the characteristics of a superset of the XMC4400 series devices. For simplicity, the various device types are referred to by the collective term XMC4400 throughout this manual.

XMC4000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents.

Summary of Features

1 Summary of Features

The XMC4400 devices are members of the XMC4000 Family of microcontrollers based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high performance and energy efficient microcontrollers optimized for Industrial Connectivity, Industrial Control, Power Conversion, Sense & Control.

Figure 1 System Block Diagram

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M4 CPU
 - 16-bit and 32-bit Thumb2 instruction set
 - DSP/MAC instructions
 - System timer (SysTick) for Operating System support
- Floating Point Unit
- Memory Protection Unit
- Nested Vectored Interrupt Controller
- One General Purpose DMA with up-to 8 channels
- Event Request Unit (ERU) for programmable processing of external and internal service requests
- Flexible CRC Engine (FCE) for multiple bit error detection

Data Sheet

Summary of Features

On-Chip Memories

- 16 KB on-chip boot ROM
- 16 KB on-chip high-speed program memory
- 32 KB on-chip high speed data memory
- 32 KB on-chip high-speed communication memory
- 512 KB on-chip Flash Memory with 4 KB instruction cache

Communication Peripherals

- Ethernet MAC module capable of 10/100 Mbit/s transfer rates
- Universal Serial Bus, USB 2.0 host, Full-Speed OTG, with integrated PHY
- Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with two nodes, 64 message objects (MO), data rate up to 1MBit/s
- Four Universal Serial Interface Channels (USIC), providing four serial channels, usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface

Analog Frontend Peripherals

- Four Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with input out-of-range comparators
- Delta Sigma Demodulator with four channels, digital input stage for A/D signal conversion
- Digital-Analog Converter (DAC) with two channels of 12-bit resolution

Industrial Control Peripherals

- Two Capture/Compare Units 8 (CCU8) for motor control and power conversion
- Four Capture/Compare Units 4 (CCU4) for use as general purpose timers
- Four High Resoultion PWM (HRPWM) channels
- Two Position Interfaces (POSIF) for servo motor positioning
- Window Watchdog Timer (WDT) for safety sensitive applications
- Die Temperature Sensor (DTS)
- · Real Time Clock module with alarm support
- System Control Unit (SCU) for system configuration and control

Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- Tri-stated in input mode
- Push/pull or open drain output mode
- Boundary scan test support over JTAG interface

Summary of Features

ADC Chan.	DSD Chan.	DAC Chan.	CCU4 Slice	CCU8 Slice	POSIF Intf.	HRPWM Intf.		
24	4	2	4 x 4	2 x 4	2	1		
14	4	2	4 x 4	2 x 4	2	1		
24	4	2	4 x 4	2 x 4	2	1		
14	4	2	4 x 4	2 x 4	2	1		
24	4	2	4 x 4	2 x 4	2	1		
14	4	2	4 x 4	2 x 4	2	1		
	ADC Chan. 24 14 24 14 24 14 24 14	ADC DSD Chan. Chan. 24 4 14 4 24 4 14 4 24 4 14 4 24 4 14 4 24 4 14 4 24 4	ADC Chan. DSD Chan. DAC Chan. 24 4 2 14 4 2 14 4 2 14 4 2 14 4 2 14 4 2 14 4 2 14 4 2 14 4 2 14 4 2	ADC Chan. DSD Chan. DAC Chan. CCU4 Slice 24 4 2 4 x 4 14 4 2 4 x 4 24 4 2 4 x 4 14 4 2 4 x 4 14 4 2 4 x 4 14 4 2 4 x 4 24 4 2 4 x 4 14 4 2 4 x 4 24 4 2 4 x 4 14 4 2 4 x 4 14 4 2 4 x 4	ADC Chan. DSD Chan. DAC Chan. CCU4 Slice CCU8 Slice 24 4 2 4 x 4 2 x 4 14 4 2 4 x 4 2 x 4 24 4 2 4 x 4 2 x 4 14 4 2 4 x 4 2 x 4 14 4 2 4 x 4 2 x 4 24 4 2 4 x 4 2 x 4 14 4 2 4 x 4 2 x 4 14 4 2 4 x 4 2 x 4 14 4 2 4 x 4 2 x 4	ADC Chan. DSD Chan. DAC Chan. CCU4 Slice CCU8 Slice POSIF Intf. 24 4 2 4 x 4 2 x 4 2 14 4 2 4 x 4 2 x 4 2 24 4 2 4 x 4 2 x 4 2 14 4 2 4 x 4 2 x 4 2 14 4 2 4 x 4 2 x 4 2 14 4 2 4 x 4 2 x 4 2 24 4 2 4 x 4 2 x 4 2 14 4 2 4 x 4 2 x 4 2 14 4 2 4 x 4 2 x 4 2		

Table 4 Features of XMC4400 Device Types

1) x is a placeholder for the supported temperature range.

1.5 Definition of Feature Variants

The XMC4400 types are offered with several memory sizes and number of available VADC channels. **Table 5** describes the location of the available Flash memory, **Table 6** describes the location of the available SRAMs, **Table 7** the available VADC channels.

Table 5 Flash Memory Ranges

Total Flash Size	Cached Range	Uncached Range
256 Kbytes	0800 0000 _H – 0803 FFFF _H	0C00 0000 _H – 0C03 FFFF _H
512 Kbytes	0800 0000 _H – 0807 FFFF _H	0C00 0000 _H – 0C07 FFFF _H

Table 6SRAM Memory Ranges

Total SRAM Size	Program SRAM	System Data SRAM	Communication Data SRAM
80 Kbytes	1FFF C000 _H –	2000 0000 _H –	2000 8000 _H –
	1FFF FFFF _H	2000 7FFF _H	2000 FFFF _H

General Device Information

Figure 3 XMC4400 Logic Symbol PG-LQFP-64 and PG-TQFP-64

General Device Information

	Package Pin	mapping (cor	rable to Fackage Fin Mapping (cont d)									
Function	LQFP-100	LQFP-64 TQFP-64	Pad Type	Notes								
USB_DP	9	6	special									
USB_DM	8	5	special									
HIB_IO_0	14	10	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as open-drain output and drives "0". As output the medium driver mode is active.								
HIB_IO_1	13	-	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as input with no pull device active. As output the medium driver mode is active.								
тск	67	45	A1	Weak pull-down active.								
TMS	66	44	A1+	Weak pull-up active. As output the strong-soft driver mode is active.								
PORST	65	43	special	Strong pull-down controlled by EVR. Weak pull-up active while strong pull-down is not active.								
XTAL1	61	39	clock_IN									
XTAL2	62	40	clock_O									
RTC_XTAL1	15	11	clock_IN									
RTC_XTAL2	16	12	clock_O									
VBAT	17	13	Power	When VDDP is supplied VBAT has to be supplied as well.								
VBUS	10	7	special									
VAREF	33	-	AN_Ref									
VAGND	32	-	AN_Ref									
VDDA	35	-	AN_Power									

Table 10 Deekege Din Menning (cont'd)

Figure 11 Pull Device Input Characteristics

Figure 11 visualizes the input characteristics with an active internal pull device:

- in the cases "A" the internal pull device is overridden by a strong external driver;
- in the cases "B" the internal pull device defines the input logical state against a weak external load.

3.2.3 Digital to Analog Converters (DACx)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values			Unit	Note /
				Тур.	Max.		Test Condition
RMS supply current	I _{DD} C	C	-	2.5	4	mA	per active DAC channel, without load currents of DAC outputs
Resolution	RES 0	СС	-	12	-	Bit	
Update rate	f _{urate_a} (CC	-		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 1LSB accuracy
Update rate	furate_f	СС	-		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy
Settling time	t _{settle} (CC	_	1	2	μs	at full scale jump, output voltage reaches target value ± 20 LSB
Slew rate	SR C	C	2	5	-	V/µs	
Minimum output voltage	V _{OUT_MIN} CC		-	0.3	-	V	code value unsigned: 000 _H ; signed: 800 _H
Maximum output voltage	V _{OUT_MAX} CC	K	_	2.5	-	V	code value unsigned: FFF _H ; signed: 7FF _H
Integral non- linearity ¹⁾	INL	СС	-5.5	±2.5	5.5	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$
Differential non- linearity	DNL (CC	-2	±1	2	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm}, \\ C_L \leq 50 \text{ pF} \end{array}$

Table 27	DAC Parameters	(Operating Conditions apply)
----------	----------------	------------------------------

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.	-	Test Condition
Offset error	ED _{OFF} CC		±20		mV	
Gain error	$ED_{G_{IN}} CC$	-5	0	5	%	
Startup time	t _{STARTUP} CC	-	15	30	μS	time from output enabling till code valid ±16 LSB
3dB Bandwidth of Output Buffer	f_{C1} CC	2.5	5	-	MHz	verified by design
Output sourcing current	I _{OUT_SOURCE} CC	-	-30	-	mA	
Output sinking current	I _{OUT_SINK} CC	-	0.6	-	mA	
Output resistance	R _{OUT} CC	-	50	-	Ohm	
Load resistance	R _L SR	5	-	-	kOhm	
Load capacitance	C _L SR	-	-	50	pF	
Signal-to-Noise Ratio	SNR CC	-	70	-	dB	examination bandwidth < 25 kHz
Total Harmonic Distortion	THD CC	-	70	-	dB	examination bandwidth < 25 kHz
Power Supply Rejection Ratio	PSRR CC	-	56	-	dB	to V_{DDA} verified by design

Table 27 DAC Parameters (Operating Conditions apply) (cont'd)

1) According to best straight line method.

Conversion Calculation

 $\begin{array}{l} \text{Unsigned:} \\ \text{DACxDATA} = 4095 \times (V_{\text{OUT}} \text{ - } V_{\text{OUT_MIN}}) \ / \ (V_{\text{OUT_MAX}} \text{ - } V_{\text{OUT_MIN}}) \\ \text{Signed:} \\ \text{DACxDATA} = 4095 \times (V_{\text{OUT}} \text{ - } V_{\text{OUT_MIN}}) \ / \ (V_{\text{OUT_MAX}} \text{ - } V_{\text{OUT_MIN}}) \ - \ 2048 \\ \end{array}$

Figure 16 GxORCOUTy Trigger Generation

Figure 17 ORC Detection Ranges

3.2.5 High Resolution PWM (HRPWM)

The following chapters describe the operating conditions, characteristics and timing requirements, for all the components inside the HRPWM module. Each description is given for just one sub unit, e.g., one CSG or one HRC.

All the timing information is related to the module clock, f_{hrowm} .

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.2.5.1 HRC characteristics

Table 29 summarizes the characteristics of the HRC units.

Table 29	HRC characteristics	(Operating	Conditions apply)
----------	---------------------	------------	-------------------

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
High resolution step size ¹⁾²⁾	t _{HRS} CC	-	150	-	ps	
Startup time (after reset release)	t _{start} CC	-	-	2	μS	

1) The step size for clock frequencies equal to 180, 120 and 80 MHz is 150 ps.

 The step size for clock frequencies different from 180, 120 and 80 MHz but within the range from 180 to 64 MHz can be between 118 to 180 ps (fixed over process and operating conditions)

3.2.5.2 CMP and 10-bit DAC characteristics

The Table 30 summarizes the characteristics of the CSG unit.

The specified characteristics require that the setup of the HRPWM follows the initialization sequence as documented in the Reference Manual.

Table 30 CMP and 10-bit DAC characteristics (Operating Conditions apply)

Parameter	Symbol		Values	;	Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAC Resolution	RES CC		10		bits	
DAC differential nonlinearity	DNL CC	-1	-	1.5	LSB	Monotonic behavior, See Figure 18
DAC integral nonlinearity	INL CC	-3	-	3	LSB	See Figure 18

Table 39 Power Supply Parameters

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Sleep supply current ³⁾	I _{DDPS} CC	-	104	-	mA	120 / 120 / 120
Peripherals enabled		-	93	-		120 / 60 / 60
$f_{ODU}/f_{DEDUDU}/f_{OOU}$ in MHz		-	78	-	-	60 / 60 / 120
JCPU, JPERIPH, JCCU		-	57	-		24 / 24 / 24
		-	46	-		1/1/1
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		-	46	-		100 / 100 / 100
Sleep supply current ⁴⁾	I _{DDPS} CC	-	72	-	mA	120 / 120 / 120
Peripherals disabled		-	71	-		120 / 60 / 60
form / formul / foot in MHz		-	61	-	-	60 / 60 / 120
JCPU, JPERIPH, JCCU		-	52	-		24 / 24 / 24
		-	46	-		1/1/1
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		-	46	-		100 / 100 / 100
Deep Sleep supply	I _{DDPD} CC	-	8	-	mA	24 / 24 / 24
current ⁵⁾		-	5	-		4 / 4 / 4
Flash in Sleep mode Frequency:		-	4	-		1/1/1
$f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz						
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz	*	-	4.5	-		100 / 100 / 100 ₆₎
Hibernate supply current	I _{DDPH} CC	-	12.8	-	μA	$V_{\rm BAT}$ = 3.3 V
RTC on ⁷⁾		-	9.0	-		$V_{\rm BAT}$ = 2.4 V
		-	7.7	-		$V_{\rm BAT}$ = 2.0 V
Hibernate supply current	I _{DDPH} CC	-	12.0	-	μΑ	$V_{\rm BAT}$ = 3.3 V
RTC off ⁸⁾		-	8.4	-		$V_{\rm BAT}$ = 2.4 V
		-	7.0	-		$V_{\rm BAT}$ = 2.0 V
Worst case active supply current ⁹⁾	I _{DDPA} CC	-	-	170 10)	mA	V _{DDP} = 3.6 V, T _J = 150 °C
$V_{\rm DDA}$ power supply current	I _{DDA} CC	-	-	_11)	mA	
I _{DDP} current at PORST Low	I _{DDP_PORST} CC	-	-	30	mA	$V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 \text{ °C}$

3.3.2 Power-Up and Supply Monitoring

PORST is always asserted when V_{DDP} and/or V_{DDC} violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 26 PORST Circuit

Table 42	Supply Mon	itoring Parameters
----------	------------	--------------------

Parameter	Symbol		Values			Note /
		Min.	Тур.	Max.	1	Test Condition
Digital supply voltage reset threshold	V _{POR} CC	2.79 ¹⁾	-	3.05 ²⁾	V	3)
Core supply voltage reset threshold	V _{PV} CC	-	-	1.17	V	
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V	
PORST rise time	t _{PR} SR	-	_	2	μS	
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	-	2.5	3.5	ms	Time to the first user code instruction
$V_{\rm DDC}$ ramp up time	t _{VCR} CC	-	550	_	μS	Ramp up after power-on or after a reset triggered by a violation of V _{POR} or V _{PV}

1) Minimum threshold for reset assertion.

Table 43	Power Sequencing Parameters
----------	-----------------------------

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Positive Load Step Current	$\Delta I_{PLS}SR$	-	_	50	mA	Load increase on V_{DDP} $\Delta t \le 10 \text{ ns}$
Negative Load Step Current	$\Delta I_{\sf NLS}\sf SR$	-	_	150	mA	Load decrease on V_{DDP} $\Delta t \le 10 \text{ ns}$
V _{DDC} Voltage Over- / Undershoot from Load Step	$\Delta V_{\rm LS} {\rm CC}$	-	_	±100	mV	For maximum positive or negative load step
Positive Load Step Settling Time	t _{PLSS} SR	50	_	-	μs	
Negative Load Step Settling Time	t _{NLSS} SR	100	_	-	μs	
External Buffer Capacitor on $V_{\rm DDC}$	C _{EXT} SR	3	4.7	6	μF	In addition C = 100 nF capacitor on each V_{DDC} pin

Positive Load Step Examples

System assumptions:

 $f_{CPU} = f_{SYS}$, target frequency $f_{CPU} = 120$ MHz, main PLL $f_{VCO} = 480$ MHz, stepping done by K2 divider, t_{PLSS} between individual steps:

24 MHz - 48 MHz - 68 MHz - 96 MHz - 120 MHz (K2 steps 20 - 10 - 7 - 5 - 4) 24 MHz - 68 MHz - 96 MHz - 120 MHz (K2 steps 20 - 7 - 5 - 4) 24 MHz - 68 MHz - 120 MHz (K2 steps 20 - 7 - 4)

3.3.5 Internal Clock Source Characteristics

Fast Internal Clock Source

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.	_	
Nominal frequency	$f_{\rm OFINC}$	-	36.5	_	MHz	not calibrated
	CC	-	24	-	MHz	calibrated
Accuracy	<i>∆f</i> _{OFI} CC	-0.5	-	0.5	%	automatic calibration ¹⁾²⁾
		-15	-	15	%	factory calibration, $V_{\rm DDP}$ = 3.3 V
		-25	-	25	%	no calibration, $V_{\text{DDP}} = 3.3 \text{ V}$
		-7	-	7	%	Variation over voltage range ³⁾ $3.13 V \le V_{DDP} \le$ 3.63 V
Start-up time	t _{OFIS} CC	-	50	-	μS	

Table 45 Fast Internal Clock Parameters

1) Error in addition to the accuracy of the reference clock.

2) Automatic calibration compensates variations of the temperature and in the $V_{\rm DDP}$ supply voltage.

3) Deviations from the nominal V_{DDP} voltage induce an additional error to the uncalibrated and/or factory calibrated oscillator frequency.

Figure 34 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

3.3.11.2 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)

Parameter	Symbol			Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Conditi on
ETH_MDC period	<i>t</i> ₁	СС	400	-	-	ns	C _L = 25 pF
ETH_MDC high time	<i>t</i> ₂	СС	160	-	-	ns	
ETH_MDC low time	t_3	СС	160	_	-	ns	
ETH_MDIO setup time (output)	<i>t</i> ₄	СС	10	-	-	ns	
ETH_MDIO hold time (output)	t_5	СС	10	_	-	ns	
ETH_MDIO data valid (input)	t_6	SR	0	-	300	ns	

Table 58 ETH Management Signal Timing Parameters

Figure 40 ETH Management Signal Timing

Package and Reliability

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

4.2 Package Outlines

The availability of different packages for different devices types is listed in **Table 1**, specific packages for different device markings are listed in **Table 2**.

The exposed die pad dimensions are listed in Table 60.

Change	PG-LQFP-100-11	PG-LQFP-100-25
Thermal Resistance Junction Ambient ($R_{\odot JA}$)	20.5 K/W	20.0 K/W
Lead Width	0.22 ^{±0.05} mm	0.2 ^{+0.07} -0.03 mm
Lead Thickness	0.15 ^{+0.05} -0.06 mm	0.127 ^{+0.073} -0.037 mm
Exposed Die Pad outer dimensions	7.0 mm × 7.0 mm	7.0 mm × 7.0 mm
Exposed Die Pad U- Groove inner dimensions	n.a.	6.2 mm × 6.2 mm

Table 61 Differences PG-LQFP-100-11 to PG-LQFP-100-24

Quality Declarations

5 Quality Declarations

The qualification of the XMC4400 is executed according to the JEDEC standard JESD47H.

Note: For automotive applications refer to the Infineon automotive microcontrollers.

Parameter	Symbol		Values	5	Unit	Note /
		Min. Typ.		Max.	İ	Test Condition
Operation lifetime	t _{OP} CC	20	-	-	а	$T_{\rm J} \le 109^{\circ}{\rm C},$ device permanent on
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	_	-	2 000	V	EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM)	$V_{\rm CDM}$ SR	_	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	-	-	3	-	JEDEC J-STD-020D
Soldering temperature	$T_{\rm SDR}$ SR	_	-	260	°C	Profile according to JEDEC J-STD-020D

Table 63Quality Parameters