

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SPI, UART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	31
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 14x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4400f64f512baxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4400 series devices.

The document describes the characteristics of a superset of the XMC4400 series devices. For simplicity, the various device types are referred to by the collective term XMC4400 throughout this manual.

XMC4000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents.

General Device Information

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

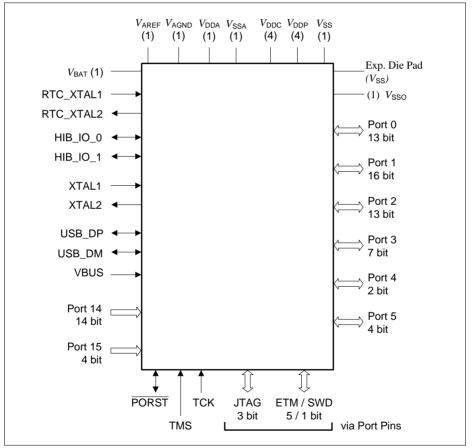


Figure 2 XMC4400 Logic Symbol PG-LQFP-100

General Device Information

Table 10	Package Pin	Mapping (cor	nťd)	
Function	LQFP-100	LQFP-64 TQFP-64	Pad Type	Notes
P0.11	95	59	A1+	
P0.12	94	-	A1+	
P1.0	79	52	A1+	
P1.1	78	51	A1+	
P1.2	77	50	A2	
P1.3	76	49	A2	
P1.4	75	48	A1+	
P1.5	74	47	A1+	
P1.6	83	-	A2	
P1.7	82	-	A2	
P1.8	81	54	A2	
P1.9	80	53	A2	
P1.10	73	-	A1+	
P1.11	72	-	A1+	
P1.12	71	-	A2	
P1.13	70	-	A2	
P1.14	69	-	A2	
P1.15	68	46	A2	
P2.0	52	34	A2	
P2.1	51	33	A2	After a system reset, via HWSEL this pin selects the DB.TDO function.
P2.2	50	32	A2	
P2.3	49	31	A2	
P2.4	48	30	A2	
P2.5	47	29	A2	
P2.6	54	36	A1+	
P2.7	53	35	A1+	
P2.8	46	28	A2	
P2.9	45	27	A2	
P2.10	44	-	A2	
P2.14	41	-	A2	
P2.15	40	-	A2	

2.2.2.1 Port I/O Function Table

Table 12 Port I/O Functions

Function		Output				Input								
	ALT1	ALT2	ALT3	ALT4	HWO0	HWIO	Input	Input	Input	Input	Input	Input	Input	Input
P0.0		CAN. N0_TXD	CCU80. OUT21	LEDTS0. COL2			U1C1. DX0D	ETH0. CLK_RMIIB	ERU0. 0B0			HRPWM0. C1INB		ETH0. CLKRXB
P0.1	USB. DRIVEVBUS	U1C1. DOUT0	CCU80. OUT11	LEDTS0. COL3				ETH0. CRS_DVB	ERU0. 0A0			HRPWM0. C2INB		ETH0. RXDVB
P0.2		U1C1. SELO1	CCU80. OUT01	HRPWM0. HROUT01	U1C0. DOUT3	U1C0. HWIN3	ETH0. RXD0B		ERU0. 3B3					
P0.3			CCU80. OUT20	HRPWM0. HROUT20	U1C0. DOUT2	U1C0. HWIN2	ETH0. RXD1B			ERU1. 3B0				
P0.4	ETH0. TX_EN		CCU80. OUT10	HRPWM0. HROUT21	U1C0. DOUT1	U1C0. HWIN1		U1C0. DX0A	ERU0. 2B3					
P0.5	ETH0. TXD0	U1C0. DOUT0	CCU80. OUT00	HRPWM0. HROUT00	U1C0. DOUT0	U1C0. HWIN0		U1C0. DX0B		ERU1. 3A0				
P0.6	ETH0. TXD1	U1C0. SELO0	CCU80. OUT30	HRPWM0. HROUT30				U1C0. DX2A	ERU0. 3B2		CCU80. IN2B			
P0.7	WWDT. SERVICE_OUT	U0C0. SELO0		HRPWM0. HROUT11		DB. TDI	U0C0. DX2B	DSD. DIN1A	ERU0. 2B1		CCU80. INOA	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A
P0.8	SCU. EXTCLK	U0C0. SCLKOUT		HRPWM0. HROUT10		DB. TRST	U0C0. DX1B	DSD. DIN0A	ERU0. 2A1		CCU80. IN1B			
P0.9	HRPWM0. HROUT31	U1C1. SELO0	CCU80. OUT12	LEDTS0. COL0	ETH0. MDO	ETH0. MDIA	U1C1. DX2A	USB. ID	ERU0. 1B0					
P0.10	ETH0. MDC	U1C1. SCLKOUT	CCU80. OUT02	LEDTS0. COL1			U1C1. DX1A		ERU0. 1A0					
P0.11		U1C0. SCLKOUT	CCU80. OUT31				ETH0. RXERB	U1C0. DX1A	ERU0. 3A2					
P0.12		U1C1. SELO0	CCU40. OUT3					U1C1. DX2B	ERU0. 2B2					
P1.0	DSD. CGPWMN	U0C0. SELO0	CCU40. OUT3	ERU1. PDOUT3			U0C0. DX2A		ERU0. 3B0		CCU40. IN3A	HRPWM0. COINA		
P1.1	DSD. CGPWMP	U0C0. SCLKOUT	CCU40. OUT2	ERU1. PDOUT2			U0C0. DX1A	POSIF0. IN2A	ERU0. 3A0		CCU40. IN2A	HRPWM0. C1INA		
P1.2			CCU40. OUT1	ERU1. PDOUT1	U0C0. DOUT3	U0C0. HWIN3		POSIF0. IN1A		ERU1. 2B0	CCU40. IN1A	HRPWM0. C2INA		
P1.3		U0C0. MCLKOUT	CCU40. OUT0	ERU1. PDOUT0	U0C0. DOUT2	U0C0. HWIN2		POSIF0. IN0A		ERU1. 2A0	CCU40. IN0A	HRPWM0. COINB		
P1.4	WWDT. SERVICE_OUT	CAN. N0_TXD	CCU80. OUT33	CCU81. OUT20	U0C0. DOUT1	U0C0. HWIN1	U0C0. DX0B	CAN. N1_RXDD	ERU0. 2B0		CCU41. INOC	HRPWM0. BL0A		
P1.5	CAN. N1_TXD	U0C0. DOUT0	CCU80. OUT23	CCU81. OUT10	U0C0. DOUT0	U0C0. HWIN0	U0C0. DX0A	CAN. N0_RXDA	ERU0. 2A0	ERU1. 0A0	CCU41. IN1C	DSD. DIN2B		
P1.6		U0C0. SCLKOUT					DSD. DIN2A							

Data Sheet

XMC4400 XMC4000 Family

2.3 Power Connection Scheme

Figure 7. shows a reference power connection scheme for the XMC4400.

Figure 7 Power Connection Scheme

Every power supply pin needs to be connected. Different pins of the same supply need also to be externally connected. As example, all $V_{\rm DDP}$ pins must be connected externally to one $V_{\rm DDP}$ net. In this reference scheme one 100 nF capacitor is connected at each supply pin against $V_{\rm SS}$. An additional 10 µF capacitor is connected to the $V_{\rm DDP}$ nets and an additional 4.7µF capacitor to the $V_{\rm DDC}$ nets.

Table 23 Standard Pads Class_A2

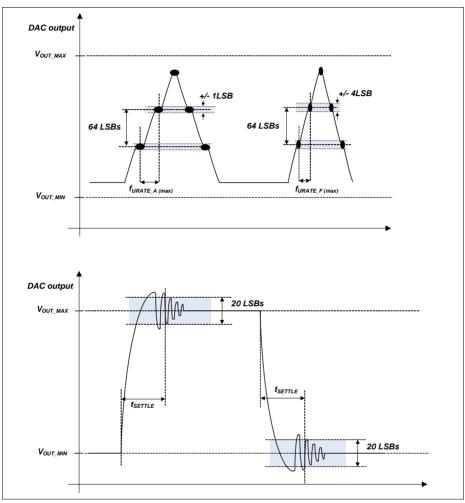

Parameter	Symbol	Val	ues	Unit	Note /	
		Min. Max.			Test Condition	
Input Leakage current	I _{OZA2} CC	-6	6	μA	$\begin{array}{l} 0 \; {\sf V} \leq V_{{\sf IN}} < \\ 0.5^* V_{{\sf DDP}} \; \text{-} \; 1 \; {\sf V}; \\ 0.5^* V_{{\sf DDP}} \; \text{+} \; 1 \; {\sf V} \\ < V_{{\sf IN}} \leq V_{{\sf DDP}} \end{array}$	
		-3	3	μA	$0.5^*V_{\rm DDP}$ - 1 V < $V_{\rm IN}$ < $0.5^*V_{\rm DDP}$ + 1 V	
Input high voltage	V _{IHA2} SR	$0.6 imes V_{ extsf{DDP}}$	V _{DDP} + 0.3	V	max. 3.6 V	
Input low voltage	$V_{\rm ILA2}{\rm SR}$	-0.3	$0.36 \times V_{ m DDP}$	V		
Output high voltage,	V_{OHA2}	V _{DDP} - 0.4	-	V	$I_{OH} \ge$ -400 μ A	
POD = weak	CC	2.4	-	V	<i>I</i> _{OH} ≥ -500 μA	
Output high voltage,	-	V _{DDP} - 0.4	-	V	<i>I</i> _{OH} ≥ -1.4 mA	
POD = medium		2.4	-	V	I _{OH} ≥ -2 mA	
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA	
POD = strong		2.4	-	V	<i>I</i> _{OH} ≥ -2 mA	
Output low voltage, POD = weak	V _{OLA2} CC	-	0.4	V	$I_{OL} \le 500 \ \mu A$	
Output low voltage, POD = medium	1	-	0.4	V	$I_{\rm OL} \le 2 \ {\rm mA}$	
Output low voltage, POD = strong	1	-	0.4	V	$I_{\rm OL} \le 2 \ {\rm mA}$	

Table 23 Standard Pads Class_A2

Parameter	Symbol		Values	Unit	Note /
		Min.	Max.		Test Condition
Fall time	t _{FA2} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD = weak
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD = medium
		_	3.7	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = sharp
		-	7	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = medium
		_	16	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = soft
Rise time	t _{RA2} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD = weak
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD = medium
		-	3.7	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = sharp
		-	7.0	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = medium
		-	16	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = soft

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\text{AREF}} = V_{\text{DDA}} + 50 \text{ mV}.$

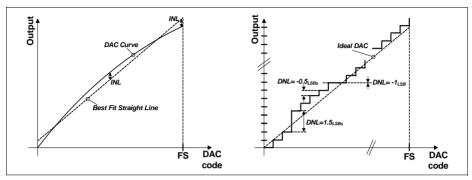

Parameter	Symb	ol		Values	5	Unit	Note / Test Condition	
			Min.	Тур.	Max.	1		
DC Switching Level	$V_{\rm ODC}$	CC	100	125	200	mV	$V_{\text{AIN}} \ge V_{\text{AREF}} + V_{\text{ODC}}$	
Hysteresis	$V_{\rm OHYS}$	CC	50	-	V _{ODC}	mV		
Detection Delay of a	t _{ODD}	СС	55	-	450	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV	
persistent Overvoltage			45	-	105	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV	
Always detected	t _{OPDD}	СС	440	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV	
Overvoltage Pulse			90	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV	
Never detected	t _{OPDN}	СС	-	-	49	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV	
Overvoltage Pulse			-	-	30	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV	
Release Delay	t _{ORD}	СС	65	-	105	ns	$V_{AIN} \leq V_{AREF}$	
Enable Delay	t _{OED}	CC	-	100	200	ns		

Table 28 ORC Parameters (Operating Conditions apply)

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

2) The INL error increases for DAC output voltages below this limit.

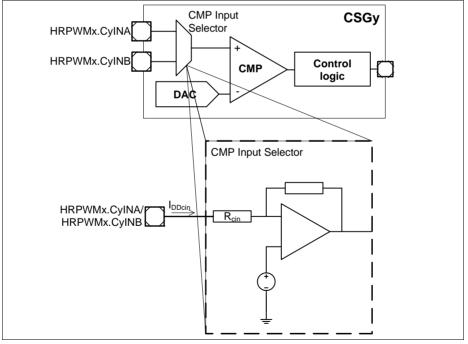


Figure 19 Input operation current

3.2.8 USB OTG Interface DC Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
VBUS input voltage range	V _{IN} CC	0.0	-	5.25	V	
A-device VBUS valid threshold	V _{B1} CC	4.4	-	-	V	
A-device session valid threshold	V _{B2} CC	0.8	-	2.0	V	
B-device session valid threshold	V _{B3} CC	0.8	-	4.0	V	
B-device session end threshold	V _{B4} CC	0.2	-	0.8	V	
VBUS input resistance to ground	R _{VBUS_IN} CC	40	-	100	kOhm	
B-device VBUS pull- up resistor	R _{VBUS_PU} CC	281	-	-	Ohm	Pull-up voltage = 3.0 V
B-device VBUS pull- down resistor	R _{VBUS_PD} CC	656	-	-	Ohm	
USB.ID pull-up resistor	R _{UID_PU} CC	14	-	25	kOhm	
VBUS input current	I _{VBUS_IN} CC	-	-	150	μA	$0 V \le V_{IN} \le 5.25 V$: T _{AVG} = 1 ms

Table 35 USB OTG VBUS and ID Parameters (Operating Conditions apply)

- 2) Maximum threshold for reset deassertion.
- 3) The V_{DDP} monitoring has a typical hysteresis of V_{PORHYS} = 180 mV.

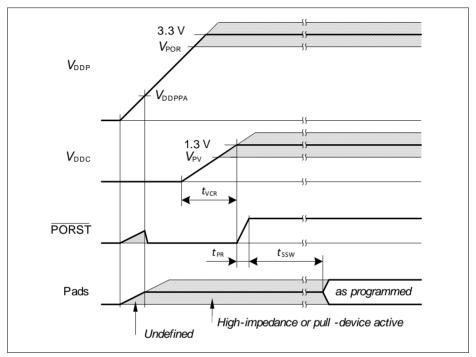


Figure 27 Power-Up Behavior

3.3.3 Power Sequencing

While starting up and shutting down as well as when switching power modes of the system it is important to limit the current load steps. A typical cause for such load steps is changing the CPU frequency $f_{\rm CPU}$. Load steps exceeding the below defined values may cause a power on reset triggered by the supply monitor.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

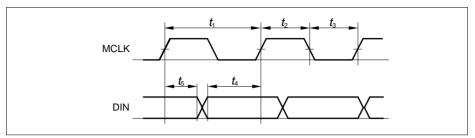


Figure 33 DSD Data Timing

3.3.9.2 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. *Note: Operating Conditions apply.*

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
SCLKOUT master clock period	t _{CLK} CC	33.3	-	-	ns	
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{SYS} - 6.5 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 8.5 ¹⁾	-	-	ns	
Data output DOUT[3:0] valid time	t ₃ CC	-6	-	8	ns	
Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge	t ₄ SR	23	-	-	ns	
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	t ₅ SR	1	-	-	ns	

Table 51 USIC SSC Master Mode Timing

1) $t_{SYS} = 1 / f_{PB}$

3.3.9.3 Inter-IC (IIC) Interface Timing

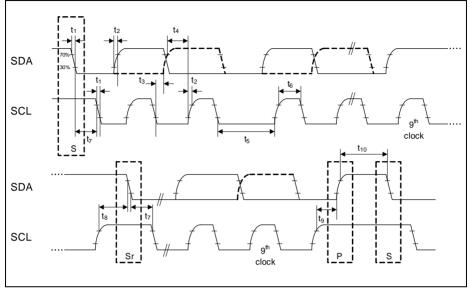

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 53	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol		Values	S	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns		
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns		
Data hold time	t ₃ CC/SR	0	-	-	μs		
Data set-up time	t ₄ CC/SR	250	-	-	ns		
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs		
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs		
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs		
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs		
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs		
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs		
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF		

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Figure 35 USIC IIC Stand and Fast Mode Timing

3.3.9.4 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Table 55	USIC IIS Master	Transmitter Timing
----------	-----------------	--------------------

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₁ CC	33.3	-	-	ns	
Clock HIGH	t ₂ CC	0.35 x	-	-	ns	
		t _{1min}				
Clock Low	t ₃ CC	0.35 x	_	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	-	_	0.15 x	ns	
				t _{1min}		

Figure 36	USIC IIS Master	Transmitter '	Timing
-----------	-----------------	---------------	--------

Table 56 USIC IIS Slave	Receiver Timing
-------------------------	-----------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₆ SR	66.6	-	-	ns	
Clock HIGH	t ₇ SR	0.35 x t _{6min}	-	-	ns	
Clock Low	t ₈ SR	0.35 x t _{6min}	-	-	ns	
Set-up time	t ₉ SR	0.2 x t _{6min}	_	-	ns	
Hold time	t ₁₀ SR	0	-	-	ns	

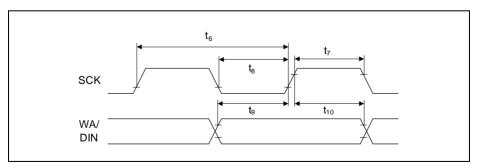


Figure 37 USIC IIS Slave Receiver Timing

Package and Reliability

4 Package and Reliability

The XMC4400 is a member of the XMC4000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Die Pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 60 provides the thermal characteristics of the packages used in XMC4400.

Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min. Max.				
Exposed Die Pad dimensions (including U- Groove where applicable)	Ex × Ey CC	-	7.0 imes 7.0	mm	PG-LQFP-100-11	
		-	7.0 imes 7.0	mm	PG-LQFP-100-25	
		-	$\textbf{5.8} \times \textbf{5.8}$	mm	PG-LQFP-64-19	
		-	5.7 imes 5.7	mm	PG-TQFP-64-19	
Exposed Die Pad dimensions excluding U- Groove	Ax × Ay CC	-	6.2 × 6.2	mm	PG-LQFP-100-25	
Thermal resistance	R _{⊖JA} CC	-	20.5	K/W	PG-LQFP-100-11 ¹⁾	
Junction-Ambient $T_{\rm J} \leq 150 \ ^{\circ}{\rm C}$		-	20.0	K/W	PG-LQFP-100-25 ¹⁾	
		-	30.0	K/W	PG-LQFP-64-19 ¹⁾	
		-	22.5	K/W	PG-TQFP-64-19 ¹⁾	

 Table 60
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SS} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC4400 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

Package and Reliability

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

4.2 Package Outlines

The availability of different packages for different devices types is listed in **Table 1**, specific packages for different device markings are listed in **Table 2**.

The exposed die pad dimensions are listed in Table 60.

Change	PG-LQFP-100-11	PG-LQFP-100-25
Thermal Resistance Junction Ambient ($R_{\Theta JA}$)	20.5 K/W	20.0 K/W
Lead Width	0.22 ^{±0.05} mm	0.2 ^{+0.07} -0.03 mm
Lead Thickness	0.15 ^{+0.05} -0.06 mm	0.127 ^{+0.073} -0.037 mm
Exposed Die Pad outer dimensions	7.0 mm × 7.0 mm	$7.0 \text{ mm} \times 7.0 \text{ mm}$
Exposed Die Pad U- Groove inner dimensions	n.a.	6.2 mm × 6.2 mm

Table 61 Differences PG-LQFP-100-11 to PG-LQFP-100-24

XMC4400 XMC4000 Family

Package and Reliability

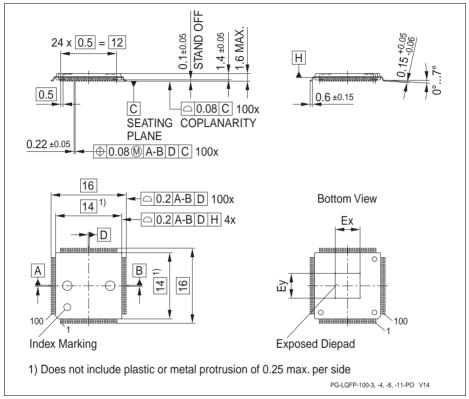


Figure 42 PG-LQFP-100-11 (Plastic Green Low Profile Quad Flat Package)

Quality Declarations

5 Quality Declarations

The qualification of the XMC4400 is executed according to the JEDEC standard JESD47H.

Note: For automotive applications refer to the Infineon automotive microcontrollers.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	ł	Test Condition
Operation lifetime	t _{OP} CC	20	-	-	а	$T_{\rm J} \le 109^{\circ}{\rm C},$ device permanent on
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	-	-	2 000	V	EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM)	V _{CDM} SR	_	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	-	-	3	-	JEDEC J-STD-020D
Soldering temperature	$T_{\rm SDR}$ SR	_	-	260	°C	Profile according to JEDEC J-STD-020D

Table 63Quality Parameters