

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SPI, UART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	31
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 14x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4400f64k512baxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC4400 Data Sheet

Revision History: V1.2 2015-12

IVE AISIOII	Thistory. V1.2 2013-12
Previous	
V1.1 2014	
V1.0 2013	
V0.6 2012	
Page	Subjects
12	Added a section listing the packages of the different markings.
14	Added BA marking variant.
37	Added footnote explaining minimum $V_{\rm BAT}$ requirements to start the hibernate domain and/or oscillation of a crystal on RTC_XTAL.
38	Changed pull device definition to System Requirement (SR) to reflect that the specified currents are defined by the characteristics of the external load/driver.
38	Added information that PORST Pull-up is identical to the pull-up on standard I/O pins.
45	Updated C_{AINSW} , C_{AINTOT} and R_{AIN} parameters with improved values.
59	Added footnote on test configuration for LPAC measurement.
61	Corrected parameter name of of USB pull device (upstream port receiving) definition according to USB standard (referenced to DM instead of DP)
66	Relaxed RTC_XTAL $V_{\rm PPX}$ parameter value and changed it to a system requirement.
70	Added footnote on current consumption by enabling of f_{CCU} .
71	Added Flash endurance parameter for 64 Kbytes Physical Sector PS4 $N_{\rm EPS4}$ for devices with BA marking.
many	Added PG-TQFP-64-19 and PG-LQFP-100-25 package information.
97, 100	Added tables describing the differences between PG-LQFP-100-11 to PG-LQFP-100-25 as well as PG-LQFP-64-19 to PG-TQFP-64-19 packages.
102	Updated to JEDEC standard J-STD-020D for the moisture sensitivity level and added solder temperature parameter according to the same standard.
-	

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG. ARM[®], ARM Powered[®], Cortex[®], Thumb[®] and AMBA[®] are registered trademarks of ARM, Limited.

CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

Synopsys[™] is a trademark of Synopsys, Inc.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

On-Chip Memories

- 16 KB on-chip boot ROM
- 16 KB on-chip high-speed program memory
- 32 KB on-chip high speed data memory
- 32 KB on-chip high-speed communication memory
- 512 KB on-chip Flash Memory with 4 KB instruction cache

Communication Peripherals

- Ethernet MAC module capable of 10/100 Mbit/s transfer rates
- Universal Serial Bus, USB 2.0 host, Full-Speed OTG, with integrated PHY
- Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with two nodes, 64 message objects (MO), data rate up to 1MBit/s
- Four Universal Serial Interface Channels (USIC), providing four serial channels, usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface

Analog Frontend Peripherals

- Four Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with input out-of-range comparators
- Delta Sigma Demodulator with four channels, digital input stage for A/D signal conversion
- Digital-Analog Converter (DAC) with two channels of 12-bit resolution

Industrial Control Peripherals

- Two Capture/Compare Units 8 (CCU8) for motor control and power conversion
- Four Capture/Compare Units 4 (CCU4) for use as general purpose timers
- Four High Resoultion PWM (HRPWM) channels
- Two Position Interfaces (POSIF) for servo motor positioning
- Window Watchdog Timer (WDT) for safety sensitive applications
- Die Temperature Sensor (DTS)
- · Real Time Clock module with alarm support
- System Control Unit (SCU) for system configuration and control

Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- Tri-stated in input mode
- Push/pull or open drain output mode
- Boundary scan test support over JTAG interface

XMC4400 XMC4000 Family

General Device Information

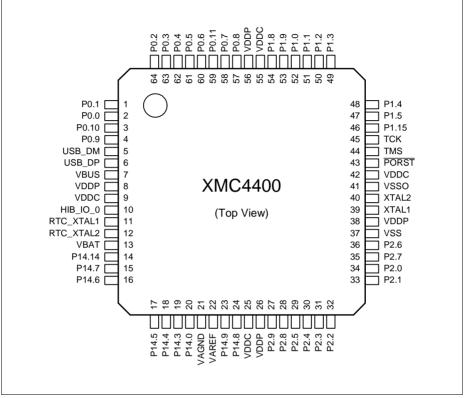


Figure 5 XMC4400 PG-LQFP-64 and PG-TQFP-64 Pin Configuration (top view)

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition	
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	-	
Junction temperature	TJ	SR	-40	_	150	°C	-	
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	-	-	4.3	V	-	
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	V _{IN}	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Voltage on any analog input pin with respect to V_{AGND}	$V_{\mathrm{AIN}} \ V_{\mathrm{AREF}}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA		
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\rm IN}$	SR	-25	-	+25	mA		
Absolute maximum sum of all input circuit currents during overload condition	$\Sigma I_{\rm IN}$	SR	-100	_	+100	mA		

Table 13 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 17**.

Figure 8 explains the input voltage ranges of $V_{\rm IN}$ and $V_{\rm AIN}$ and its dependency to the supply level of $V_{\rm DDP}$. The input voltage must not exceed 4.3 V, and it must not be more than 1.0 V above $V_{\rm DDP}$. For the range up to $V_{\rm DDP}$ + 1.0 V also see the definition of the overload conditions in Section 3.1.3.

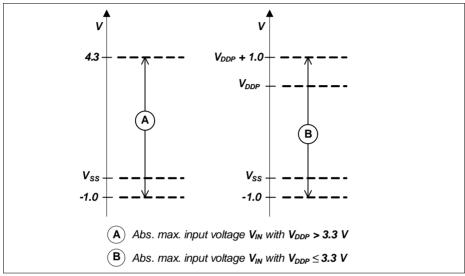


Figure 8 Absolute Maximum Input Voltage Ranges

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 14 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature

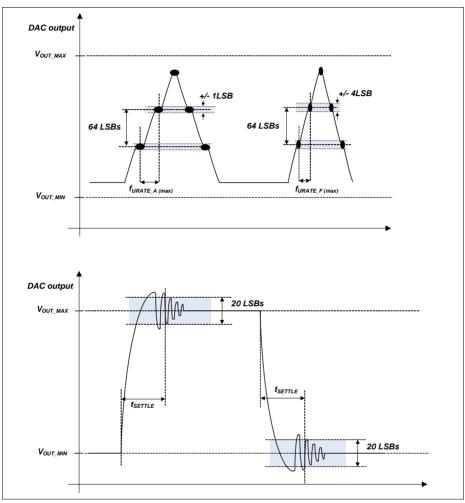
If a pin current is outside of the **Operating Conditions** but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Table 22 Standard Pads Class_A1+

Parameter	Symbol	Va	lues	Unit	Note /	
		Min.	Max.		Test Condition	
Output high voltage,	V _{OHA1+}	V _{DDP} - 0.4	-	V	<i>I</i> _{OH} ≥ -400 μA	
$POD^{1)} = weak$	CC	2.4	-	V	<i>I</i> _{OH} ≥ -500 μA	
Output high voltage,		$V_{\rm DDP}$ - 0.4	-	V	I _{OH} ≥ -1.4 mA	
$POD^{1)} = medium$		2.4	-	V	<i>I</i> _{OH} ≥ -2 mA	
Output high voltage,		$V_{\rm DDP}$ - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA	
$POD^{1)} = strong$		2.4	_	V	$I_{\rm OH} \ge$ -2 mA	
Output low voltage	$V_{\rm OLA1+}$ CC	_	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak	
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium	
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = strong	
Fall time	t _{FA1+} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = medium	
		_	28	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = slow	
		_	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft;	
Rise time	t _{RA1+} CC	-	150	ns	$C_{\rm L}$ = 20 pF; POD ¹⁾ = weak	
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium	
		-	28	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = slow	
		-	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft	

1) POD = Pin Out Driver


3.2.3 Digital to Analog Converters (DACx)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol			Values	5	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
RMS supply current	I _{DD}	CC	-	2.5	4	mA	per active DAC channel, without load currents of DAC outputs	
Resolution	RES	CC	-	12	-	Bit		
Update rate	furate.	_ _A CC	_		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 1LSB accuracy	
Update rate	furate.	_F CC	_		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy	
Settling time	t _{settle}	CC	-	1	2	μs	at full scale jump, output voltage reaches target value ± 20 LSB	
Slew rate	SR	CC	2	5	-	V/µs		
Minimum output voltage	V _{OUT_} N CC	MIN	-	0.3	-	V	code value unsigned: 000 _H ; signed: 800 _H	
Maximum output voltage	V _{OUT_} M CC	мах	-	2.5	-	V	code value unsigned: FFF _H ; signed: 7FF _H	
Integral non- linearity ¹⁾	INL	CC	-5.5	±2.5	5.5	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$	
Differential non- linearity	DNL	CC	-2	±1	2	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$	

Table 27 DAC Parameters	(Operating Conditions apply)
-------------------------	------------------------------

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\text{AREF}} = V_{\text{DDA}} + 50 \text{ mV}.$

Parameter	Symbol			Values	5	Unit	Note / Test Condition	
			Min.	Тур.	Max.	1		
DC Switching Level	$V_{\rm ODC}$	CC	100	125	200	mV	$V_{\text{AIN}} \ge V_{\text{AREF}} + V_{\text{ODC}}$	
Hysteresis	$V_{\rm OHYS}$	CC	50	-	V _{ODC}	mV		
Detection Delay of a	t _{ODD}	CC	55	-	450	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV	
persistent Overvoltage			45	-	105	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV	
Always detected	t _{OPDD}	СС	440	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV	
Overvoltage Pulse			90	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV	
Never detected	t _{OPDN}	СС	-	-	49	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV	
Overvoltage Pulse			-	-	30	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV	
Release Delay	t _{ORD}	СС	65	-	105	ns	$V_{AIN} \leq V_{AREF}$	
Enable Delay	t _{OED}	CC	-	100	200	ns		

Table 28 ORC Parameters (Operating Conditions apply)

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

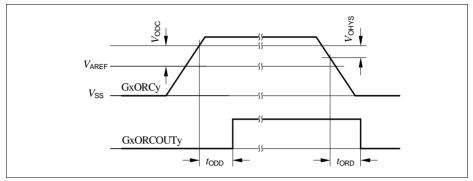


Figure 16 GxORCOUTy Trigger Generation

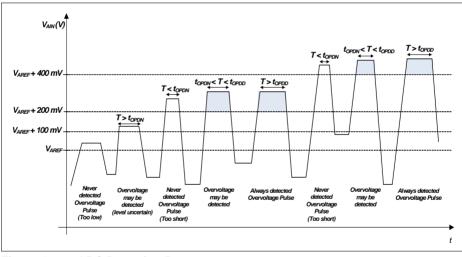
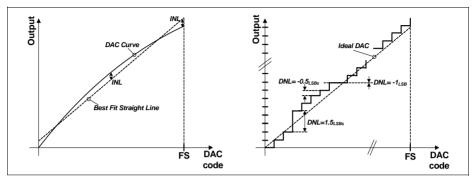


Figure 17 ORC Detection Ranges


Table 30	CMP and 10-bit DAC characteristics (Operating Conditions apply)
	(cont'd)

Parameter	Symbol		Value	s	Unit	Note / Test Conditior
		Min.	Тур.	Max.		
CSG Output Jitter	D _{CSG} CC	-	-	1	clk	
Bias startup time	t _{start} CC	-	-	98	us	
Bias supply current	I _{DDbias} CC	-	-	400	μA	
CSGy startup time	t _{CSGS} CC	-	-	2	μS	
Input operation current ¹⁾		-10	-	33	μA	See Figure 19
High Speed Mode		1			-1	1
DAC output voltage range	V_{DOUT}	$V_{\rm SS}$	-	V_{DDP}	V	
DAC propagation delay - Full scale	t _{FShs} CC	-	-	80	ns	See Figure 20
Input Selector propagation delay - Full scale	t _{Dhs} CC	-	-	100	ns	See Figure 20
Comparator bandwidth	t _{Dhs} CC	20	-	-	ns	
DAC CLK frequency	$f_{\rm clk}~{\rm SR}$	-	-	30	MHz	
Supply current	I _{DDhs} CC	-	-	940	μA	
Low Speed Mode		*				1
DAC output voltage range	V _{DOUT} CC	$0.1 imes V_{ m DDP}^{2)}$	-	V_{DDP}	V	
DAC propagation delay - Full Scale	t _{FSIs} CC	-	-	160	ns	See Figure 20
Input Selector propagation delay - Full Scale	t _{Dls} CC	-	-	200	ns	See Figure 20
Comparator bandwidth	t _{DIs} CC	20	-	-	ns	
DAC CLK frequency	$f_{\rm clk}$ SR	_	-	30	MHz	
Supply current	I _{DDIs} CC	-	-	300	μA	
4) Transaction of a sister of D				1		

1) Typical input resistance $R_{CIN} = 100$ kOhm.

2) The INL error increases for DAC output voltages below this limit.

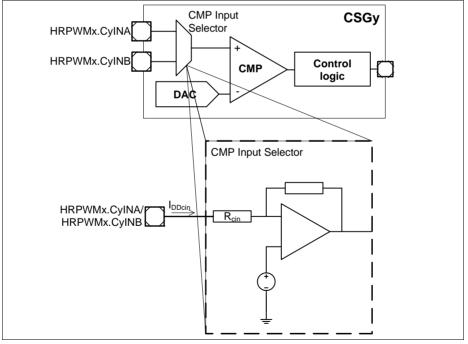


Figure 19 Input operation current

Parameter	Symbol		Value	Unit	Note /	
		Min.	Тур.	Max.		Test Con dition
Frequency	f_{eclk} SR	-	-	$f_{\rm hrpwm}/4$	MHz	
ON time	t _{oneclk} SR	$2T_{\rm ccu}^{(1)2)}$	-	-	ns	
OFF time	t _{offeclk} SR	2 <i>T</i> _{ccu} ¹⁾²⁾	-	-	ns	Only the rising edge is used

Table 32 External clock operating conditions

1) 50% duty cycle is not obligatory

2) Only valid if the signal was not previously synchronized/generated with the fccu clock (or a synchronous clock)

3.2.6 Low Power Analog Comparator (LPAC)

The Low Power Analog Comparator (LPAC) triggers a wake-up event from Hibernate state or an interrupt trigger during normal operation. It does so by comparing $V_{\rm BAT}$ or another external sensor voltage $V_{\rm LPS}$ with a pre-programmed threshold voltage.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	ymbol Values				Note /
		Min.	Тур.	Max.		Test Condition
$V_{\rm BAT}$ supply voltage range for LPAC operation	$V_{\rm BAT}~{ m SR}$	2.1	-	3.6	V	
Sensor voltage range	V _{LPCS} CC	0	-	1.2	V	
Threshold step size	$V_{\rm th}$ CC	-	18.75	_	mV	
Threshold trigger accuracy	$\Delta V_{\rm th}$ CC	-	-	±10	%	for $V_{\rm th}$ > 0.4 V
Conversion time	t _{LPCC} CC	-	-	250	μS	
Average current consumption over time	I _{LPCAC} CC	-	-	15	μA	conversion interval 10 ms ¹⁾
Current consumption during conversion	$I_{\rm LPCC} {\rm CC}$	-	150	-	μA	1)

Table 33Low Power Analog Comparator Parameters

1) Single channel conversion, measuring V_{BAT} = 3.3 V, 8 cycles settling time

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Input frequency	$f_{\rm OSC}$ SR	-	32.768	-	kHz		
Oscillator start-up time ¹⁾²⁾³⁾	t _{oscs} CC	-	-	5	S		
Input voltage at RTC_XTAL1	$V_{\rm IX}$ SR	-0.3	-	V _{BAT} + 0.3	V		
Input amplitude (peak- to-peak) at RTC_XTAL1 ²⁾⁴⁾	$V_{PPX}SR$	0.4	-	-	V		
Input high voltage at RTC_XTAL1 ⁵⁾	$V_{\rm IHBX} {\rm SR}$	$0.6 \times V_{BAT}$	-	V _{BAT} + 0.3	V		
Input low voltage at RTC_XTAL1 ⁵⁾	$V_{\rm ILBX}{\rm SR}$		-	$0.36 imes V_{BAT}$	V		
Input Hysteresis for RTC_XTAL1 ⁵⁾⁶⁾	V _{HYSX} CC	$0.1 imes V_{BAT}$		-	V	$3.0 \text{ V} \le V_{\text{BAT}} < 3.6 \text{ V}$	
		$0.03 imes V_{BAT}$		-	V	$V_{\rm BAT}$ < 3.0 V	
Input leakage current at RTC_XTAL1	I _{ILX1} CC	-100	-	100	nA	Oscillator power down $0 V \le V_{IX} \le V_{BAT}$	

Table 38 RTC_XTAL Parameters

 t_{OSCS} is defined from the moment the oscillator is enabled by the user with SCU_OSCULCTRL.MODE until the oscillations reach an amplitude at RTC_XTAL1 of 400 mV.

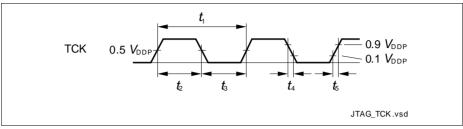
 The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.

- 3) For a reliable start of the oscillation in crystal mode it is required that $V_{BAT} \ge 3.0$ V. A running oscillation is maintained across the full V_{BAT} voltage range.
- 4) If the shaper unit is enabled and not bypassed.
- 5) If the shaper unit is bypassed, dedicated DC-thresholds have to be met.
- 6) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

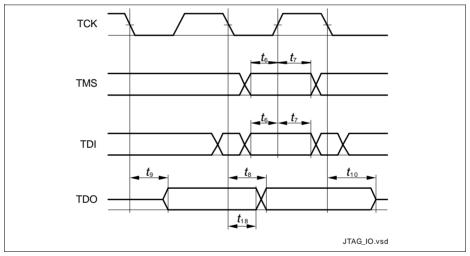
3.3.5 Internal Clock Source Characteristics

Fast Internal Clock Source

Parameter	Symbol		Values	5	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Nominal frequency	$f_{\rm OFINC}$	-	36.5	_	MHz	not calibrated	
	CC	-	24	_	MHz	calibrated	
Accuracy	<i>∆f</i> _{OFI} CC	-0.5	-	0.5	%	automatic calibration ¹⁾²⁾	
		-15	-	15	%	factory calibration, $V_{\text{DDP}} = 3.3 \text{ V}$	
		-25	-	25	%	no calibration, V_{DDP} = 3.3 V	
		-7	-	7	%	Variation over voltage range ³⁾ $3.13 V \le V_{DDP} \le$ 3.63 V	
Start-up time	t _{OFIS} CC	-	50	_	μS		


Table 45 Fast Internal Clock Parameters

1) Error in addition to the accuracy of the reference clock.


2) Automatic calibration compensates variations of the temperature and in the $V_{\rm DDP}$ supply voltage.

3) Deviations from the nominal V_{DDP} voltage induce an additional error to the uncalibrated and/or factory calibrated oscillator frequency.

3.3.9 Peripheral Timing

- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Operating conditions apply.

3.3.9.1 Delta-Sigma Demodulator Digital Interface Timing

The following parameters are applicable for the digital interface of the Delta-Sigma Demodulator (DSD).

The data timing is relative to the active clock edge. Depending on the operation mode of the connected modulator that can be the rising and falling clock edge.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		,	Values		Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
MCLK period in master mode	<i>t</i> ₁	СС	33.3	-	-	ns	$t_1 \ge 4 \ge t_{\text{PERIPH}}^{1}$	
MCLK high time in master mode	<i>t</i> ₂	СС	9	-	-	ns	$t_2 > t_{\text{PERIPH}}^{(1)}$	
MCLK low time in master mode	<i>t</i> ₃	СС	9	-	-	ns	$t_3 > t_{\text{PERIPH}}^{1)}$	
MCLK period in slave mode	<i>t</i> ₁	SR	33.3	-	-	ns	$t_1 \ge 4 \ge t_{\text{PERIPH}}^{1}$	
MCLK high time in slave mode	<i>t</i> ₂	SR	t _{PERIPH}	-	-	ns	1)	
MCLK low time in slave mode	<i>t</i> ₃	SR	t _{PERIPH}	-	-	ns	1)	
DIN input setup time to the active clock edge	<i>t</i> ₄	SR	t_{PERIPH} + 4	-	-	ns	1)	
DIN input hold time from the active clock edge	<i>t</i> ₅	SR	t _{PERIPH} + 3	-	-	ns	1)	

84

Table 50	DSD Interface Timing Parameters
----------	---------------------------------

1) $t_{\text{PERIPH}} = 1 / f_{\text{PERIPH}}$

3.3.11.3 ETH RMII Parameters

In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.

Table 59 ETH RMII Signal Timing Parameters
--

Parameter		Symbol		Values			Note /	
			Min.	Тур.	Max.		Test Condit ion	
ETH_RMII_REF_CL clock period	t ₁₃	SR	20	-	_	ns	C _L = 25 pF; 50 ppm	
ETH_RMII_REF_CL clock high time	t ₁₄	SR	7	-	13	ns	C _L = 25 pF	
ETH_RMII_REF_CL clock low time	t ₁₅	SR	7	-	13	ns		
ETH_RMII_RXD[1:0], ETH_RMII_CRS setup time	t ₁₆	SR	4	_	_	ns		
ETH_RMII_RXD[1:0], ETH_RMII_CRS hold time	t ₁₇	SR	2	-	-	ns	-	
ETH_RMII_TXD[1:0], ETH_RMII_TXEN data valid	t ₁₈	CC	4	-	15	ns		

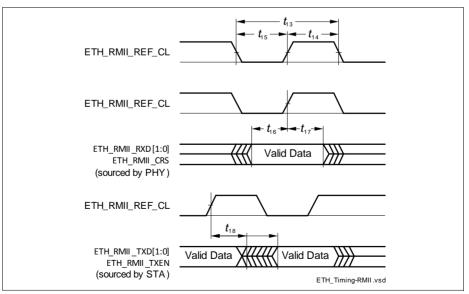


Figure 41 ETH RMII Signal Timing

Package and Reliability

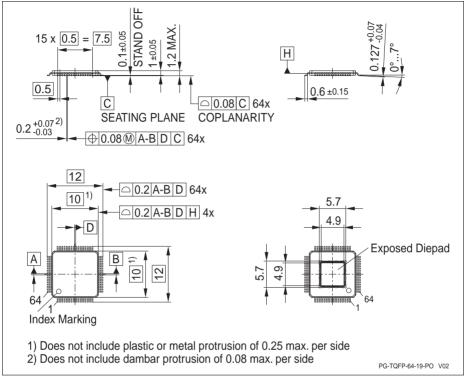


Figure 45 PG-TQFP-64-19 (Plastic Green Low Profile Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages