

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4402f100f256abxqma1
Supplier Device Package	PG-LQFP-100-11
Package / Case	100-LQFP Exposed Pad
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Oscillator Type	Internal
Data Converters	A/D 24x12b; D/A 2x12b
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
RAM Size	80K x 8
EEPROM Size	-
Program Memory Type	FLASH
Program Memory Size	256KB (256K x 8)
Number of I/O	55
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Speed	120MHz
Core Size	32-Bit Single-Core
Core Processor	ARM® Cortex®-M4
Product Status	Discontinued at Digi-Key
Details	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

3.3.4	Phase Locked Loop (PLL) Characteristics	77
3.3.5	Internal Clock Source Characteristics	78
3.3.6	JTAG Interface Timing	80
3.3.7	Serial Wire Debug Port (SW-DP) Timing	82
3.3.8	Embedded Trace Macro Cell (ETM) Timing	83
3.3.9	Peripheral Timing	
3.3.9.1	Delta-Sigma Demodulator Digital Interface Timing	84
3.3.9.2	Synchronous Serial Interface (USIC SSC) Timing	85
3.3.9.3	Inter-IC (IIC) Interface Timing	88
3.3.9.4	Inter-IC Sound (IIS) Interface Timing	90
3.3.10	USB Interface Characteristics	
3.3.11	Ethernet Interface (ETH) Characteristics	93
3.3.11.1	ETH Measurement Reference Points 9	
3.3.11.2	ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) 9	
3.3.11.3	ETH RMII Parameters	95
4	Package and Reliability	96
4.1	Package Parameters	
4.1.1	Thermal Considerations	96
4.2	Package Outlines	97
5	Quality Declarations	02

Summary of Features

On-Chip Memories

- 16 KB on-chip boot ROM
- 16 KB on-chip high-speed program memory
- 32 KB on-chip high speed data memory
- 32 KB on-chip high-speed communication memory
- 512 KB on-chip Flash Memory with 4 KB instruction cache

Communication Peripherals

- Ethernet MAC module capable of 10/100 Mbit/s transfer rates
- Universal Serial Bus, USB 2.0 host, Full-Speed OTG, with integrated PHY
- Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with two nodes, 64 message objects (MO), data rate up to 1MBit/s
- Four Universal Serial Interface Channels (USIC), providing four serial channels, usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface

Analog Frontend Peripherals

- Four Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with input out-of-range comparators
- Delta Sigma Demodulator with four channels, digital input stage for A/D signal conversion
- Digital-Analog Converter (DAC) with two channels of 12-bit resolution

Industrial Control Peripherals

- Two Capture/Compare Units 8 (CCU8) for motor control and power conversion
- Four Capture/Compare Units 4 (CCU4) for use as general purpose timers
- Four High Resoultion PWM (HRPWM) channels
- Two Position Interfaces (POSIF) for servo motor positioning
- Window Watchdog Timer (WDT) for safety sensitive applications
- Die Temperature Sensor (DTS)
- Real Time Clock module with alarm support
- System Control Unit (SCU) for system configuration and control

Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- · Tri-stated in input mode
- · Push/pull or open drain output mode
- Boundary scan test support over JTAG interface

Summary of Features

Table 4 Features of XMC4400 Device Types

Derivative ¹⁾	ADC Chan.	DSD Chan.	DAC Chan.	CCU4 Slice	CCU8 Slice	POSIF Intf.	HRPWM Intf.
XMC4400-F100x512	24	4	2	4 x 4	2 x 4	2	1
XMC4400-F64x512	14	4	2	4 x 4	2 x 4	2	1
XMC4400-F100x256	24	4	2	4 x 4	2 x 4	2	1
XMC4400-F64x256	14	4	2	4 x 4	2 x 4	2	1
XMC4402-F100x256	24	4	2	4 x 4	2 x 4	2	1
XMC4402-F64x256	14	4	2	4 x 4	2 x 4	2	1

¹⁾ x is a placeholder for the supported temperature range.

1.5 Definition of Feature Variants

The XMC4400 types are offered with several memory sizes and number of available VADC channels. **Table 5** describes the location of the available Flash memory, **Table 6** describes the location of the available SRAMs, **Table 7** the available VADC channels.

Table 5 Flash Memory Ranges

Total Flash Size	Cached Range	Uncached Range
256 Kbytes	0800 0000 _H – 0803 FFFF _H	0C00 0000 _H - 0C03 FFFF _H
512 Kbytes	0800 0000 _H – 0807 FFFF _H	0C00 0000 _H - 0C07 FFFF _H

Table 6 SRAM Memory Ranges

Total SRAM Size	Program SRAM	System Data SRAM	Communication Data SRAM
80 Kbytes	1FFF C000 _H –	2000 0000 _H –	2000 8000 _H –
	1FFF FFFF _H	2000 7FFF _H	2000 FFFF _H

Summary of Features

Table 7 ADC Channels¹⁾

Package	VADC G0	VADC G1	VADC G2	VADC G3
PG-LQFP-100	CH0CH7	CH0CH7	CH0CH3	CH0CH3
PG-LQFP-64	CH0, CH3CH7	CH0, CH1, CH3, CH6	CH0, CH1	CH2, CH3

Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table.

1.6 Identification Registers

The identification registers allow software to identify the marking.

Table 8 XMC4400 Identification Registers

Register Name	Value	Marking
SCU_IDCHIP	0004 4001 _H	EES-AA, ES-AA
SCU_IDCHIP	0004 4002 _H	ES-AB, AB
SCU_IDCHIP	0004 4003 _H	ВА
JTAG IDCODE	101D C083 _H	EES-AA, ES-AA
JTAG IDCODE	201D C083 _H	ES-AB, AB
JTAG IDCODE	301D C083 _H	ВА

General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

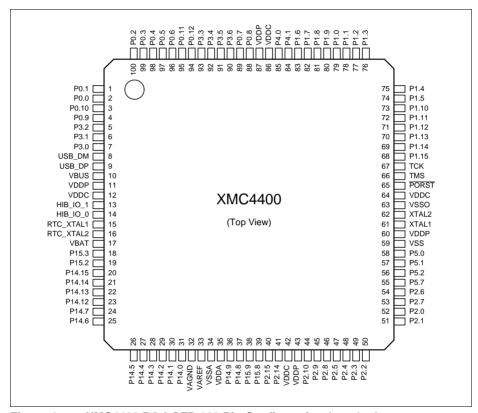


Figure 4 XMC4400 PG-LQFP-100 Pin Configuration (top view)

General Device Information

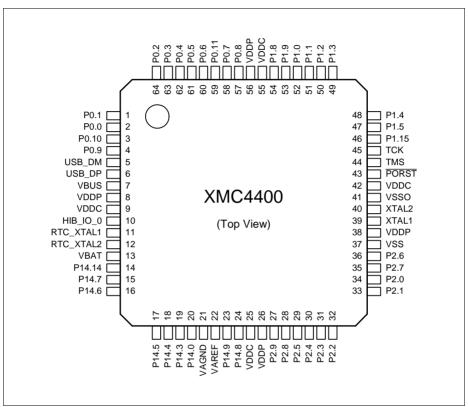


Figure 5 XMC4400 PG-LQFP-64 and PG-TQFP-64 Pin Configuration (top view)

3.2 DC Parameters

3.2.1 Input/Output Pins

The digital input stage of the shared analog/digital input pins is identical to the input stage of the standard digital input/output pins.

The Pull-up on the PORST pin is identical to the Pull-up on the standard digital input/output pins.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 20 Standard Pad Parameters

Parameter	Symbol	Va	alues	Unit	Note / Test Condition
		Min.	Max.		
Pin capacitance (digital inputs/outputs)	$C_{IO}CC$	_	10	pF	
Pull-down current	$ I_{PDL} $	150	_	μΑ	$^{1)}V_{IN} \geq 0.6 imes V_{DDP}$
	CC	_	10	μΑ	$^{2)}V_{IN} \leq 0.36 \times V_{DDP}$
Pull-Up current	$ I_{\rm PUH} $ SR	_	10	μΑ	$^{2)}V_{IN} \geq 0.6 imes V_{DDP}$
		100	_	μΑ	$^{1)}V_{IN} \leq 0.36 \times V_{DDP}$
Input Hysteresis for pads of all A classes ³⁾	HYSA SR	0.1 × <i>V</i> _{DDP}	_	V	
PORST spike filter always blocked pulse duration	t _{SF1} CC	_	10	ns	
PORST spike filter pass-through pulse duration	t _{SF2} CC	100	-	ns	
PORST pull-down current	$ I_{PPD} $ CC	13	_	mA	V _{IN} = 1.0 V

Current required to override the pull device with the opposite logic level ("force current").
 With active pull device, at load currents between force and keep current the input state is undefined.

Load current at which the pull device still maintains the valid logic level ("keep current").
 With active pull device, at load currents between force and keep current the input state is undefined.

³⁾ Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

Conversion Time

 Table 26
 Conversion Time (Operating Conditions apply)

Parameter	Syn	nbol	Values	Unit	Note
Conversion time	t_{C}		$2 \times T_{ADC}$ + $(2 + N + STC + PC + DM) \times T_{ADCI}$		N = 8, 10, 12 for N-bit conversion $T_{\rm ADC} = 1/f_{\rm PERIPH}$ $T_{\rm ADCI} = 1/f_{\rm ADCI}$

- STC defines additional clock cycles to extend the sample time
- PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions:

$$f_{ADC}$$
 = 120 MHz i.e. t_{ADC} = 8.33 ns, DIVA = 3, f_{ADCI} = 30 MHz i.e. t_{ADCI} = 33.3 ns

According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):

12-bit post-calibrated conversion (PC = 2):

$$t_{\text{CN12C}} = (2 + 12 + 2) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 16 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 550 \text{ ns}$$

12-bit uncalibrated conversion:

$$t_{\text{CN12}}$$
 = (2 + 12) × t_{ADCI} + 2 × t_{ADC} = 14 × 33.3 ns + 2 × 8.33 ns = 483 ns

10-bit uncalibrated conversion:

$$t_{\text{CN10}} = (2 + 10) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 12 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 417 \text{ ns}$$

8-bit uncalibrated:

$$t_{\text{CN8}} = (2 + 8) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 10 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 350 \text{ ns}$$

Table 27 DAC Parameters (Operating Conditions apply) (cont'd)

Parameter	Symbo	Symbol		Values			Note /	
			Min.	Тур.	Max.		Test Condition	
Offset error	ED_{OFF}	CC		±20		mV		
Gain error	ED_{G_IN}	CC	-5	0	5	%		
Startup time	t _{STARTU}	_P CC	_	15	30	μS	time from output enabling till code valid ±16 LSB	
3dB Bandwidth of Output Buffer	f_{C1}	CC	2.5	5	_	MHz	verified by design	
Output sourcing current	I _{OUT_SO}	URCE	_	-30	_	mA		
Output sinking current	I _{OUT_SIN}	١K	_	0.6	_	mA		
Output resistance	R_{OUT}	CC	-	50	-	Ohm		
Load resistance	R_{L}	SR	5	-	-	kOhm		
Load capacitance	C_{L}	SR	-	_	50	pF		
Signal-to-Noise Ratio	SNR	СС	_	70	-	dB	examination bandwidth < 25 kHz	
Total Harmonic Distortion	THD	CC	_	70	_	dB	examination bandwidth < 25 kHz	
Power Supply Rejection Ratio	PSRR	CC	_	56	_	dB	to $V_{\rm DDA}$ verified by design	

¹⁾ According to best straight line method.

Conversion Calculation

Unsigned:

 $\mathsf{DACxDATA} = 4095 \times (V_\mathsf{OUT} - V_\mathsf{OUT_MIN}) \, / \, (V_\mathsf{OUT_MAX} - V_\mathsf{OUT_MIN})$

Signed:

 $\mathsf{DACxDATA} = 4095 \times (V_\mathsf{OUT} - V_\mathsf{OUT_MIN}) \, / \, (V_\mathsf{OUT_MAX} - V_\mathsf{OUT_MIN}) \, - \, 2048$

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹⁾ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\rm AREF} = V_{\rm DDA} + 50$ mV.

 Table 28
 ORC Parameters (Operating Conditions apply)

Parameter	Symbol			Values	i	Unit	Note / Test Condition
			Min.	Тур.	Max.		
DC Switching Level	V_{ODC}	CC	100	125	200	mV	$V_{AIN} \geq V_{AREF} + V_{ODC}$
Hysteresis	V_{OHYS}	CC	50	_	V_{ODC}	mV	
Detection Delay of a	t_{ODD}	CC	55	_	450	ns	$V_{AIN} \geq V_{AREF}$ + 200 mV
persistent Overvoltage			45	-	105	ns	$V_{AIN} \geq V_{AREF}$ + 400 mV
Always detected	t_{OPDD}	CC	440	_	-	ns	$V_{AIN} \geq V_{AREF}$ + 200 mV
Overvoltage Pulse			90	_	-	ns	$V_{AIN} \geq V_{AREF}$ + 400 mV
Never detected	t_{OPDN}	CC	_	_	49	ns	$V_{AIN} \geq V_{AREF}$ + 200 mV
Overvoltage Pulse			_	_	30	ns	$V_{AIN} \geq V_{AREF}$ + 400 mV
Release Delay	t_{ORD}	CC	65	_	105	ns	$V_{AIN} \leq V_{AREF}$
Enable Delay	$t_{\sf OED}$	CC	_	100	200	ns	

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

3.2.5 High Resolution PWM (HRPWM)

The following chapters describe the operating conditions, characteristics and timing requirements, for all the components inside the HRPWM module. Each description is given for just one sub unit, e.g., one CSG or one HRC.

All the timing information is related to the module clock, f_{hrown} .

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.2.5.1 HRC characteristics

Table 29 summarizes the characteristics of the HRC units.

 Table 29
 HRC characteristics (Operating Conditions apply)

Parameter	Symbol	Values			Values Unit			Unit	Note /
		Min.	Тур.	Max.		Test Condition			
High resolution step size ¹⁾²⁾	t _{HRS} CC	_	150	_	ps				
Startup time (after reset release)	t _{start} CC	_	_	2	μS				

¹⁾ The step size for clock frequencies equal to 180, 120 and 80 MHz is 150 ps.

3.2.5.2 CMP and 10-bit DAC characteristics

The **Table 30** summarizes the characteristics of the CSG unit.

The specified characteristics require that the setup of the HRPWM follows the initialization sequence as documented in the Reference Manual.

Table 30 CMP and 10-bit DAC characteristics (Operating Conditions apply)

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAC Resolution	RES CC		10		bits	
DAC differential nonlinearity	DNL CC	-1	_	1.5	LSB	Monotonic behavior, See Figure 18
DAC integral nonlinearity	INL CC	-3	-	3	LSB	See Figure 18

²⁾ The step size for clock frequencies different from 180, 120 and 80 MHz but within the range from 180 to 64 MHz can be between 118 to 180 ps (fixed over process and operating conditions)

Table 36 USB OTG Data Line (USB_DP, USB_DM) Parameters (Operating Conditions apply)

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input low voltage	V_{IL} SR	_	_	0.8	V	
Input high voltage (driven)	V _{IH} SR	2.0	_	-	V	
Input high voltage (floating) 1)	V_{IHZ} SR	2.7	_	3.6	V	
Differential input sensitivity	V_{DIS} CC	0.2	_	_	V	
Differential common mode range	V_{CM} CC	0.8	_	2.5	V	
Output low voltage	V_{OL} CC	0.0	_	0.3	V	1.5 kOhm pull- up to 3.6 V
Output high voltage	V_{OH} CC	2.8	_	3.6	V	15 kOhm pull- down to 0 V
DP pull-up resistor (idle bus)	R_{PUI} CC	900	_	1 575	Ohm	
DP pull-up resistor (upstream port receiving)	R _{PUA} CC	1 425	_	3 090	Ohm	
DP, DM pull-down resistor	R _{PD} CC	14.25	_	24.8	kOhm	
Input impedance DP, DM	Z_{INP} CC	300	_	-	kOhm	$0 \ V \le V_{IN} \le V_{DDP}$
Driver output resistance DP, DM	Z_{DRV} CC	28	_	44	Ohm	

¹⁾ Measured at A-connector with 1.5 kOhm ± 5% to 3.3 V ± 0.3 V connected to USB_DP or USB_DM and at B-connector with 15 kOhm ± 5% to ground connected to USB_DP and USB_DM.

Peripheral Idle Currents

Test conditions:

- f_{svs} and derived clocks at 120 MHz
- $V_{\text{DDP}} = 3.3 \text{ V}, T_{\text{a}} = 25 \text{ °C}$
- all peripherals are held in reset (see the PRSTAT registers in the Reset Control Unit of the SCU)
- the peripheral clocks are disabled (see CGATSTAT registers in the Clock Control Unit of the SCU
- no I/O activity
- the given values are a result of differential measurements with asserted and deasserted peripheral reset and enabled clock of the peripheral under test

The tested peripheral is left in the state after the peripheral reset is deasserted, no further initialisation or configuration is done. E.g. no timer is running in the CCUs, no communication active in the USICs, etc.

Table 40 Peripheral Idle Currents

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
PORTS ETH USB FCE WDT POSIFx	I _{PER} CC	-	≤ 0.3	-	mA	
MultiCAN ERU LEDTSCU0 CCU4x CCU8x		_	≤ 1.0	-		
DAC (digital) ¹⁾		_	1.3	_		
USICx		_	3.0	_		
DSD VADC (digital) ¹⁾		-	4.5	-		
DMAx		_	6.0	_		

The current consumption of the analog components are given in the dedicated Data Sheet sections of the respective peripheral.

Table 41 Flash Memory Parameters

Parameter	Symbol		Values	3	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Data Retention Time, User Configuration Block (UCB) ³⁾⁴⁾	t _{RTU} CC	20	-	-	years	Max. 4 erase/program cycles per UCB
Endurance on 64 Kbyte Physical Sector PS4	N _{EPS4} CC	10000	_	-	cycles	BA-marking devices only! Cycling distributed over life time ⁵⁾

In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes an additional time of 5.5 ms.

²⁾ The following formula applies to the wait state configuration: FCON.WSPFLASH \times (1 / f_{CPU}) $\geq t_a$.

³⁾ Storage and inactive time included.

⁴⁾ Values given are valid for an average weighted junction temperature of $T_J = 110$ °C.

Only valid with robust EEPROM emulation algorithm, equally cycling the logical sectors. For more details see
the Reference Manual.

3.3.2 Power-Up and Supply Monitoring

 $\overline{ extsf{PORST}}$ is always asserted when $V_{ extsf{DDP}}$ and/or $V_{ extsf{DDC}}$ violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

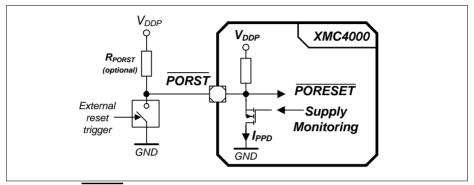


Figure 26 PORST Circuit

Table 42 Supply Monitoring Parameters

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage reset threshold	V_{POR} CC	2.79 ¹⁾	-	3.05 ²⁾	V	3)
Core supply voltage reset threshold	$V_{\sf PV}$ CC	_	-	1.17	V	
$V_{ m DDP}$ voltage to ensure defined pad states	V_{DDPPA} CC	_	1.0	-	V	
PORST rise time	t_{PR} SR	_	_	2	μS	
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	-	2.5	3.5	ms	Time to the first user code instruction
$\overline{V_{ extsf{DDC}}}$ ramp up time	t _{VCR} CC	_	550	_	μѕ	Ramp up after power-on or after a reset triggered by a violation of V_{POR} or V_{PV}

¹⁾ Minimum threshold for reset assertion.

- 2) Maximum threshold for reset deassertion.
- 3) The V_{DDP} monitoring has a typical hysteresis of V_{PORHYS} = 180 mV.

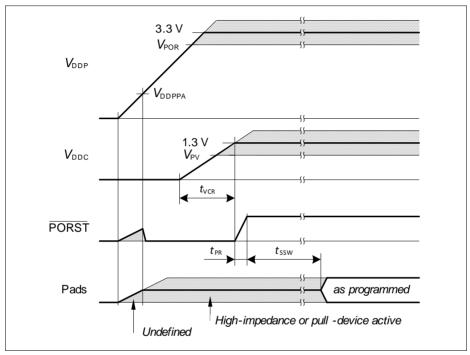


Figure 27 Power-Up Behavior

3.3.3 Power Sequencing

While starting up and shutting down as well as when switching power modes of the system it is important to limit the current load steps. A typical cause for such load steps is changing the CPU frequency $f_{\rm CPU}$. Load steps exceeding the below defined values may cause a power on reset triggered by the supply monitor.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.3.7 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

 Table 48
 SWD Interface Timing Parameters (Operating Conditions apply)

			-	•			
Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
SWDCLK clock period	t_{SC}	SR	25	_	_	ns	C _L = 30 pF
			40	_	_	ns	C _L = 50 pF
SWDCLK high time	t_1	SR	10	_	500000	ns	
SWDCLK low time	t_2	SR	10	_	500000	ns	
SWDIO input setup to SWDCLK rising edge	<i>t</i> ₃	SR	6	-	_	ns	
SWDIO input hold after SWDCLK rising edge	<i>t</i> ₄	SR	6	-	_	ns	
SWDIO output valid time	t_5	CC	_	_	17	ns	C _L = 50 pF
after SWDCLK rising edge			_	_	13	ns	C _L = 30 pF
SWDIO output hold time from SWDCLK rising edge	<i>t</i> ₆	CC	3	-	_	ns	

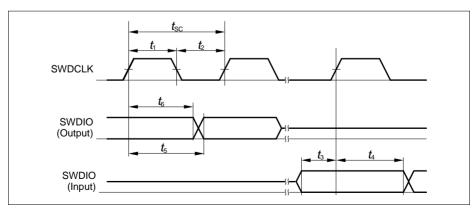


Figure 30 SWD Timing

Subject to Agreement on the Use of Product Information

3.3.10 USB Interface Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 57 USB Timing Parameters (operating conditions apply)

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Rise time	t_{R}	CC	4	_	20	ns	C _L = 50 pF
Fall time	t_{F}	CC	4	_	20	ns	C _L = 50 pF
Rise/Fall time matching	$t_{\rm R}/t_{\rm F}$	CC	90	-	111.11	%	C _L = 50 pF
Crossover voltage	V_{CRS}	CC	1.3	_	2.0	V	C _L = 50 pF

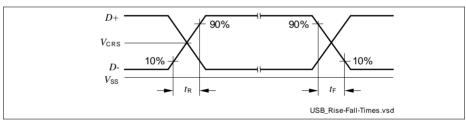


Figure 38 USB Signal Timing

Package and Reliability

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\rm \Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IOSYAT}) \times R_{\Theta IA}$

The internal power consumption is defined as

 $P_{\mathsf{INT}} = V_{\mathsf{DDP}} \times I_{\mathsf{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}} - V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- · Reduce the system frequency
- · Reduce the number of output pins
- · Reduce the load on active output drivers

4.2 Package Outlines

The availability of different packages for different devices types is listed in **Table 1**, specific packages for different device markings are listed in **Table 2**.

The exposed die pad dimensions are listed in Table 60.

Table 61 Differences PG-LQFP-100-11 to PG-LQFP-100-24

Change	PG-LQFP-100-11	PG-LQFP-100-25
Thermal Resistance Junction Ambient $(R_{\Theta JA})$	20.5 K/W	20.0 K/W
Lead Width		0.2 ^{+0.07} _{-0.03} mm
Lead Thickness	0.15 ^{+0.05} _{-0.06} mm	0.127 ^{+0.073} _{-0.037} mm
Exposed Die Pad outer dimensions	7.0 mm × 7.0 mm	7.0 mm × 7.0 mm
Exposed Die Pad U- Groove inner dimensions	n.a.	6.2 mm × 6.2 mm

Package and Reliability

Table 62 Differences PG-LQFP-64-19 to PG-TQFP-64-19

Change	PG-LQFP-64-19	PG-TQFP-64-19
Thermal Resistance Junction Ambient $(R_{\Theta JA})$	30.0 K/W	22.5 K/W
Package thickness	1.4 ^{±0.05} mm	1.0 ^{±0.05} mm
	1.6 mm MAX	1.2 mm MAX
Lead Width	0.22 ^{±0.05} mm	0.2 ^{+0.07} _{-0.03} mm
Lead Thickness	0.15 ^{+0.05} _{-0.06} mm	0.127 ^{+0.07} _{-0.04} mm
Exposed Die Pad outer dimensions	5.8 mm × 5.8 mm	5.7 mm × 5.7 mm
Exposed Die Pad U- Groove inner dimensions	n.a.	4.9 mm × 4.9 mm

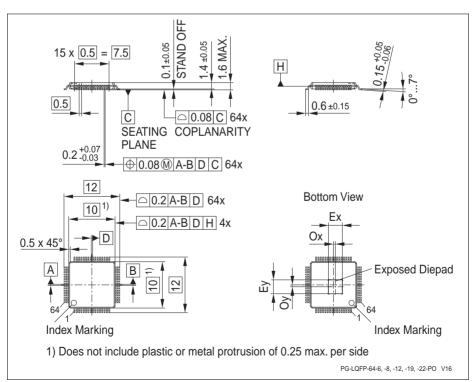


Figure 44 PG-LQFP-64-19 (Plastic Green Low Profile Quad Flat Package)