

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	31
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 14x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4402f64k256baxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2015-12 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

General Device Information

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure 2 XMC4400 Logic Symbol PG-LQFP-100

General Device Information

Function	LQFP-100	LQFP-64 TQFP-64	Pad Type	Notes						
USB_DP	9	6	special							
USB_DM	8	5	special							
HIB_IO_0	14	10	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as open-drain output and drives "0". As output the medium driver mode is active.						
HIB_IO_1	13	-	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as input with no pull device active. As output the medium driver mode is active.						
тск	67	45	A1	Weak pull-down active.						
TMS	66	44	A1+	Weak pull-up active. As output the strong-soft driver mode is active.						
PORST	65	43	special	Strong pull-down controlled by EVR. Weak pull-up active while strong pull-down is not active.						
XTAL1	61	39	clock_IN							
XTAL2	62	40	clock_O							
RTC_XTAL1	15	11	clock_IN							
RTC_XTAL2	16	12	clock_O							
VBAT	17	13	Power	When VDDP is supplied VBAT has to be supplied as well.						
VBUS	10	7	special							
VAREF	33	-	AN_Ref							
VAGND	32	-	AN_Ref							
VDDA	35	-	AN_Power							

Table 10 Deekege Din Menning (cont'd)

2.2.2.1 Port I/O Function Table

Table 12 Port I/O Functions

Function	ction Output						Input									
	ALT1	ALT2	ALT3	ALT4	HWO0	HWIO	Input	Input	Input	Input	Input	Input	Input	Input		
P0.0		CAN. N0_TXD	CCU80. OUT21	LEDTS0. COL2			U1C1. DX0D	ETH0. CLK_RMIIB	ERU0. 0B0			HRPWM0. C1INB		ETH0. CLKRXB		
P0.1	USB. DRIVEVBUS	U1C1. DOUT0	CCU80. OUT11	LEDTS0. COL3				ETH0. CRS_DVB	ERU0. 0A0			HRPWM0. C2INB		ETH0. RXDVB		
P0.2		U1C1. SELO1	CCU80. OUT01	HRPWM0. HROUT01	U1C0. DOUT3	U1C0. HWIN3	ETH0. RXD0B		ERU0. 3B3							
P0.3			CCU80. OUT20	HRPWM0. HROUT20	U1C0. DOUT2	U1C0. HWIN2	ETH0. RXD1B			ERU1. 3B0						
P0.4	ETH0. TX_EN		CCU80. OUT10	HRPWM0. HROUT21	U1C0. DOUT1	U1C0. HWIN1		U1C0. DX0A	ERU0. 2B3							
P0.5	ETH0. TXD0	U1C0. DOUT0	CCU80. OUT00	HRPWM0. HROUT00	U1C0. DOUT0	U1C0. HWIN0		U1C0. DX0B		ERU1. 3A0						
P0.6	ETH0. TXD1	U1C0. SELO0	CCU80. OUT30	HRPWM0. HROUT30				U1C0. DX2A	ERU0. 3B2		CCU80. IN2B					
P0.7	WWDT. SERVICE_OUT	U0C0. SELO0		HRPWM0. HROUT11		DB. TDI	U0C0. DX2B	DSD. DIN1A	ERU0. 2B1		CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A		
P0.8	SCU. EXTCLK	U0C0. SCLKOUT		HRPWM0. HROUT10		DB. TRST	U0C0. DX1B	DSD. DIN0A	ERU0. 2A1		CCU80. IN1B					
P0.9	HRPWM0. HROUT31	U1C1. SELO0	CCU80. OUT12	LEDTS0. COL0	ETH0. MDO	ETH0. MDIA	U1C1. DX2A	USB. ID	ERU0. 1B0							
P0.10	ETH0. MDC	U1C1. SCLKOUT	CCU80. OUT02	LEDTS0. COL1			U1C1. DX1A		ERU0. 1A0							
P0.11		U1C0. SCLKOUT	CCU80. OUT31				ETH0. RXERB	U1C0. DX1A	ERU0. 3A2							
P0.12		U1C1. SELO0	CCU40. OUT3					U1C1. DX2B	ERU0. 2B2							
P1.0	DSD. CGPWMN	U0C0. SELO0	CCU40. OUT3	ERU1. PDOUT3			U0C0. DX2A		ERU0. 3B0		CCU40. IN3A	HRPWM0. COINA				
P1.1	DSD. CGPWMP	U0C0. SCLKOUT	CCU40. OUT2	ERU1. PDOUT2			U0C0. DX1A	POSIF0. IN2A	ERU0. 3A0		CCU40. IN2A	HRPWM0. C1INA				
P1.2			CCU40. OUT1	ERU1. PDOUT1	U0C0. DOUT3	U0C0. HWIN3		POSIF0. IN1A		ERU1. 2B0	CCU40. IN1A	HRPWM0. C2INA				
P1.3		U0C0. MCLKOUT	CCU40. OUT0	ERU1. PDOUT0	U0C0. DOUT2	U0C0. HWIN2		POSIF0. IN0A		ERU1. 2A0	CCU40. IN0A	HRPWM0. COINB				
P1.4	WWDT. SERVICE_OUT	CAN. N0_TXD	CCU80. OUT33	CCU81. OUT20	U0C0. DOUT1	U0C0. HWIN1	U0C0. DX0B	CAN. N1_RXDD	ERU0. 2B0		CCU41. IN0C	HRPWM0. BL0A				
P1.5	CAN. N1_TXD	U0C0. DOUT0	CCU80. OUT23	CCU81. OUT10	U0C0. DOUT0	U0C0. HWIN0	U0C0. DX0A	CAN. N0_RXDA	ERU0. 2A0	ERU1. 0A0	CCU41. IN1C	DSD. DIN2B				
P1.6		U0C0. SCLKOUT					DSD. DIN2A									

Data Sheet

XMC4400 XMC4000 Family

Figure 10 Output Slopes with different Pad Driver Modes

Figure 10 is a qualitative display of the resulting output slope performance with different output driver modes. The detailed input and output characteristics are listed in Section 3.2.1.

3.2 DC Parameters

3.2.1 Input/Output Pins

The digital input stage of the shared analog/digital input pins is identical to the input stage of the standard digital input/output pins.

The Pull-up on the PORST pin is identical to the Pull-up on the standard digital input/output pins.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.		Max.			
Pin capacitance (digital inputs/outputs)	$C_{\rm IO}$ CC	_		10	pF		
Pull-down current	$ I_{\rm PDL} $	150		-	μA	$^{1)}V_{\rm IN} \ge 0.6 \times V_{\rm DDP}$	
	CC	-		10	μA	$^{2)}V_{\mathrm{IN}} \leq 0.36 imes V_{\mathrm{DDP}}$	
Pull-Up current	$ I_{\rm PUH} $	-		10	μA	$^{2)}V_{\rm IN} \ge 0.6 \times V_{\rm DDP}$	
	SR	100		_	μA	$^{1)}V_{\mathrm{IN}} \leq 0.36 imes V_{\mathrm{DDP}}$	
Input Hysteresis for pads of all A classes ³⁾	<i>HYSA</i> SR	$0.1 \times V_{\text{DDP}}$		-	V		
PORST spike filter always blocked pulse duration	t _{SF1} CC	-		10	ns		
PORST spike filter pass-through pulse duration	t _{SF2} CC	100		-	ns		
PORST pull-down current	I _{PPD} CC	13		_	mA	V _{IN} = 1.0 V	

Table 20 Standard Pad Parameters

Current required to override the pull device with the opposite logic level ("force current").
 With active pull device, at load currents between force and keep current the input state is undefined.

Load current at which the pull device still maintains the valid logic level ("keep current").
 With active pull device, at load currents between force and keep current the input state is undefined.

 Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

38

3.2.2 Analog to Digital Converters (ADCx)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	Ū	Values	S	Unit	Note /	
	-	Min. Typ. Ma		Max.	-	Test Condition	
Analog reference voltage ⁵⁾	V_{AREF} SR	V _{AGND} + 1	-	$V_{\rm DDA}^{\ +} \\ 0.05^{1)}$	V		
Analog reference ground ⁵⁾	$V_{ m AGND}$ SR	V _{SSM} - 0.05	-	V _{AREF} - 1	V		
Analog reference voltage range ²⁾⁵⁾	V_{AREF} - V_{AGND} SR	1	_	V _{DDA} + 0.1	V		
Analog input voltage	$V_{\rm AIN}~{\rm SR}$	$V_{\rm AGND}$	-	V_{DDA}	V		
Input leakage at analog inputs ³⁾	I _{OZ1} CC	-100	-	200	nA	$0.03 \times V_{\rm DDA} < V_{\rm AIN} < 0.97 \times V_{\rm DD}$	
		-500	-	100	nA	$\begin{array}{l} 0 \ V \leq V_{AIN} \leq 0.03 \\ \times \ V_{DDA} \end{array}$	
		-100	-	500	nA	$\begin{array}{l} \textbf{0.97} \times V_{\text{DDA}} \\ \leq V_{\text{AIN}} \leq V_{\text{DDA}} \end{array}$	
Input leakage current at VAREF	I _{OZ2} CC	-1	-	1	μA	$\begin{array}{l} 0 \ V \leq V_{AREF} \\ \leq V_{DDA} \end{array}$	
Input leakage current at VAGND	I _{OZ3} CC	-1	-	1	μA	$\begin{array}{l} 0 \ V \leq V_{AGND} \\ \leq V_{DDA} \end{array}$	
Internal ADC clock	$f_{\sf ADCI}\sf CC$	2	-	30	MHz	$V_{\rm DDA}$ = 3.3 V	
Switched capacitance at the analog voltage inputs ⁴⁾	C _{AINSW} CC	-	4	6.5	pF		
Total capacitance of an analog input	C_{AINTOT} CC	-	12	20	pF		
Switched capacitance at the positive reference voltage input ⁵⁾⁶⁾	C _{AREFSW} CC	-	15	30	pF		
Total capacitance of the voltage reference inputs ⁵⁾	C_{AREFTOT} CC	-	20	40	pF		

Table 25	ADC Parameters	(Operating Conditions apply)

- 4) The sampling capacity of the conversion C-network is pre-charged to V_{AREF}/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from V_{AREF}/2.
- 5) Applies to AINx, when used as alternate reference input.
- 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
- For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. Never less than ±1 LSB.
- 8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.
- 9) The resulting current for a conversion can be calculated with $I_{AREF} = Q_{CONV} / t_c$. The fastest 12-bit post-calibrated conversion of $t_c = 550$ ns results in a typical average current of $I_{AREF} = 54.5 \ \mu$ A.

Figure 12 VADC Reference Voltage Range

Conversion Time

Table 26	Conversion Time (Operating Conditions apply)
----------	---

Parameter Symbol			Values	Unit	Note
Conversion time	t _C	CC	$2 \times T_{ADC}$ + (2 + N + STC + PC +DM) × T_{ADCI}	μs	N = 8, 10, 12 for N-bit conversion $T_{ADC} = 1 / f_{PERIPH}$ $T_{ADCI} = 1 / f_{ADCI}$

- STC defines additional clock cycles to extend the sample time
- PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions:

 f_{ADC} = 120 MHz i.e. t_{ADC} = 8.33 ns, DIVA = 3, f_{ADCI} = 30 MHz i.e. t_{ADCI} = 33.3 ns According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):

12-bit post-calibrated conversion (PC = 2):

 $t_{CN12C} = (2 + 12 + 2) \times t_{ADCI} + 2 \times t_{ADC} = 16 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 550 \text{ ns}$

12-bit uncalibrated conversion:

 $t_{\text{CN12}} = (2 + 12) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 14 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 483 \text{ ns}$ 10-bit uncalibrated conversion:

 $t_{CN10} = (2 + 10) \times t_{ADCI} + 2 \times t_{ADC} = 12 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 417 \text{ ns}$ 8-bit uncalibrated:

 $t_{CN8} = (2 + 8) \times t_{ADCI} + 2 \times t_{ADC} = 10 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 350 \text{ ns}$

2) The INL error increases for DAC output voltages below this limit.

Figure 19 Input operation current

3.2.8 USB OTG Interface DC Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	, ,	Values	;	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
VBUS input voltage range	V _{IN} CC	0.0	-	5.25	V		
A-device VBUS valid threshold	V _{B1} CC	4.4	-	-	V		
A-device session valid threshold	V _{B2} CC	0.8	-	2.0	V		
B-device session valid threshold	V _{B3} CC	0.8	-	4.0	V		
B-device session end threshold	V _{B4} CC	0.2	_	0.8	V		
VBUS input resistance to ground	R _{VBUS_IN} CC	40	_	100	kOhm		
B-device VBUS pull- up resistor	R _{VBUS_PU} CC	281	_	_	Ohm	Pull-up voltage = 3.0 V	
B-device VBUS pull- down resistor	R _{VBUS_PD} CC	656	_	_	Ohm		
USB.ID pull-up resistor	R _{UID_PU} CC	14	_	25	kOhm		
VBUS input current	I _{VBUS_IN} CC	_	-	150	μA	$0 V \le V_{IN} \le 5.25 V$: T _{AVG} = 1 ms	

Table 35 USB OTG VBUS and ID Parameters (Operating Conditions apply)

3.2.9 Oscillator Pins

- Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier.
- Note: These parameters are not subject to production test, but verified by design and/or characterization.

The oscillator pins can be operated with an external crystal (see Figure 21) or in direct input mode (see Figure 22).

Figure 21 Oscillator in Crystal Mode

Parameter	Symbol		Values	5	Unit	Note /	
		Min.	Тур.	Max.	-	Test Condition	
Input frequency	$f_{\rm OSC}{\rm SR}$	4	-	40	MHz	Direct Input Mode selected	
		4	-	25	MHz	External Crystal Mode selected	
Oscillator start-up time ¹⁾²⁾	t _{OSCS} CC	-	-	10	ms		
Input voltage at XTAL1	V _{IX} SR	-0.5	-	V _{DDP} + 0.5	V		
Input amplitude (peak- to-peak) at XTAL1 ²⁾³⁾	$V_{\rm PPX}{ m SR}$	$0.4 imes V_{ m DDP}$	-	V _{DDP} + 1.0	V		
Input high voltage at XTAL1 ⁴⁾	$V_{\rm IHBX} {\rm SR}$	1.0	-	V _{DDP} + 0.5	V		
Input low voltage at XTAL1 ⁴⁾	$V_{\rm ILBX}{ m SR}$	-0.5	-	0.4	V		
Input leakage current at XTAL1	I _{ILX1} CC	-100	-	100	nA	Oscillator power down 0 V $\leq V_{IX} \leq V_{DDP}$	

Table 37 OSC_XTAL Parameters

 t_{OSCS} is defined from the moment the oscillator is enabled wih SCU_OSCHPCTRL.MODE until the oscillations reach an amplitude at XTAL1 of 0.4 * V_{DDP}.

2) The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.

3) If the shaper unit is enabled and not bypassed.

4) If the shaper unit is bypassed, dedicated DC-thresholds have to be met.

Parameter	Symbol		Values		Unit	Note /	
		Min.	Тур.	Typ. Max.		Test Condition	
Input frequency	$f_{\rm OSC}$ SR	-	32.768	-	kHz		
Oscillator start-up time ¹⁾²⁾³⁾	t _{OSCS} CC	-	-	5	S		
Input voltage at RTC_XTAL1	V _{IX} SR	-0.3	-	V _{BAT} + 0.3	V		
Input amplitude (peak- to-peak) at RTC_XTAL1 ²⁾⁴⁾	$V_{PPX}SR$	0.4	-	-	V		
Input high voltage at RTC_XTAL1 ⁵⁾	$V_{\rm IHBX} {\rm SR}$	$0.6 imes V_{BAT}$	-	V _{BAT} + 0.3	V		
Input low voltage at RTC_XTAL1 ⁵⁾	$V_{\rm ILBX}{ m SR}$	-0.3	-	$0.36 imes V_{BAT}$	V		
Input Hysteresis for RTC_XTAL1 ⁵⁾⁶⁾	V _{HYSX} CC	$0.1 imes V_{BAT}$		_	V	$3.0 \text{ V} \le V_{\text{BAT}} < 3.6 \text{ V}$	
		$0.03 imes V_{BAT}$		-	V	V _{BAT} < 3.0 V	
Input leakage current at RTC_XTAL1	I _{ILX1} CC	-100	-	100	nA	Oscillator power down $0 V \le V_{VX} \le V_{DAT}$	

Table 38 RTC_XTAL Parameters

 t_{OSCS} is defined from the moment the oscillator is enabled by the user with SCU_OSCULCTRL.MODE until the oscillations reach an amplitude at RTC_XTAL1 of 400 mV.

 The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.

- 3) For a reliable start of the oscillation in crystal mode it is required that $V_{BAT} \ge 3.0$ V. A running oscillation is maintained across the full V_{BAT} voltage range.
- 4) If the shaper unit is enabled and not bypassed.
- 5) If the shaper unit is bypassed, dedicated DC-thresholds have to be met.
- 6) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

Parameter	Symbol			Value	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Power Dissipation	P_{DISS}	СС	-	-	1	W	V _{DDP} = 3.6 V, T _J = 150 °C
Wake-up time from Sleep to Active mode	t _{SSA}	СС	-	6	-	cycles	
Wake-up time from Deep Sleep to Active mode			-	-	-	ms	Defined by the wake-up of the Flash module, see Section 3.2.11
Wake-up time from Hibernate mode			-	-	-	ms	Wake-up via power-on reset event, see Section 3.3.2

Table 39 Power Supply Parameters

1) CPU executing code from Flash, all peripherals idle.

2) CPU executing code from Flash. Ethernet, USB and CCU clock off.

3) CPU in sleep, all peripherals idle, Flash in Active mode.

- 4) CPU in sleep, Flash in Active mode.
- 5) CPU in sleep, peripherals disabled, after wake-up code execution from RAM.
- 6) To wake-up the Flash from its Sleep mode, $f_{CPU} \ge 1$ MHz is required.
- 7) OSC_ULP operating with external crystal on RTC_XTAL
- 8) OSC_ULP off, Hibernate domain operating with OSC_SI clock
- 9) Test Power Loop: f_{SYS} = 120 MHz, CPU executing benchmark code from Flash, all CCUs in 100kHz timer mode, all ADC groups in continuous conversion mode, USICs as SPI in internal loop-back mode, CAN in 500kHz internal loop-back mode, interrupt triggered DMA block transfers to parity protected RAMs and FCE, DTS measurements and FPU calculations.

The power consumption of each customer application will most probably be lower than this value, but must be evaluated separately.

- 10) I_{DDP} decreases typically by 5 mA when f_{SYS} decreases by 10 MHz, at constant T_{J}
- 11) Sum of currents of all active converters (ADC and DAC)

- 2) Maximum threshold for reset deassertion.
- 3) The V_{DDP} monitoring has a typical hysteresis of V_{PORHYS} = 180 mV.

Figure 27 Power-Up Behavior

3.3.3 Power Sequencing

While starting up and shutting down as well as when switching power modes of the system it is important to limit the current load steps. A typical cause for such load steps is changing the CPU frequency $f_{\rm CPU}$. Load steps exceeding the below defined values may cause a power on reset triggered by the supply monitor.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Slow Internal Clock Source

Parameter	Symbol		Values		Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Nominal frequency	$f_{\rm OSI}{\rm CC}$	-	32.768	-	kHz		
Accuracy	<i>∆f</i> _{OSI} CC	-4	-	4	%	V_{BAT} = const. 0 °C $\leq T_{A} \leq$ 85 °C	
		-5	-	5	%	V_{BAT} = const. $T_A < 0$ °C or $T_A > 85$ °C	
		-5	-	5	%	$2.4 \text{ V} \leq V_{\text{BAT}},$ $T_{\text{A}} = 25 \text{ °C}$	
		-10	-	10	%	$1.95 V \le V_{BAT} < 2.4 V,$ $T_A = 25 \text{ °C}$	
Start-up time	t _{OSIS} CC	-	50	-	μS		

79

Table 46 Slow Internal Clock Parameters

3.3.6 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Parameter		nbol	Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
TCK clock period	<i>t</i> ₁	SR	25	-	_	ns	
TCK high time	<i>t</i> ₂	SR	10	-	-	ns	
TCK low time	t_3	SR	10	-	_	ns	
TCK clock rise time	<i>t</i> ₄	SR	-	-	4	ns	
TCK clock fall time	t_5	SR	-	-	4	ns	
TDI/TMS setup to TCK rising edge	<i>t</i> ₆	SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇	SR	6	-	_	ns	
TDO valid after TCK falling	<i>t</i> ₈	CC	-	-	13	ns	$C_L = 50 \text{ pF}$
edge ¹⁾ (propagation delay)			3	-	-	ns	C _L = 20 pF
TDO hold after TCK falling edge ¹⁾	t ₁₈	СС	2	_	-	ns	
TDO high imped. to valid from TCK falling edge ¹⁾²⁾	t ₉	CC	-	-	14	ns	C _L = 50 pF
TDO valid to high imped. from TCK falling edge ¹⁾	t ₁₀	CC	-	-	13.5	ns	C _L = 50 pF

Table 47 JTAG Interface Timing Parameters

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

3.3.11.3 ETH RMII Parameters

In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.

Table 59	ETH RMII Signal Timing Parameters
----------	-----------------------------------

Parameter		Symbol		Values			Note /
			Min.	Тур.	Max.		Test Condit ion
ETH_RMII_REF_CL clock period	t ₁₃	SR	20	-	_	ns	C _L = 25 pF; 50 ppm
ETH_RMII_REF_CL clock high time	t ₁₄	SR	7	-	13	ns	C _L = 25 pF
ETH_RMII_REF_CL clock low time	t ₁₅	SR	7	-	13	ns	
ETH_RMII_RXD[1:0], ETH_RMII_CRS setup time	t ₁₆	SR	4	-	_	ns	
ETH_RMII_RXD[1:0], ETH_RMII_CRS hold time	t ₁₇	SR	2	-	_	ns	
ETH_RMII_TXD[1:0], ETH_RMII_TXEN data valid	t ₁₈	СС	4	-	15	ns	

Figure 41 ETH RMII Signal Timing

Package and Reliability

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

4.2 Package Outlines

The availability of different packages for different devices types is listed in **Table 1**, specific packages for different device markings are listed in **Table 2**.

The exposed die pad dimensions are listed in Table 60.

Change	PG-LQFP-100-11	PG-LQFP-100-25			
Thermal Resistance Junction Ambient ($R_{\odot JA}$)	20.5 K/W	20.0 K/W			
Lead Width	0.22 ^{±0.05} mm	0.2 ^{+0.07} -0.03 mm			
Lead Thickness	0.15 ^{+0.05} -0.06 mm	0.127 ^{+0.073} -0.037 mm			
Exposed Die Pad outer dimensions	7.0 mm × 7.0 mm	7.0 mm × 7.0 mm			
Exposed Die Pad U- Groove inner dimensions	n.a.	6.2 mm × 6.2 mm			

Table 61 Differences PG-LQFP-100-11 to PG-LQFP-100-24