E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9, ARM® Cortex®-M4
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	200MHz, 800MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (1), USB 2.0 OTG + PHY (2)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.15V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	A-HAB, ARM TZ, CAAM, CSU, SNVS, System JTAG, TVDECODE
Package / Case	400-LFBGA
Supplier Device Package	400-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6x3cvn08ab

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

INX Your Interface to the World

total summer sections and an

CONFIRM DESTINATION

i.MX families offer some of the most versatile platforms for multimedia and display applications, bringing personality and interactivity to a whole new world of products

Presents, the Freetode logs, MWex, C-S, Code/ESF, Osde/Marris, Old/Fre, Oxd/Fre, Oxd/Fre, Oxd/Fre, Default, No. Energy Ethilent Soldions logs, Xiveta, incluidoff, PSG, Preve/GMCC, Processor Raser, Quitt, Damas, Esthékaue, los Galdeaux logs, SauCare, Springer and Vortilla and training and Audio Exerciseductor, the QUIS-RFE Sin. OR-Anima, Savid, Savid, Savid, Free, Jaynessa, Millardy, Nice, Freehen et Animago, Millard Garosson, Millard, Freehen, Versill and Rystella Anima and Rystella Rystella Anima and Rystella Anima and Rystella Rystella Anima and Rystella Rystella Rystella Anima a

A Global Leader of Embedded Processing Solutions

Two Core Product Groups

- Automotive, Industrial & Multi-Market Solutions
 - Microcontrollers
 - Sensors
 - Analog
- Networking and Multimedia Solutions
- Communications Processors
- Applications Processors
- RF Power

>50 Year Legacy

>5,500 Engineers

>6,000 Patent Families

>18,000 Customers

Consumer

Pressails, the Pressails logs, AltiVer, C-B, ColeTEST, CodeWarrisr, CeldFine, CeldFine, C.Wan, the Energy Efficient Biolognes logs, Kinetis, mobile/27, PEG, PowerDUICC, Prosesser Espert, CeldD, Centre, Saladvaser, he Saladvaser, he Saladvase, Sando Landon, and VintGa are trademarks of Pressails Binistonducto, hm., Big. J.K. Put, A. Tin. OR. Antest, BieldD, Beittesb, ConvNet, Fessai, Lawracep, MaryW, WIC, Pathorn in a Package, GordO Converge, GUICC Engine, Read Pay, SMARTMOS, Town, TutoLink, Vyhink and Thimics are Manarah of Treasails Servicionature, ho: All other product or rankos names are the property of that respective convers. O 2015 Freesails Enroloculus, ho: All other product or sanks and the property of that respective convers. O 2015 Freesails Enroloculus (Saladvase), Saladvase, Sa

Freescale i.MX Applications Processors

Presents, the Freezete logs, MWex, 0.5, Coda/EEF, Oxfallance, OxfErie, CodaFee, Collars, No Every Ethiert Soldstore logs, Kineta, mobileD, PEO, PreveRBCC, Processor Raise, SociU, Carna, EstManae, Na Saldstare logs, SacCare, Spratney and VorlEx and Instructional Intercendulation, the Saldstare logs, Novi N, N

i.MX 6 Series At a Glance

Red indicates change from column to the left

i.MX 6SoloLite

- Single ARM® Cortex™-A9 at 1.0GHz
- 256KB L2 cache, Neon, VFPvd16, Trustzone
- 2D graphics
- 32-bit DDR3 and LPDDR2 at 400MHz
- Integrated EPD controller

i.MX 6Solo

- Single ARM Cortex-A9 at 1.0GHz
- 512KB L2 cache, Neon, VFPvd16, Trustzone
- 3D graphics with 1 shader
- 2D graphics
- 32-bit DDR3 and LPDDR2 at 400MHz
- Integrated EPD controller

\$

i.MX 6DualLite

- Dual ARM Cortex-A9 at 1.0GHz
- 512KB L2 cache, Neon, VFPvd16, Trustzone
- 3D graphics with 1 shader
- 2D graphics
- 64-bit DDR3 and 2channel 32-bit LPDDR2 at 400MHz
- Integrated EPD controller

- Dual ARM Cortex-A9 at 1/1.2GHz
- 1 MB L2 cache, Neon, VFPvd16, Trustzone
- 3D graphics with 4 shaders
- Two 2D graphics engines
- 64-bit DDR3 and 2channel 32-bit LPDDR2 at 533MHz
- Integrated SATA-II

i.MX 6Quad

- Quad ARM Cortex-A9 at 1.2GHz
- 1 MB L2 cache, Neon, VFPvd16, Trustzone
- 3D graphics with 4 shaders
- Two 2D graphics engines
- 64-bit DDR3 and 2channel 32-bit LPDDR2 at 533MHz
- Integrated SATA-II

i.MX 6 Series Highlights

- ARM Cortex-A9 based solutions ranging up to 1.2GHz
- HD 1080p encode and decode (except 6SL)
- 3D video playback in High definition (except 6SL)
- Low power 1080p playback at 350mW Integrated IO's that include HDMI v1.4, MIPI and LVDS display ports, MIPI camera, Gigabit Ethernet, multiple USB 2.0 and PCI-Express
- SW support: Google Android[™], Windows[®] Embedded CE, Ubuntu, Linux[®], Skype[™] Features vary by product family

Freescale i.MX 6: unmatched pin-compatibility

Processor Equies, Gordi, Carrina, Eshehasan, the Satehasan logi, StarCare, Byrghrany and Vontibe are traileration of Freezale Barcocoductor, to , Rey U.S. Par. 8 7n. OK Antar, Satehi, Seditack, Carrina, Fater, Layrenapa, Mayrill, MCC, Perform n e Freetage, OxfC Compe, 10:000 Free, Satehi, Fate, Satehi, Vyant and Entrain an Handmark of Freezale Barcocoductor, in Al. One productor or exerce names and the anaport. The Networks events a Forest Control Society and Satehing Sate

reescale [™]

Optimizing the Processor Platform

Why Dual or Quad Core?

JPEG decode + encode 1024x768

- All workloads implemented on CPU
- Does not use HW
 accelerators at all
- Done in order to test CPU capabilities

CPU Utilization (1, 2 and 4 cores)

Android Honeycomb Application	1 Core	2 Core	4 Core	Quad speedup vs Dual Core
JPEG	.2 fps	~1fps	~4.5 fps	4x faster
Browser Scroll Time	289	36.25	15	>50% faster
Browser FPS	3.45	27.58	64.4	>2x higher
Fish Tank FPS	~14-20fps	~18-25fps	~22-30fps	~25% higher

Watch it live! http://www.youtube.com/watch?v=JYFmBlk3itl#t=2m49s

User Interfaces – Characteristics and Implications

• UI content is inherently dynamic

- Unlike Games (which use pre-cached images/textures)
- User content can/will change at any time
- Therefore UI must refresh continuously in case new content emerges
- Requires high speed (533Mhz) and wide (64-bit) memory bus to ensure high frame rates

<image>

Recommend Dual Core + 64-bit Memory Bus

User Content is dynamic and (potentially) always changing. Especially true of streaming movies, YouTube, pictures, home moviews

User expects their 'latest' content to be instantly visible when scrolling (either touch or via 'remote with TV) Thumbnails must be visible and smooth as they scroll left to right.

User Interfaces – Characteristics and Implications

- UI requires high resolution support \rightarrow 1080p TV or LCD is now the norm
- 1080p30 fps content is becoming a standard offering from websites and streaming
- 1080p60 is around the corner
- Must be able to decode h.264 High Profile 1080p at high bitrates (for user content decode as well as for video streaming over the net)
- Must be able to support newer 1080p TVs. Consumer devices starting to hit >1080p LCDs (iPAD HD) Requires large memory space, fast display capabilities, in hardware rotation/scaling
- Advantage Freescale i.MX 6: up to 4XGA, dual display engines, 64bit memory space @ 533Mhz
- Access to fast CPU MIPS → used for complicated transforms to augment visual experience
 - CPU cores useful to add in additional transforms that don't map well to 3D unit
 - Morphing effects and some fluid dynamics for innovative UI effects
 - CPU cores can also be used to augment 3D unit and act as a 'secondary' 3D unit
 - Advantage Freescale i.MX 6: up to Quad core Cortex A9 at 1.2Ghz → nearly 5Ghz of CPU horsepower

Book cover icon "blowing in the wind" when scrolling fast to visually indicate speed. Can use CPU power to calculate

Saming Performance

- Benchmarking 3D game performance is tricky
 - Dependent upon the 3D HW, the CPU speed and memory BW
 - Must balance all three to get best performance
- Review websites use generally available benchmarks to rate tablets
 - Example: Basemark, NenaMark, Antutu, Quadrant

Taiji Girl (Basemark ES2) NenaMark2 3D Benchmark AnTuTu Benchmark

Quadrant Benchmark

	6Quad	6DualLite	6Solo	Tegra2
Taiji Girl	25.65 fps	9.2 fps	7.67 fps	6 fps
NenaMark	49.2	30.5	27.2	21
AnTuTu	9605	5583	4531	4904
Quadrant	4011	3005	2414	2559

Tile Based Rendering (Chunkers)

- Size of scene buffer <u>unknown</u> before rendering
 - Possible overflow if scene requires more data than expected
- Good rendering method for baseline GUI/3D Apps with smaller object count (less details)
 - More bandwidth efficient than FMR in simple (yesterday) use cases
- For next generation <u>dynamic</u> scenes in new and future applications with lots of objects, details and post-processing effects, tile based Chunkers require multipass memory access to constantly process changing 3D/scene data
 - PC Level Applications (Performance, Quality, Effects) → Tablets → Smartphones → Infotainment

All trademarks, logos, names and images are properties of their respective owners. All Rights Reserved

i.MX	GQuad	i.MX	6Dual	I.MX 6E	DualLite	i.MX 6	SSolo O	i.MX 6Sc	bloLite
Sleep	3.8mW	Sleep	3.8mW	Sleep	3.9mW	Sleep	3.1mW	Sleep	2.6mW
IDLE	227mW	IDLE	220mW*	IDLE	151mW	IDLE	143mW	IDLE	14.5mW
Video	867mW	Video	867mW	Video	772mW	Video	695mW	Video	n/a
3D	1.6W	3D	1.6W	3D	1.1W	3D	1.1W	3D	n/a
ТурМах	3.8W	ТурМах	n/a	ТурМах	2.4W	ТурМах	1.7W	ТурМах	n/a

n/a = results pending release june 30th

* 6Dual cores are estimated on 6Quad by clock gating two cores

- All results include power at the chip (cores, accelerators, peripherals, DDR I/O) as well as the power consumption of the external DDR3 ICs.
- Power application notes listed in the presentation contain the full breakouts for the chip and DDR3. Note that use of LPDDR2 memory will substantially reduce memory IC power consumption

Scalable Performance and Power Consumption 'One Series fits all'

i.MX 6 Series feature list (1/4)

Red indicates change from column to the left

	i.MX 6SoloLite	i.MX 6Solo	i.MX 6DualLite	i.MX 6Dual	i.MX 6Quad
Cortex-A9	1x 1GHz Cortex-A9 2400 DMIPS	1x 800MHz-1GHz Cortex-A9 2400 DMIPS	2x 800MHz-1GHz Cortex-A9 4800 DMIPS	2x 800MHz-1.2GHz Cortex-A9 5700 DMIPS	4x 800MHz-1.2GHz Cortex-A9 11500 DMIPS
Cortex-M4	-	-	-	-	-
On-Chip Memory	256KB L2 + 32K+32K I/D L1 + 256KB SRAM	512KB L2 + 32K+32K I/D L1 + 128KB SRAM	512KB L2 & 32K+32K I/D L1 + 128KB SRAM	1MB L2 + 32K+32K I/D L1 + 256KB SRAM	1MB L2 + 32K+32K I/D L1 + 256KB SRAM
Process Tech	40nm, LP	40nm, LP	40nm, LP	40nm, LP	40nm, LP
DRAM Interface	Up to 2GB 1x32 LP-DDR2, 1chx32 DDR3 or DDR3L	Up to 4GB 1x32 LP-DDR2, 1chx32 DDR3 or DDR3L	Up to 4GB 2x32 LP-DDR2, 1chx64 DDR3 or DDR3L	Up to 4GB 2x32 LP-DDR2, 1chx64 DDR3 or DDR3L	Up to 4GB 2x32 LP-DDR2, 1chx64 DDR3 or DDR3L
Max DDR Speed	400MHz (800MT/s)	400MHz (800MT/s)	400MHz (800MT/s)	533MHz (1066MT/s)	533MHz (1066MT/s)
	-	8-bit SLC/MLC NAND, 40-bit ECC, ONFI2.2	8-bit SLC/MLC NAND, 40-bit ECC, ONFI2.2	8-bit SLC/MLC NAND, 40-bit ECC, ONFI2.2	8-bit SLC/MLC NAND, 40-bit ECC, ONFI2.2
External Flash	16/32-bit NOR	16/32-bit NOR	16/32-bit NOR	16/32-bit NOR	16/32-bit NOR
Support	eMMC 4.4	eMMC 4.4	eMMC 4.4	eMMC 4.4	eMMC 4.4
	-	-	-	-	-
	4x SPI	4x SPI	4x SPI	5x SPI	5x SPI

Presents, the Freezowk logs, AtVive, D.S., Coda/EEF, Ondelfano, OxeFine, OxeFine, OxeFine, OxeFine, Status, Inv.Strang, District, Soldione legs, Xiana, included?, PEG, PreveOUCC. Processor Ecser, Confl, Carina, EditAcaus in: SaleKaus in Sold, Reicher, Byrghamy and Vorläum unsilenated or Freezowk Intercendulate: the July Strat. Br. Att Antar, Self R. Bedlach, Conflex, Fees, Layermann, Mayn, WPC, Facher in a Pachage, Oard Gonneya, UKCC Engen, Raing Pari, SMMTMOS, Treve, Tabolant, Vysnit and Timica and Sanakanska in Present Engenderation. In Att Antar Oxer, Facher in a Pachage, and the Inspective antaria: 5010 Freezowk Schoolante: Vysnit and Timica and Sanakanska in Present Engenderation. In Att Antar Oxer, Facher in and the Target and the Inspective antaria: 5010 Freezowk Schoolante: Vysnit

NPAX 6 Series feature list (3/4) Red indicates change from column to the left

	i.MX 6SoloLite	i.MX 6Solo	i.MX 6DualLite	i.MX 6Dual	i.MX 6Quad
Display Resolution (@60Hz)	WXGA (WXGA=1366x768)	2x WXGA	2x WXGA	2x 4XGA or 2x [1080p + WXGA] (4XGA=2048x1536)	2x 4XGA or 2x [1080p + WXGA]
Display Interfaces	2x Outputs 1x Parallel EPDC 	2x Outputs • 2x Parallel • 2x LVDS • HDMI • MIPI-DSI • EPDC	2x Outputs • 2x Parallel • 2x LVDS • HDMI • MIPI-DSI • EPDC	4x Outputs • 2x Parallel • 2x LVDS • HDMI • MIPI-DSI	4x Outputs • 2x Parallel • 2x LVDS • HDMI • MIPI-DSI
GPU 3D	-	Vivante GC880 • 53Mtri/s • 266Mpxl/s • OpenGL ES 1.1/2.0/3.0	Vivante GC880 • 53Mtri/s • 266Mpxl/s • OpenGL ES 1.1/2.0/3.0	Vivante GC2000 • 176Mtri/s • 1000Mpxl/s • OpenGL ES 1.1/2.0/3.0 • OpenCL 1.1 EP	Vivante GC2000 176Mtri/s 1000Mpxl/s OpenGL ES 1.1/2.0/3.0 OpenCL 1.1 EP
GPU 2D (Vector Graphics)	Vivante GC355 • 300Mpxl/s • OpenVG 1.1	via GPU 3D • OpenVG 1.1	via GPU 3D • OpenVG 1.1	Vivante GC355 300Mpxl/s OpenVG 1.1 	Vivante GC355 • 300Mpxl/s • OpenVG 1.1
GPU 2D (BLIT)	Vivante GC320 • 600Mpxl/s	Vivante GC320 • 600Mpxl/s	Vivante GC320 • 600Mpxl/s	Vivante GC320 • 600Mpxl/s	Vivante GC320 • 600Mpxl/s
Video Dec	SW Only	1080p30 + D1 MPEG-2, H.264 MVC, VC1, MPEG-4/Xvid, DivX 6, H.263, MJPEG, VP6 / WebM VP8	1080p30 + D1 MPEG-2, H.264 MVC, VC1, MPEG- 4/Xvid, DivX 6, H.263, MJPEG, VP6 / WebM VP8	1080p60 + D1 2x 1080p30 MPEG-2, H.264 MVC, VC1, MPEG-4/Xvid, DivX 6, H.263, MJPEG, VP6 / WebM VP8	1080p60 + D1 2x 1080p30 MPEG-2, H.264 MVC, VC1, MPEG-4/Xvid, DivX 6, H.263, MJPEG, VP6 / WebM VP8
Video Enc	-	1080p30 2x 720p H.264, H.263, MPEG- 4, MPEG-2, MJPEG	1080p30 2x 720p H.264, H.263, MPEG-4, MPEG-2, MJPEG	1080p30 2x 720p H.264, H.263, MPEG- 4, MPEG-2, MJPEG	1080p30 2x 720p H.264, H.263, MPEG-4, MPEG-2, MJPEG

Freescale i.MX 6 series Development Systems

SABRE Board for Smart Devices

P/N: MCIMX6Q-SDB

- Cost-effective (\$399), open source development platform
- Designed to simplify product evaluation

SABRE Platform for Smart Devices

P/N: MCIMX6Q-SDP MCIMX6DL-SDP

 Smart Device Marketfocused

CIOECUD

 Form-factor ready to accelerate design & time to market (\$999)

SABRE Platform for Automotive Infotainment

P/N: MCIMXABASEV1 MCIMX6SAICPU1 MCIMX6QAICPU1

- Automotive Market-focused
- Standard base board (\$699) and adaptable CPU card (\$799) system

Presents, the Freenance logs, AVWe, D.S. Code/EEF, CodeRamon, OxFFre, OxFere, OxRam, the Energy Ethinet Solutions logs, Kenta, mobileD, PGS, PreverQUCC, Processor Rayer, Card, Carna, Earbhauan, Ins Salekaure log, Stachur, Symptratery and Vorsilla are statienated or Freezonkauro, the July Star, E. Tr., Ott Antar, Stelfk, BedStack, Cardwar, Ress, Layweage, Mayor, MRC, Pathers e a Factage, Card, Compan, Rader Pay, Stathard Pay, Stathard Vandi and Tamica are Saderostic of Prevention Rennormation. In Conference on and are to proper time respective areas to 2010 Freezonka Deformation and and Tamica are Saderostic of Prevention Rennormation. In Conference on and are to proper time respective areas to 2010 Freezonka Deformation.

IN A Quad SABRE Lite Board (TO1.0 Silicon)

http://boundarydevices.com/products/sabre-lite-imx6-sbc/

Low Cost Community Board

- 1GByte of 64-bit wide DDR3 @ 532MHz
- Three display ports (24-bit RGB, LVDS, HDMI)
- Two camera ports (1xParallel, 1xMIP!)
- Serial ATA (SATA)
- Dual SDHC card slots (1 std, 1 micro)
- PCI express port
- Analog (headphone/mic) and Digital (HDMI) audio
- Compact size (3¼"x3¼")
- 10/100/1G Ethernet
- 10-pin JTAG interface
- 3 High speed USB ports (2xHost, 1xOTG)
- CAN port
- UART debug port
- I2C
- Purchase directly from Boundary Devices
 - PO, Credit Card or PayPal placed directly with Boundary Devices
 - Schematics and user manual available on Boundary website
- Additional supply partners available in Q3

SABRE-Lite will not be stocked, sold, or supported by Freescale All support from Boundary Devices, partners or IMXCommunity.org

Freescale EcoMAPS for i.MX Architectures

Presents the Presente logs, MWex, 0.5, Cost/EST, Ost/Marcin, Ost/Fra, Ost/F

Freescale Product Longevity Program

- The embedded market needs long-term product support
- Freescale has a longstanding track record of providing long-term production support for our products
- Freescale is pleased to introduce a formal product longevity program for the market segments we serve
 - For the automotive and medical segments, Freescale will make a broad range of program devices available for a minimum of 15 years
 - For all other market segments in which Freescale participates, Freescale will make a broad range of devices available for a minimum of 10 years
 - Life cycles begin at the time of launch
- A list of participating Freescale products is available at: www.freescale.com/productlongevity

SABRE Platform for Smart Devices (SDP)

Tools Support

debug/IDE tool chain

i.MX 6Quad 1GHz Cortex-A9 Processor i.MX 6DualLite 1GHz Cortex-A9 Processor

- Freescale MMPF0100 PMIC
- 1 GB DDR3 memory (non terminated)
- 3" x 7" 8-layer PCB

Display connectors

- Native 1024x768 LVDS display (comes with kit)
- 2nd LVDS connector
- Connector for 24 bit 4.3" 800x480 WVGA with 4-wire touch screen
- HDMI Connector
- MIPI DSI connector

Audio

- Wolfson Audio Codec
- · Microphone and headphone jacks
- Dual 1W Speakers

Expansion Connector

- Enables parallel LCD or HDMI output
- Camera CSI port signals
- I2C, SSI, SPI signals

Part Numbers:

Display (4.3"): WiFi: MCIMX6Q-SDP (\$999) MCIMX6DL-SDP (\$999)

MCIMX28LCD (\$199) Silex WiFi module

Connectivity

- 2x Full-size SD/MMC card slot
- 22-pin SATA connector
- 10/100/1000 Ethernet port
- 1x high-speed USB OTG port
- mPCI-e connector

Debug

- JTAG connector
- Serial to USB connector

Additional Features

- 3-axis Freescale accel
- GPS receiver
- Ambient Light Sensor
- eCompass
- Dual 5MP Cameras
- Power supply
- Battery Charger
- Battery connectors

OS Support

- Linux and Android IceCream Sandwich from Freescale;
- Others: support by 3rd parties

Presents, the Freeholds Eqs. MVNs, C.S., Codo/ESF, Cado/Marcin, CaleFre, CodeFre, C.Mais, No Everyy Ethiant Soldions legs, Nauta, endeddT, PSG, PreverQUCC, Processor Essee, CortD, Sonia, EsthAnama, Inic StatAnama, Sing StatChere, Sprytein y and VortD, and transitional Exercised Exercised Sciences and Antari, Self-R, Beddack, Corelev, Freesa, Layerseyn, Mayri, MRC, Pathone is a Pathage, CortG Converge, CuRC: Engine Read, Pathones Cortex, Engine Read, Pathones Cortex, Cortex, Freeda, Layerseyn, Marcine Sciences Cortex, Freeda, Layerseyn, Mayri, MRC, Pathones a Pathage, Carto, Converge, CuRC: Converge, Carto, Co

Lauterbach, ARM (DS-5), Macraigor

Android Roadmap

