
Microchip Technology - ATMEGA88PA-15MZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-QFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega88pa-15mz

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega88pa-15mz-4434945
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

3. Automotive Quality Grade

The Atmel® ATmega48PA/88PA/168PA have been developed and manufactured according to the most stringent
requirements of the international standard ISO-TS-16949. This data sheet contains limit values extracted from the results of
extensive characterization (temperature and voltage).

The quality and reliability of the Atmel ATmega48PA/88PA/168PA have been verified during regular product qualification as
per AEC-Q100 grade 1 (–40°C to +125°C).

4. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.

Note: 1.

5. Data Retention

Reliability qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at
85°C.

6. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code
examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors
include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C
compiler documentation for more details.

For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced
with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and
“CBR”.

Table 3-1. Temperature Grade Identification for Automotive Products

Temperature (°C) Temperature Identifier Comments

–40; +125 Z Full automotive temperature range
7ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

The next code examples show assembly and C functions for reading the EEPROM. The examples assume that interrupts
are controlled so that no interrupts will occur during execution of these functions.

8.6.4 GPIOR2 – General Purpose I/O Register 2

8.6.5 GPIOR1 – General Purpose I/O Register 1

8.6.6 GPIOR0 – General Purpose I/O Register 0

Assembly Code Example
EEPROM_read:

; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_read
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Start eeprom read by writing EERE
sbi EECR,EERE
; Read data from Data Register
in r16,EEDR
ret

C Code Example
unsigned char EEPROM_read(unsigned int uiAddress)
{

/* Wait for completion of previous write */
while(EECR & (1<<EEPE))
;
/* Set up address register */
EEAR = uiAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from Data Register */
return EEDR;

}

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
23ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

12. Interrupts

This section describes the specifics of the interrupt handling as performed in the Atmel® ATmega48PA/88PA/168PA. For a
general explanation of the AVR® interrupt handling, refer to Section 7.7 “Reset and Interrupt Handling” on page 14.

The interrupt vectors in the Atmel ATmega48PA, Atmel ATmega88PA, and ATmega168PA are generally the same, with the
following differences:

● Each interrupt vector occupies two instruction words in Atmel ATmega168PA and one instruction word in the Atmel
ATmega48PA and Atmel ATmega88PA.

● Atmel ATmega48PA does not have a separate boot loader section. In the Atmel ATmega88PA, and Atmel
ATmega168PA, the reset vector is affected by the BOOTRST fuse, and the interrupt vector start address is affected
by the IVSEL bit in MCUCR.

12.1 Interrupt Vectors in Atmel ATmega48PA

Table 12-1. Reset and Interrupt Vectors in ATmega48PA

Vector No. Program Address Source Interrupt Definition

1 0x000 RESET
External pin, power-on reset, brown-out reset and watchdog system
reset

2 0x001 INT0 External interrupt request 0

3 0x002 INT1 External interrupt request 1

4 0x003 PCINT0 Pin change interrupt request 0

5 0x004 PCINT1 Pin change interrupt request 1

6 0x005 PCINT2 Pin change interrupt request 2

7 0x006 WDT Watchdog time-out interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 compare match A

9 0x008 TIMER2 COMPB Timer/Counter2 compare match B

10 0x009 TIMER2 OVF Timer/Counter2 overflow

11 0x00A TIMER1 CAPT Timer/Counter1 capture event

12 0x00B TIMER1 COMPA Timer/Counter1 compare match A

13 0x00C TIMER1 COMPB Timer/coutner1 compare match B

14 0x00D TIMER1 OVF Timer/Counter1 overflow

15 0x00E TIMER0 COMPA Timer/Counter0 compare match A

16 0x00F TIMER0 COMPB Timer/Counter0 compare match B

17 0x010 TIMER0 OVF Timer/Counter0 overflow

18 0x011 SPI, STC SPI serial transfer complete

19 0x012 USART, RX USART Rx complete

20 0x013 USART, UDRE USART, data register empty

21 0x014 USART, TX USART, Tx complete

22 0x015 ADC ADC conversion complete

23 0x016 EE READY EEPROM ready

24 0x017 ANALOG COMP Analog comparator

25 0x018 TWI 2-wire serial interface

26 0x019 SPM READY Store program memory ready
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

50

14.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction
can be used to toggle one single bit in a port.

14.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an intermediate
state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the
pull-up enabled state is fully acceptable, as a high-impedance environment will not notice the difference between a strong
high driver and a pull-up. If this is not the case, the PUD bit in the MCUCR register can be set to disable all pull-ups in all
ports.

Switching between input with pull-up and output low generates the same problem. The user must use either the tri-state
({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 14-1 summarizes the control signals for the pin value.

14.2.4 Reading the Pin Value

Independent of the setting of data direction bit DDxn, the port pin can be read through the PINxn register bit. As shown in
Figure 14-2 on page 65, the PINxn register bit and the preceding latch constitute a synchronizer. This is needed to avoid
metastability if the physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 14-3
shows a timing diagram of the synchronization when reading an externally applied pin value. The maximum and minimum
propagation delays are denoted tpd,max and tpd,min respectively.

Figure 14-3. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is
low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH” signal. The signal
value is latched when the system clock goes low. It is clocked into the PINxn register at the succeeding positive clock edge.
As indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed between ½ and 1½
system clock period depending upon the time of assertion.

Table 14-1. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output low (sink)

1 1 X Output No Output high (source)

SYSTEM CLK

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX XXX

0x00 0xFF

in r17, PINx

tpd, max

tpd, min
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

66

14.3.3 Alternate Functions of Port D

The port D pins with alternate functions are shown in Table 14-9.

The alternate pin configuration is as follows:

• AIN1/OC2B/PCINT23 – Port D, Bit 7

AIN1, analog comparator negative input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

PCINT23: Pin change interrupt source 23. The PD7 pin can serve as an external interrupt source.

Table 14-8. Overriding Signals for Alternate Functions in PC3...PC0

Signal
Name

PC3/ADC3/
PCINT11

PC2/ADC2/
PCINT10

PC1/ADC1/
PCINT9

PC0/ADC0/
PCINT8

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
PCINT11  PCIE1 +

ADC3D
PCINT10  PCIE1 +

ADC2D
PCINT9  PCIE1 +

ADC1D
PCINT8  PCIE1 +

ADC0D

DIEOV PCINT11  PCIE1 PCINT10  PCIE1 PCINT9  PCIE1 PCINT8  PCIE1

DI PCINT11 INPUT PCINT10 INPUT PCINT9 INPUT PCINT8 INPUT

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

Table 14-9. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7
AIN1 (analog comparator negative input)

PCINT23 (pin change interrupt 23)

PD6
AIN0 (analog comparator positive input)

OC0A (Timer/Counter0 output compare match A output)
PCINT22 (pin change interrupt 22)

PD5
T1 (Timer/Counter 1 external counter input)

OC0B (Timer/Counter0 output compare match B output)
PCINT21 (pin change interrupt 21)

PD4
XCK (USART external clock input/output)

T0 (Timer/Counter 0 external counter input)
PCINT20 (pin change interrupt 20)

PD3
INT1 (external interrupt 1 input)

OC2B (Timer/Counter2 output compare match B output)
PCINT19 (pin change interrupt 19)

PD2
INT0 (external interrupt 0 input)

PCINT18 (pin change interrupt 18)

PD1
TXD (USART output pin)

PCINT17 (pin change interrupt 17)

PD0
RXD (USART input pin)

PCINT16 (pin change interrupt 16)
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

76

15.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT0 with the output compare registers (OCR0A and OCR0B). Whenever
TCNT0 equals OCR0A or OCR0B, the comparator signals a match. A match will set the output compare flag (OCF0A or
OCF0B) at the next timer clock cycle. If the corresponding interrupt is enabled, the output compare flag generates an output
compare interrupt. The output compare flag is automatically cleared when the interrupt is executed. Alternatively, the flag
can be cleared by software by writing a logical one to its I/O bit location. The waveform generator uses the match signal to
generate an output according to operating mode set by the WGM02:0 bits and compare output mode (COM0x1:0) bits. The
max and bottom signals are used by the waveform generator for handling the special cases of the extreme values in some
modes of operation (Section 15.7 “Modes of Operation” on page 86).

Figure 15-3 shows a block diagram of the output compare unit.

Figure 15-3. Output Compare Unit, Block Diagram

The OCR0x registers are double buffered when using any of the pulse width modulation (PWM) modes. For the normal and
clear timer on compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCR0x compare registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR0x register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCR0x buffer register, and if double buffering is disabled the CPU will access the OCR0x directly.

15.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the force
output compare (FOC0x) bit. Forcing compare match will not set the OCF0x flag or reload/clear the timer, but the OC0x pin
will be updated as if a real compare match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set,
cleared or toggled).

15.5.2 Compare Match Blocking by TCNT0 Write

All CPU write operations to the TCNT0 register will block any compare match that occur in the next timer clock cycle, even
when the timer is stopped. This feature allows OCR0x to be initialized to the same value as TCNT0 without triggering an
interrupt when the Timer/Counter clock is enabled.

OCFnx (Int. Req.)

= (8-bit Comparator)

OCRnx

Waveform Generator

TCNTn

OCnx

top

bottom

FOCn

WGMn1:0 COMnX1:0

DATA BUS
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

84

Figure 15-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast PWM mode where OCR0A is
TOP.

Figure 15-11.Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Prescaler (fclk_I/O/8)

15.9 Register Description

15.9.1 TCCR0A – Timer/Counter Control Register A

• Bits 7:6 – COM0A1:0: Compare Match Output A Mode

These bits control the output compare pin (OC0A) behavior. If one or both of the COM0A1:0 bits are set, the OC0A output
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OC0A pin must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the WGM02:0 bit setting. Table 15-2
shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to a normal or CTC mode (non-PWM).

TOP - 1

clkI/O

(clkI/O/8)

TCNTn
(CTC)

OCRnx

OCFnx

clkTn

TOP BOTTOM

TOP

BOTTOM + 1

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 TCCR0A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-2. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on compare match

1 0 Clear OC0A on compare match

1 1 Set OC0A on compare match
91ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

15.9.2 TCCR0B – Timer/Counter Control Register B

• Bit 7 – FOC0A: Force Output Compare A

The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR0B is written when operating
in PWM mode. When writing a logical one to the FOC0A bit, an immediate compare match is forced on the waveform
generation unit. The OC0A output is changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is
implemented as a strobe. Therefore it is the value present in the COM0A1:0 bits that determines the effect of the forced
compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6 – FOC0B: Force Output Compare B

The FOC0B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR0B is written when operating
in PWM mode. When writing a logical one to the FOC0B bit, an immediate compare match is forced on the waveform
generation unit. The OC0B output is changed according to its COM0B1:0 bits setting. Note that the FOC0B bit is
implemented as a strobe. Therefore it is the value present in the COM0B1:0 bits that determines the effect of the forced
compare.

A FOC0B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR0B as TOP.

The FOC0B bit is always read as zero.

• Bits 5:4 – Reserved

These bits are reserved bits in the Atmel® ATmega48PA/88PA/168PA and will always read as zero.

• Bit 3 – WGM02: Waveform Generation Mode

See the description in the Section 15.9.1 “TCCR0A – Timer/Counter Control Register A” on page 91.

• Bits 2:0 – CS02:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) FOC0A FOC0B – – WGM02 CS02 CS01 CS00 TCCR0B

Read/Write W W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-9. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (timer/ccounter stopped)

0 0 1 clkI/O/(no prescaling)

0 1 0 clkI/O/8 (from prescaler)

0 1 1 clkI/O/64 (from prescaler)

1 0 0 clkI/O/256 (from prescaler)

1 0 1 clkI/O/1024 (from prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

94

15.9.3 TCNT0 – Timer/Counter Register

The Timer/Counter register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter.
Writing to the TCNT0 register blocks (removes) the compare match on the following timer clock. Modifying the counter
(TCNT0) while the counter is running, introduces a risk of missing a compare match between TCNT0 and the OCR0x
registers.

15.9.4 OCR0A – Output Compare Register A

The output compare register A contains an 8-bit value that is continuously compared with the counter value (TCNT0). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OC0A pin.

15.9.5 OCR0B – Output Compare Register B

The output compare register B contains an 8-bit value that is continuously compared with the counter value (TCNT0). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OC0B pin.

15.9.6 TIMSK0 – Timer/Counter Interrupt Mask Register

• Bits 7:3 – Reserved

These bits are reserved bits in the Atmel® ATmega48PA/88PA/168PA and will always read as zero.

• Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIE0B bit is written to one, and the I-bit in the status register is set, the Timer/Counter compare match B interrupt
is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter occurs, i.e., when the OCF0B bit is
set in the Timer/Counter interrupt flag register – TIFR0.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIE0A bit is written to one, and the I-bit in the status register is set, the Timer/Counter0 compare match A
interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter0 occurs, i.e., when the
OCF0A bit is set in the Timer/Counter 0 interrupt flag register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the status register is set, the Timer/Counter0 overflow interrupt is
enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in
the Timer/Counter 0 interrupt flag register – TIFR0.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) OCR0B[7:0] OCR0B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6E) – – – – – OCIE0B OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
95ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

The general I/O port function is overridden by the output compare (OC1x) from the waveform generator if either of the
COM1x1:0 bits are set. However, the OC1x pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The data direction register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x
value is visible on the pin. The port override function is generally independent of the waveform generation mode, but there
are some exceptions. Refer to Table 16-2 on page 116, Table 16-3 on page 117 and Table 16-4 on page 117 for details.

The design of the output compare pin logic allows initialization of the OC1x state before the output is enabled. Note that
some COM1x1:0 bit settings are reserved for certain modes of operation. See
Section 16.11 “Register Description” on page 116

The COM1x1:0 bits have no effect on the input capture unit.

16.8.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM1x1:0 = 0 tells the waveform generator that no action on the OC1x register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 16-2 on page 116. For fast PWM mode refer to
Table 16-3 on page 117, and for phase correct and phase and frequency correct PWM refer to Table 16-4 on page 117.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC1x strobe bits.

16.9 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGM13:0) and compare output mode (COM1x1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COM1x1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM1x1:0 bits
control whether the output should be set, cleared or toggle at a compare match (See
Section 16.8 “Compare Match Output Unit” on page 107)

For detailed timing information refer to Section 16.10 “Timer/Counter Timing Diagrams” on page 114.

16.9.1 Normal Mode

The simplest mode of operation is the normal mode (WGM13:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value
(MAX = 0xFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter overflow flag (TOV1)
will be set in the same timer clock cycle as the TCNT1 becomes zero. The TOV1 flag in this case behaves like a 17th bit,
except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV1
flag, the timer resolution can be increased by software. There are no special cases to consider in the normal mode, a new
counter value can be written anytime.

The input capture unit is easy to use in normal mode. However, observe that the maximum interval between the external
events must not exceed the resolution of the counter. If the interval between events are too long, the timer overflow interrupt
or the prescaler must be used to extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

108

The following code examples show how to initialize the SPI as a Slave and how to perform a simple reception.

Assembly Code Example(1)

SPI_SlaveInit:
; Set MISO output, all others input
ldi r17,(1<<DD_MISO)
out DDR_SPI,r17
; Enable SPI
ldi r17,(1<<SPE)
out SPCR,r17
ret

SPI_SlaveReceive:
; Wait for reception complete
in r16, SPSR
sbrs r16, SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in r16,SPDR
ret

C Code Example(1)

void SPI_SlaveInit(void)
{

/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO);
/* Enable SPI */
SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)
{

/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)))

;
/* Return Data Register */
return SPDR;

}

Note: 1. See ”About Code Examples” on page 7.
147ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

20.6.2 Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in UCSRnB before the low byte of the
character is written to UDRn. The following code examples show a transmit function that handles 9-bit characters. For the
assembly code, the data to be sent is assumed to be stored in registers R17:R16.

The ninth bit can be used for indicating an address frame when using multi processor communication mode or for other
protocol handling as for example synchronization.

Assembly Code Example(1)(2)

USART_Transmit:
; Wait for empty transmit buffer
in r16, UCSRnA
sbrs r16, UDREn
rjmp USART_Transmit
; Copy 9th bit from r17 to TXB8
cbi UCSRnB,TXB8
sbrc r17,0
sbi UCSRnB,TXB8
; Put LSB data (r16) into buffer, sends the data
out UDRn,r16
ret

C Code Example(1)(2)

void USART_Transmit(unsigned int data)
{

/* Wait for empty transmit buffer */
while (!(UCSRnA & (1<<UDREn))))
;
/* Copy 9th bit to TXB8 */
UCSRnB &= ~(1<<TXB8);
if (data & 0x0100)

UCSRnB |= (1<<TXB8);
/* Put data into buffer, sends the data */
UDRn = data;

}

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the contents of the
UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Register is used after initialization.

2. See Section 6. “About Code Examples” on page 7.
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

160

Table 20-6. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 207 0.2% 416 –0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 –0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 –0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 –3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 –7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 –3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 –7.8% 5 –7.8% 3 –7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 –7.8% 1 –7.8% 3 –7.8%

1M – – 0 0.0% – – – – 0 –7.8% 1 –7.8%

Max.(1) 0.5Mbps 1Mbps 691.2kbps 1.3824Mbps 921.6kbps 1.8432Mbps

Note: 1. UBRRn = 0, Error = 0.0%

Table 20-7. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud Rate (bps)

fosc = 16.0000MHz

U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error

2400 416 –0.1% 832 0.0%

4800 207 0.2% 416 –0.1%

9600 103 0.2% 207 0.2%

14.4k 68 0.6% 138 –0.1%

19.2k 51 0.2% 103 0.2%

28.8k 34 –0.8% 68 0.6%

38.4k 25 0.2% 51 0.2%

57.6k 16 2.1% 34 –0.8%

76.8k 12 0.2% 25 0.2%

115.2k 8 –3.5% 16 2.1%

230.4k 3 8.5% 8 –3.5%

250k 3 0.0% 7 0.0%

0.5M 1 0.0% 3 0.0%

1M 0 0.0% 1 0.0%

Max.(1) 1Mbps 2Mbps

Note: 1. UBRRn = 0, Error = 0.0%
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

170

5. The application software should now examine the value of TWSR, to make sure that the address packet was suc-
cessfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise, the
application software might take some special action, like calling an error routine. Assuming that the status code is
as expected, the application must load a data packet into TWDR. Subsequently, a specific value must be written to
TWCR, instructing the TWI hardware to transmit the data packet present in TWDR. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written. Writing a one to TWINT
clears the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated with a status
code indicating that the data packet has successfully been sent. The status code will also reflect whether a slave
acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the data packet was success-
fully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise, the application
software might take some special action, like calling an error routine. Assuming that the status code is as
expected, the application must write a specific value to TWCR, instructing the TWI hardware to transmit a STOP
condition. Which value to write is described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate transmission of the STOP
condition. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. These can be summarized as
follows:

● When the TWI has finished an operation and expects application response, the TWINT Flag is set. The SCL line is
pulled low until TWINT is cleared.

● When the TWINT flag is set, the user must update all TWI Registers with the value relevant for the next TWI bus
cycle. As an example, TWDR must be loaded with the value to be transmitted in the next bus cycle.

● After all TWI register updates and other pending application software tasks have been completed, TWCR is written.
When writing TWCR, the TWINT bit should be set. Writing a one to TWINT clears the flag. The TWI will then
commence executing whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code below assumes that several
definitions have been made, for example by using include-files.
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

190

Figure 22-18. Formats and States in the Slave Transmitter Mode

22.7.5 Miscellaneous States

There are two status codes that do not correspond to a defined TWI state, see Table 22-7.

Status 0xF8 indicates that no relevant information is available because the TWINT flag is not set. This occurs between other
states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire serial bus transfer. A bus error occurs when a START or
STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions are during the serial
transfer of an address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a
bus error, the TWSTO flag must set and TWINT must be cleared by writing a logic one to it. This causes the TWI to enter the
not addressed Slave mode and to clear the TWSTO Flag (no other bits in TWCR are affected). The SDA and SCL lines are
released, and no STOP condition is transmitted.

S
Reception of the own
slave address and one
or more data bytes

Last data byte transmitted.
Switched to not adressed
slave (TWEA = “0”

Arbitration lost as master
and addressed as slave

From master to slave Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus.
The prescaler bits are zero or masked to zero

From slave to master

SLA R A DATAA P or S

A

DATA

All 1’s

ADATA

$A8

$B0

$B8 $C0

$C8

A

P or SA

n

Table 22-7. Miscellaneous States

Status Code

(TWSR)

Prescaler
Bits
are 0

Status of the 2-wire
Serial Bus and 2-wire

Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI HardwareTo/from TWDR

To TWCR

STA STO TWINT TWEA

0xF8
No relevant state

information available;
TWINT = “0”

No TWDR
action

No TWCR action Wait or proceed current transfer

0x00
Bus error due to an illegal

START or STOP
condition

No TWDR
action

0 1 1 X

Only the internal hardware is affected,
no STOP condition is sent on the bus.
In all cases, the bus is released and
TWSTO is cleared.
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

204

26.2.2 Reading the Fuse and Lock Bits from Software

It is possible to read both the fuse and lock bits from software. To read the Lock bits, load the Z-pointer with 0x0001 and set
the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three CPU cycles after the
BLBSET and SELFPRGEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the destination register. The
BLBSET and SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLBSET and SELFPRGEN are
cleared, LPM will work as described in the instruction set manual.

The algorithm for reading the fuse low byte is similar to the one described above for reading the lock bits. To read the fuse
low byte, load the Z-pointer with 0x0000 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM instruction
is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the fuse low
byte (FLB) will be loaded in the destination register as shown below.See Table 28-5 on page 253 for a detailed description
and mapping of the fuse low byte.

Similarly, when reading the fuse high byte (FHB), load 0x0003 in the Z-pointer. When an LPM instruction is executed within
three cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the fuse high byte will be loaded
in the destination register as shown below. See Table 28-5 on page 253 for detailed description and mapping of the
extended fuse byte.

Similarly, when reading the Extended Fuse byte (EFB), load 0x0002 in the Z-pointer. When an LPM instruction is executed
within three cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the Extended Fuse byte will
be loaded in the destination register as shown below. See Table 28-5 on page 253 for detailed description and mapping of
the extended fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and lock bits that are unprogrammed, will be read as
one.

26.2.3 Preventing Flash Corruption

During periods of low VCC, the flash program can be corrupted because the supply voltage is too low for the CPU and the
Flash to operate properly. These issues are the same as for board level systems using the Flash, and the same design
solutions should be applied.

A flash program corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to
the Flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if
the supply voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal brown-out detector (BOD) if the operating voltage matches the detection level. If not, an
external low VCC reset protection circuit can be used. If a reset occurs while a write operation is in progress, the
write operation will be completed provided that the power supply voltage is sufficient.

2. Keep the AVR core in power-down sleep mode during periods of low VCC. This will prevent the CPU from attempt-
ing to decode and execute instructions, effectively protecting the SPMCSR register and thus the flash from
unintentional writes.

Bit 7 6 5 4 3 2 1 0

Rd – – – – – – LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
233ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcall Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
rjmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not

ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcall Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPRGEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
235ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

27.7 Addressing the Flash during Self-programming

The Z-pointer is used to address the SPM commands.

Since the flash is organized in pages (see Table 28-9 on page 255), the program counter can be treated as having two
different sections. One section, consisting of the least significant bits, is addressing the words within a page, while the most
significant bits are addressing the pages. This is1 shown in Figure 27-3. Note that the page erase and page write operations
are addressed independently. Therefore it is of major importance that the boot loader software addresses the same page in
both the page erase and page write operation. Once a programming operation is initiated, the address is latched and the
Z-pointer can be used for other operations.

The only SPM operation that does not use the Z-pointer is setting the boot loader lock bits. The content of the Z-pointer is
ignored and will have no effect on the operation. The LPM instruction does also use the Z-pointer to store the address. Since
this instruction addresses the Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 27-3. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 27-3 are listed in Table 27-9 on page 247.

Table 27-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset vector = Application reset (address 0x0000)

0 Reset vector = Boot loader reset (see Table 27-7 on page 247)

Note: 1. “1” means unprogrammed, “0” means programmed

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

BIT

PAGEMSBPCMSB

ZPAGEMSBZPCMSB 0115
Z-REGISTER

PROGRAM
COUNTER

WORD ADDRESS
WITHIN PAGE

PAGE ADDRESS
WITHIN THE FLASH

0

PCWORDPCPAGE

02

01

00

PAGEEND

PCWORD [PAGEMSB:0]
Page

Program Memory

Instruction Word

Page
241ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

Figure 30-54. Active Supply Current versus Frequency (1-16MHz)

30.3.2 Idle Supply Current

Figure 30-55. Idle Supply Current versus Low Frequency (0.1-1.0MHz)

Figure 30-56. Idle Supply Current versus Frequency (1-16MHz)

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

14

16

18

20

12

10

8

6

4

2

0

I C
C
 (m

A
)

6.0
5.5
5.0
4.5
4.0
3.6
3.3
3.0
2.7
2.4
2.2
2.0
1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

0.14

0.16

0.18

0.2

0.12

0.1

0.08

0.06

0.04

0.02

0

I C
C
 (m

A
)

6.0
5.5
5.0
4.5
4.0
3.6
3.3
3.0
2.7
2.4
2.2
2.0
1.8

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

6

5

4

3

2

1

0

I C
C
 (m

A
)

6.0

5.5
5.0

4.5

4.0
3.6

3.3

3.0
2.7

2.4

2.2
2.0

1.8
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

300

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 209

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 208

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register 206

(0xB7) Reserved – – – – – – – –

(0xB6) ASSR – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB 142

(0xB5) Reserved – – – – – – – –

(0xB4) OCR2B Timer/Counter2 Output Compare Register B 141

(0xB3) OCR2A Timer/Counter2 Output Compare Register A 141

(0xB2) TCNT2 Timer/Counter2 (8-bit) 141

(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20 140

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 137

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

31. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel
ATmega48PA/88PA/168PA is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Only valid for the Atmel ATmega48PA/88PA/168PA.

6. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA
ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14

312

