
Parallax Inc. - BS2-IC Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Active

Module/Board Type MCU Core

Core Processor PIC16C57C

Co-Processor -

Speed 20MHz

Flash Size 2KB EEPROM

RAM Size 32B

Connector Type -

Size / Dimension 1.2" x 0.6" (30mm x 15mm)

Operating Temperature 0°C ~ 70°C

Purchase URL https://www.e-xfl.com/product-detail/parallax/bs2-ic

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/bs2-ic-4509819
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

Table of Contents · Page i

Table of Contents

Preface... iii
Author’s Note ... iii
Getting the Most from StampWorks..v
Steps to Success ..v

Preparing the StampWorks Lab ... 1
StampWorks Kit Contents...1
Setting Up the Hardware and Software ..2
Notes on Using Integrated Circuits in StampWorks Experiments...................................9

Programming Essentials... 11
Contents of a Working Program ...11
Branching – Redirecting Program Flow ..12
Looping – Running Code Again and Again...14
Subroutines – Reusable Code that Saves Program Space..16

The Elements of PBASIC Style.. 19
Time to Experiment .. 25

Learn the Programming Concepts..25
Building the Projects ...25
What to do Between Projects ...25
Experiment #1: Flash an LED...26
Experiment #2: Flash an LED (Advanced) ...29
Experiment #3: Display a Counter with LEDs...33
Experiment #4: Science Fiction LED Display ...36
Experiment #5: LED Graph (Dot or Bar) ...40
Experiment #6: A Simple Game ...46
Experiment #7: A Lighting Controller ..51

Building Circuits on Your Own.. 57
Using 7-Segment LED Displays .. 59

Experiment #8: A Single-Digit Counter ...60
Experiment #9: A Digital Die...63
Experiment #10: A Digital Clock ...67

Using Character LCDs ... 73
Experiment #11: Basic LCD Demonstration ...75
Experiment #12: Creating Custom LCD Characters...82
Experiment #13: Reading the LCD RAM ..88

Page iv ·StampWorks

Among the changes that affect this edition of StampWorks is an updated PBASIC
language: PBASIC 2.5. For those that come from a PC programming background,
PBASIC 2.5 will make the transition to embedded programming a bit easier to deal
with. And what I’m especially excited about is a new development platform: the
Parallax Professional Development Board. My colleague, John Barrowman, with
feedback from customers and Parallax staff alike, put about all of the features we
would ever want into one beautiful product. For those of you have an NX-1000 (any
of the variants), don’t worry; most of the experiments will run on it without major
modification.

Finally, as far as the text goes, many of the project updates are a direct result of
those that have come before you, and you, my friend, have the opportunity to affect
future updates. Please, if you ever have a question, comment, or suggestion, feel
free to e-mail them to Editor@parallax.com.

Page 12 · StampWorks

BRANCHING – REDIRECTING PROGRAM FLOW

A branching instruction is one that causes the flow of the program to change from its
linear path. In other words, when the program encounters a branching instruction, it
will, in almost all cases, not be running the next [linear] line of code. The program
will usually go somewhere else, often creating a program loop. There are two
categories of branching instructions: unconditional and conditional. PBASIC has two
instructions, GOTO and GOSUB that cause unconditional branching.

Here’s an example of an unconditional branch using GOTO:

Label:
 statement 1
 statement 2
 statement 3
 GOTO Label

We call this an unconditional branch because it always happens. GOTO redirects the
program to another location. The location is specified as part of the GOTO instruction
and is called an address. Remember that addresses start a line of code and are
followed by a colon (:). You’ll frequently see GOTO at the end of the main body of
code, forcing the program statements to run again.

Conditional branching will cause the program flow to change under a specific set of
circumstances. The simplest conditional branching is done with an IF-THEN
construct. PBASIC includes two distinct versions of IF-THEN; the first is used
specifically to redirect program flow to another point based on a tested condition.

Take a look at this listing:

Start:
 statement 1
 statement 2
 statement 3
 IF (condition) THEN Start

In this example, statements 1- 3 will run at least once and then continue to run as
long as the condition evaluates as True. When required, the condition can be tested
prior to the code statements:

Programming Essentials · Page 13

Start:
 IF (condition) THEN
 statement 1
 statement 2
 statement 3
 ENDIF

Note that the code statements are nested in an IF-THEN-ENDIF structure which
does not require a branch label. If the condition evaluates as False, the program will
continue at the line that follows ENDIF. Another use of this conditional structure is
to add the ELSE clause:

Start:
 IF (condition) THEN
 statement 1
 statement 2
 statement 3
 ELSE
 statement 4
 statement 5
 statement 6
 ENDIF

If the condition evaluates as True then statements 1 – 3 will run, otherwise
statements 4 – 6 will run.

As your requirements become more sophisticated, you’ll find that you’ll want your
program to branch to any number of locations based on the value of a control
variable. One approach is to use multiple IF-THEN constructs.

 IF (index = 0) THEN Label_0
 IF (index = 1) THEN Label_1
 IF (index = 2) THEN Label_2

This approach is valid and does get used. Thankfully, PBASIC has a special command
called BRANCH that allows a program to jump to any number of addresses based on
the value of an index variable. BRANCH is a little more complicated in its setup, but
very powerful in that it can replace multiple IF-THEN statements. BRANCH requires
a control (index) variable and a list of addresses

The previous listing can be replaced with one line of code:

 BRANCH index, [Label_0, Label_1, Label_2]

Page 28 · StampWorks

For example, this:

 HIGH 0

… actually performs the same function as:

 DIR0 = 1 ' make P0 an output
 OUT0 = 1 ' set P0 high

but does it with just one line of code. Conservation of program space is an
important aspect of microcontroller programming, and when we can save code space
we should – we’ll probably want or need that space later.

Write Code like a Pro

Note that even in this very simple program, we are following the style guidelines
detailed in “The Elements of PBASIC Style”. By using this professional style, the
program becomes somewhat self-documenting, requiring fewer comments, and it
allows the program to be modified far more easily. If, for example, we wanted to
change the LED pin assignment or the flash rate, we would only have to make small
changes to the declarations sections and not have to edit the entire listing. When
our programs grow to several hundred lines, using cleverly-named pin definitions and
constant values will save us a lot of time and frustration.

A very common beginner’s error is this:

 OUTPUT 0

 HIGH 0

There is no need to manually configure the pin as an output as this function is part of the
HIGH command. While doing this won’t harm the program, it does consume valuable code
space. There are very few occasions when INPUT and OUTPUT are required for proper
program operation, as most PBASIC commands handle setting the pin’s I/O state.

Page 38 · StampWorks

Behind the Scenes

This experiment demonstrates the ability to directly manipulate the BASIC Stamp
output pins just as we could any other variable. This program also demonstrates
conditional looping by adding pre- and post-loop tests to DO-LOOP.

The program starts by initializing the LEDs to %00000001 – this turns on the LED
connected to P0. Then we drop into the first DO-LOOP where the value of LEDs is
immediately tested. If the value of LEDs (currently %00000001) is less than
%10000000 then the code within the DO-LOOP is allowed to run, otherwise the
program continues at the line that follows LOOP.

Since LEDs is initially less than the test value, the program drops into the loop where
it runs a small PAUSE, then the lit LED is moved to the left with the << (shift-left)
operator. Shifting left by one bit performs the same function as multiplying by two,
albeit far more efficiently. After the shift the program goes back to the DO WHILE
line where the value of LEDs (now %00000010) is tested again.

After seven passes through the upper loop, LEDs will have a value of %10000000
and the test will fail (result will be False); this will force the program to jump to the
top of the second DO-LOOP.

The second DO-LOOP is nearly identical to the first except that the value of LEDs is
shifted right one bit with >> (same as dividing by two), and the test occurs at the
end of the loop. Note that when the test is placed at the end of the DO-LOOP
structure, the loop code will run at least one time. After seven iterations of the
bottom loop the test will fail and the code will drop to the GOTO Main line which
takes us back to the top of the program.

Beginning programmers will often ask, “When should I use WHILE versus UNTIL in a loop
test?”

It is in fact possible to write functionally equivalent code using WHILE or UNTIL. That said,
your programs will be easier to others to follow (and for you to pick up later) if the listing
reads logically. To that end, it is suggested that WHILE is used to run the loop while a
condition is true; and UNTIL is used to run the loop until a condition becomes true.

Page 42 · StampWorks

' -----[Initialization]--

Reset:
 LEDsDirs = %11111111 ' make LEDs outputs

' -----[Program Code]--

Main:
 DO
 GOSUB Read_Pot ' get raw pot value
 grafVal = (rawVal - LoScale) */ Scale ' z-adjust, then scale
 GOSUB Show_Graph ' now show it
 PAUSE 50
 LOOP

' -----[Subroutines]---

Read_Pot:
 HIGH Pot ' charge cap
 PAUSE 1 ' for 1 millisecond
 RCTIME Pot, 1, rawVal ' read the Pot
 RETURN

Show_Graph:
 hiBit = DCD (grafVal / 32) ' get highest bit
 IF (GraphMode = BarGraf) THEN
 newBar = 0 ' clear bar workspace
 IF (grafVal > 0) THEN
 DO WHILE (hiBit > 0) ' all bar LEDs lit?
 newBar = newBar << 1 ' no - shift left
 newBar.BIT0 = IsOn ' light low end
 hiBit = hiBit >> 1 ' mark bit lit
 LOOP
 ENDIF
 LEDs = newBar ' output new level
 ELSE
 LEDs = hiBit ' show dot value
 ENDIF
 RETURN

Using 7-Segment LED Displays · Page 59

Using 7-Segment LED Displays

As you look around and notice devices that use them, you’ll see that LEDs come in all
manner of shape, size, and color. Early on, LED manufacturers found that they could
package seven rectilinear-shaped LEDs in a Figure-8 pattern and when specific
groups of LEDs were lit, the display could be any of the decimal digits and even a
few alpha characters. We call these packaged groups of LEDs 7-segment displays.

In order to simplify wiring, 7-segment LED displays have a common internal
connection; the LEDs used on the PDB are common-cathode, that is, the cathodes of
the LEDs within the display are connected together and that connection must be
made low (connected to Vss) in order to light any of the LEDs in the package. The
diagram below shows the connections of a common-cathode LED display in relation
to the current-limiting resistors on the PDB.

Note that the PDB has five, 7-segment, common-cathode LED modules, and the
terminal marked “A” in the “SEGMENTS” section is connected to the A-segment LED
in all five modules.

In the experiments that follow we will learn how to get the most out of 7-segment
displays.

Page 62 · StampWorks

Take it Further

Update the program to create a single-digit hexadecimal counter. Use the patterns
below for the HEX digits.

Write Code like a Pro

Note that the DATA table the stores the 7-segment patterns uses verbose label
names and the patterns are placed in sequential order. By storing the segment
information in EEPROM instead of constants, transferring these patterns to the
display is greatly simplified.

Had we elected to store the patterns as constant values, we’d have to use the
following bit of code to make the transfer:

 LOOKUP idx, [Digit0, Digit1, Digit2, Digit3, Digit4,
 Digit5, Digit6, Digit7, Digit8, Digit9], Segs

As you can see, using READ is a bit tidier. In most programs, storing table values in
DATA statements will simplify coding and save code space if the same values are to
be used in more than one place in the program.

Page 84 · StampWorks

' -----[Initialization]--

Reset:
 #IF _LcdReady #THEN
 #ERROR "Please use BS2p version: SW21-EX12-LCD_Chars.BSP"
 #ENDIF

 DIRL = %11111110 ' setup pins for LCD
 PAUSE 100 ' let the LCD settle

Lcd_Setup:
 LcdBus = %0011 ' 8-bit mode
 PULSOUT E, 3
 PAUSE 5
 PULSOUT E, 3
 PULSOUT E, 3
 LcdBus = %0010 ' 4-bit mode
 PULSOUT E, 1
 char = %00101000 ' multi-line mode
 GOSUB LCD_Cmd
 char = %00001100 ' disp on, no crsr or blink
 GOSUB LCD_Cmd
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Cmd

Download_Chars: ' download custom chars
 char = LcdCGRam ' point to CG RAM
 GOSUB LCD_Cmd ' prepare to write CG data
 FOR idx1 = CC0 TO (Smiley + 7) ' build 4 custom chars
 READ idx1, char ' get byte from EEPROM
 GOSUB LCD_Out ' put into LCD CG RAM
 NEXT

' -----[Program Code]--

Main:
 char = LcdCls ' clear the LCD
 GOSUB LCD_Cmd
 PAUSE 250

 FOR idx1 = 0 TO 15 ' get message from EEPROM
 READ (Msg1 + idx1), char ' read a character
 GOSUB LCD_Out ' write it
 NEXT
 PAUSE 1000 ' wait 2 seconds

Animation:
 FOR idx1 = 0 TO 15 ' cover 16 characters
 READ (Msg2 + idx1), newChar ' get new char from Msg2

Page 100 · StampWorks

This is due to DEBUG requiring several milliseconds to send its output to the Debug
Terminal window. Removing the DEBUG output (simple using conditional
compilation) will increase the events input rate that can be detected.

Note, too, that the subroutine expects a clean input. A noisy input could cause
spurious counts, leading to early termination of the subroutine. This is easily fixed by
adapting the Get_Buttons subroutine from the last experiment.

Scan_Input: ' use with "noisy" inputs
 nScan = 1
 FOR idx = 1 TO 5
 nScan = nScan & EventIn
 PAUSE 5
 NEXT
 xScan = nScan ^ oScan & nScan ' look for 0 -> 1 change
 oScan = nScan ' save this scan
 RETURN

Page 110 · StampWorks

' -----[Constants]---

TAdj CON $100 ' time adjust factor
FAdj CON $100 ' frequency adjust factor

Threshold CON 200 ' cutoff frequency to play
NoteTm CON 40 ' note timing

' -----[Variables]---

tone VAR Word ' frequency output

' -----[Program Code]--

Main:
 DO
 HIGH PitchCtrl ' discharge cap
 PAUSE 1 ' for 1 ms
 RCTIME PitchCtrl, 1, tone ' read the light sensor
 tone = tone */ FAdj ' scale input
 IF (tone > Threshold) THEN ' play?
 FREQOUT Speaker, NoteTm */ TAdj, tone
 ENDIF
 LOOP

Behind the Scenes

A Theremin is an interesting musical device used to create those weird, haunting
sounds often heard in old horror movies. This version uses the light falling onto a
photocell to create the output tone.

Since the photocell is a resistive device, RCTIME can be used to read its value.
FREQOUT is used to play the note. The constant, Threshold, is used to control the
cutoff point of the Theremin. When the photocell reading falls below this value, no
sound is played. This value should be adjusted to the point where the Theremin
stops playing when the photocell is not covered in ambient light.

Behind the Scenes…Going Deeper

You may wonder how the BASIC Stamp is able to create a musical note using a pure
digital output. The truth is that it gets a little help from the outside world. At the

Moving Forward · Page 143

EXPERIMENT #25: MIXED IO WITH SHIFT REGISTERS

This experiment demonstrates the ability to mix the 74HC595 and 74HC165 and use
the fewest number of BASIC Stamp I/O pins.

Building the Circuit

Note: The 4.7 kΩ resistor is marked: yellow-violet-red.

Moving Forward · Page 165

To convert from Celsius (in tenths) to Fahrenheit (also in tenths) a modification of
the standard temperature equation is used:

Ftenths = (Ctenths * 1.8) + 320

Note that 32 degrees from the standard equation has also been converted to tenths.

For the conversion of negative temperatures the order of elements in the equation is
reversed. The reason for this is that negative numbers cannot be divided in PBASIC.
The ABS operator is used to convert the intermediate result to a positive value.
When subtracted from 320 the result will be properly aligned (and signed); some
negative values in the Celsius range are still positive in Fahrenheit.

The display routine uses a little trick that looks at Bit15 of the value; if Bit15 is one
then the temperature is negative and a “-“ will precede the temperature reading,
otherwise a space will be printed.

Moving Forward · Page 173

EXPERIMENT #31: ADVANCED 7-SEGMENT MULTIPLEXING

This experiment demonstrates the use of 7-segment displays with an external
multiplexing controller. Multi-digit seven-segment displays are frequently used on
vending machines to display the amount of money entered.

Building the Circuit

Connect four pushbuttons to P4-P7 (see Experiment #14) and add the multiplexing
circuit below.

Page 184 · StampWorks

The I2C specification actually allows for multiple Masters to exist on a common bus
and provides a method for arbitrating between them. That's a bit beyond the scope
of what we need to do so we're going to keep things simple. In our setup, the BS2
(or BS2e or BS2sx) will be the Master and anything connected to it will be a Slave.

You'll notice in I2C schematics that the SDA (serial data) and SCL (serial clock) lines
are pulled up to Vdd (usually through 4.7 kΩ). The specification calls for device bus
pins to be open drain. To put a high on either line, the associated bus pin is made
an input (floats) and the pull-up takes the line to Vdd. To make a line low, the bus
pin pulls it to Vss (ground).

This scheme is designed to protect devices on the bus from a short to ground. Since
neither line is driven high, there is no danger. We're going to cheat a bit. Instead of
writing code to pull a line low or release it (certainly possible – I did it), we're going
to use SHIFTOUT and SHIFTIN to move data back and forth. Using SHIFTOUT and
SHIFTIN is faster and saves precious code space. If you're concerned about a bus
short damaging the BASIC Stamp's SDA or SCL pins during SHIFTOUT and
SHIFTIN, you can protect each of them with a 220 ohm resistor. If you’re careful
with your wiring and code this won’t be necessary.

Low Level I2C Code

At its lowest level, the I2C Master needs to do four things:

• Generate a Start condition
• Transmit 8-bit data to the Slave
• Receive 8-bit data from Slave – with or without Acknowledge
• Generate Stop condition

A Start condition is defined as a high-to-low transition on the SDA line while the SCL
line is high. All transmissions begin with a Start condition. A Stop condition is
defined as a low-to-high transition of the SDA line while the clock line is high. A Stop
condition terminates a transfer and can be used to abort it as well.

Page 190 · StampWorks

pntr VAR Byte ' ee pointer
char VAR Byte ' character for display

' -----[EEPROM Data]---

DayNames DATA "SunMonTueWedThuFriSat"

' -----[Initialization]--

Reset:
 #IF ($STAMP >= BS2P) #THEN
 #ERROR "Please use BS2p version: SW21-EX33-DS1307.BSP"
 #ENDIF

Setup:
 slvAddr = DS1307 ' 1 byte in word address
 addrLen = 1

 DEBUG CLS,
 "DS1307 Demo", CR,
 "-----------"

Reset_Clock:
 GOSUB Get_Buttons ' scan buttons
 idx = btns & %0011 ' isolate hrs & mins
 IF (idx = %11) THEN ' if both pressed, reset
 secs = $00
 mins = $00
 hrs = $06 ' 6:00 AM
 day = $07 ' Saturday
 date = $01 ' 1st
 month = $01 ' January
 year = $05 ' 2005
 control = 0 ' disable SQW output
 GOSUB Set_Clock ' block write clock regs
 ENDIF

' -----[Program Code]--

Main:
 GOSUB Get_Clock ' read DS1307
 hrs = hrs & $3F
 DEBUG CRSRXY, 0, 2,
 HEX2 hrs, ":", HEX2 mins, ":", HEX2 secs, CR
 GOSUB Print_Day
 PAUSE 100

 GOSUB Get_Buttons
 IF (btns > %0000) THEN ' button pressed?
 IF (btns <> %1000) THEN ' ignore back only
 hrs = hrs.NIB1 * 10 + hrs.NIB0 ' BCD to decimal

Moving Forward · Page 203

The CTS connection tells the PC that the BASIC Stamp is ready to receive data.
Remember that the BASIC Stamp does not buffer serial data and if the PC sent a
byte when the BASIC Stamp was busy processing another instruction that byte would
be lost.

After initializing the LED outputs and the DS1620, the program enters the main loop
and waits for input from the terminal program. First, SERIN waits for the "?"
character to arrive, ignoring everything else until that happens. The question mark,
then, is what signifies the start of a query. Once a question mark arrives, the HEX
modifier causes the BASIC Stamp to look for valid hex characters (0 - 9, A - F). The
arrival of any non-hex character (usually a carriage return [Enter] when using a
terminal) tells the BASIC Stamp to stop accepting input (to the variable called cmd)
and continue on.

What actually has happened is that the BASIC Stamp has used the SERIN instruction
to do a text-to-numeric conversion. Now that a command is available, the program
uses SELECT-CASE to process valid commands, and sends a message to the
terminal if the command entered is not used by the program.

For valid commands the BASIC Stamp responds to a request sending a text string
using SEROUT. As with SERIN, flow control is used with SEROUT as well. The RTS
(Request To Send) connection allows the PC to let the BASIC Stamp know that it is
ready to receive data.

Each of the response strings consists of a label, the equal sign, the value of that
particular parameter and finally, a carriage return. When using a terminal program,
the output is easily readable. Something like this:

ID = StampWorks 2.1

The carriage return at the end of the output gives us a new line when using a
terminal program and serves as an "end of input" when we process the input with
our own program (similar to StampPlot Lite). The equal sign can be used as a
delimiter when another computer program communicates with the BASIC Stamp.
We’ll use it to distinguish the label from its value.

Most of the queries are requests for information. Two of them, however, can modify
information that is stored in the BASIC Stamp.

Page 204 · StampWorks

The first command is "?F1" which will allow us to write a string value to the BASIC
Stamp’s EEPROM (in a location called ID). When $F1 is received as a command
value, the program jumps to the subroutine called Set_ID. On entry to Set_ID, the
EE pointer called eeAddr is initialized, and then the BASIC Stamp waits for a
character to arrive. Notice that no modifier is used here. Since terminal programs
and the BASIC Stamp represent characters using ASCII codes, we don’t have to do
anything special. When a character does arrive, WRITE is used to put the character
into EEPROM and the address pointer is incremented. If the last character was a
carriage return (13), the program displays the new string (using the code at
Show_ID), otherwise it loops back and waits for another character.

The second modifying query is “?B1” which allows us to set the status of four LEDs.
Take a look at the subroutine called Set_Leds. This time, the BIN modifier of
SERIN is used so that we can easily define individual bits we wish to control. By
using the BIN modifier, our input will be a string of ones and zeros (any other
character will terminate the binary input). In this program, a “1” will cause the LED
to turn on and a “0” will cause the LED to turn off. Here’s an example of using the B1
query.

?B1 0011<CR>

The figure below shows an actual on-line session using the BASIC Stamp’s Debug
Terminal window.

Striking Out on Your Own · Page 219

Striking Out on Your Own

Congratulations, you’re a BASIC Stamp programmer! So what’s next? Well, that’s up
to you. Many new programmers get stuck when it comes to developing their own
projects. Don’t worry, this is natural – and there are ways out of being stuck. The
following workflow tips and resources will help you succeed in bringing your good
ideas to fruition.

Plan Your Work, Work Your Plan

You’ve heard it a million times: plan, plan, and plan. Nothing gets a programmer into
more trouble than bad or inadequate planning. This is particularly true with the
BASIC Stamp as resources are so limited. Most of the programs we’ve fixed were
“broken” due to bad planning and poor formatting which lead to errors.

Talk It Out

Talk yourself through the program. Don’t just think it through, talk it through. Talk
to yourself–out loud–as if you were explaining the operation of the program to a
fellow programmer. Often, just hearing our own voice is what makes the difference.
Better yet, talk it out as if the person you’re talking to isn’t a programmer. This will
force you to explain details. Many times we take things for granted when we’re
talking to ourselves or others of similar ability.

Write It Out

Design the details of your program on a white (dry erase) board before you sit down
at your computer. And use a lot of colors. You’ll find working through a design
visually will offer new insights, and the use of this medium allows you to write code
snippets within your functional diagrams.

Design with “Sticky Notes”

Get out a pad of small “sticky notes”. Write module names or concise code fragments
on individual notes and then stick them up on the wall. Now stand back and take a

