

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	CANbus, EBI/EMI, I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	97
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 1.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf5232cvm150

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

3 Features

For a detailed feature list see the MCF5235 Reference Manual (MCF5235RM).

Signal Descriptions

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5232 160 QFP	MCF5232 196 MAPBGA	MCF5233 256 MAPBGA	MCF5234 256 MAPBGA	MCF5235 256 MAPBGA
U1RXD	PUARTL4	CANORX	—	I	136	D8	A11	A11	A11
UOCTS	PUARTL3	—	—	I	—	F3	G1	G1	G1
UORTS	PUARTL2	_		0	_	G3	H3	H3	H3
U0TXD	PUARTL1	—	—	0	14	F1	H2	H2	H2
UORXD	PUARTL0	—	—	I	13	F2	G2	G2	G2
DMA Timers									
DT3IN	PTIMER7	U2CTS	QSPI_CS2	I	—	H14	J15	J15	J15
DT3OUT	PTIMER6	U2RTS	QSPI_CS3	0	—	G14	J16	J16	J16
DT2IN	PTIMER5	DREQ2	DT2OUT	I	—	M9	P10	P10	P10
DT2OUT	PTIMER4	DACK2	—	0	—	L9	R10	R10	R10
DT1IN	PTIMER3	DREQ1	DT1OUT	I	—	L6	P7	P7	P7
DT1OUT	PTIMER2	DACK1	—	0	—	M6	R7	R7	R7
DT0IN	PTIMER1	DREQ0	—	I	—	E4	G4	G4	G4
DTOOUT	PTIMER0	DACK0	—	0	—	F4	G3	G3	G3
				BDM	/JTAG ²				
DSCLK		TRST	—	I	70	N9	N11	N11	N11
PSTCLK	_	TCLK	—	0	68	P9	T10	T10	T10
BKPT	_	TMS	—	I	71	P10	P11	P11	P11
DSI	_	TDI	—	I	73	M10	T11	T11	T11
DSO	_	TDO	—	0	72	N10	R11	R11	R11
JTAG_EN	_	—	—	I	78	K9	N13	N13	N13
DDATA[3:0]	—	—	—	0	—	M12, N12, P12, L11	N14, P14, T13, R13	N14, P14, T13, R13	N14, P14, T13, R13
PST[3:0]		_	—	0	77:74	M11, N11, P11, L10	T12, R12, P12, N12	T12, R12, P12, N12	T12, R12, P12, N12

Table 2. MCF523x Signal Information and Muxing (continued)

Design Recommendations

5.2 Power Supply

• 33 μ F, 0.1 μ F, and 0.01 μ F across each power supply

5.2.1 Supply Voltage Sequencing and Separation Cautions

Figure 1 shows situations in sequencing the I/O V_{DD} (OV_{DD}), PLL V_{DD} (V_{DDPLL}), and Core V_{DD} (V_{DD}). OV_{DD} is specified relative to V_{DD} .

Figure 1. Supply Voltage Sequencing and Separation Cautions

5.2.1.1 Power Up Sequence

If OV_{DD} is powered up with V_{DD} at 0 V, then the sense circuits in the I/O pads cause all pad output drivers connected to the OV_{DD} to be in a high impedance state. There is no limit on how long after OV_{DD} powers up before V_{DD} must power up. V_{DD} should not lead the OV_{DD} or V_{DDPLL} by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 ms or slower rise time for all supplies.
- 2. V_{DD} and OV_{DD}/V_{DDPLL} should track up to 0.9 V, then separate for the completion of ramps with OV_{DD} going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

5.7 Interface Recommendations

5.7.1 SDRAM Controller

5.7.1.1 SDRAM Controller Signals in Synchronous Mode

Table 3 shows the behavior of SDRAM signals in synchronous mode.

Table 3. Synchronous	DRAM Signal	Connections
----------------------	-------------	-------------

Signal	Description
SD_SRAS	Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM SD_SRAS. Do not confuse SD_SRAS with the DRAM controller's SD_CS[1:0], which should not be interfaced to the SDRAM SD_SRAS signals.
SD_SCAS	Synchronous column address strobe. Indicates a valid column address is present and can be latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled SD_SCAS on the SDRAM.
DRAMW	DRAM read/write. Asserted for write operations and negated for read operations.
SD_CS[1:0]	Row address strobe. Select each memory block of SDRAMs connected to the MCF523x. One \overline{SD}_{CS} signal selects one SDRAM block and connects to the corresponding \overline{CS} signals.
SD_CKE	Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down mode where operations are suspended or they can enter self-refresh mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SD_CKE to provide command-bit functionality.
BS[3:0]	Column address strobe. For synchronous operation, $\overline{\text{BS}}$ [3:0] function as byte enables to the SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs.
CLKOUT	Bus clock output. Connects to the CLK input of SDRAMs.

5.7.1.2 Address Multiplexing

See the SDRAM controller module chapter in the *MCF5235 Reference Manual* for details on address multiplexing.

5.7.2 Ethernet PHY Transceiver Connection

The FEC supports both an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3 standard defines and the FEC module supports 18 signals. These are shown in Table 4.

Signal Description	MCF523 <i>x</i> Pin
Transmit clock	ETXCLK
Transmit enable	ETXEN
Transmit data	ETXD[3:0]

Table 4. MII Mode

Design Recommendations

Signal Description	MCF523 <i>x</i> Pin
Transmit error	ETXER
Collision	ECOL
Carrier sense	ECRS
Receive clock	ERXCLK
Receive enable	ERXDV
Receive data	ERXD[3:0]
Receive error	ERXER
Management channel clock	EMDC
Management channel serial data	EMDIO

Table 4.	MII	Mode	(continued)
----------	-----	------	-------------

The serial mode interface operates in what is generally referred to as AMD mode. The MCF523x configuration for seven-wire serial mode connections to the external transceiver are shown in Table 5.

Signal Description	MCF523 <i>x</i> Pin
Transmit clock	ETXCLK
Transmit enable	ETXEN
Transmit data	ETXD[0]
Collision	ECOL
Receive clock	ERXCLK
Receive enable	ERXDV
Receive data	ERXD[0]
Unused, configure as PB14	ERXER
Unused input, tie to ground	ECRS
Unused, configure as PB[13:11]	ERXD[3:1]
Unused output, ignore	ETXER
Unused, configure as PB[10:8]	ETXD[3:1]
Unused, configure as PB15	EMDC
Input after reset, connect to ground	EMDIO

Table 5. Seven-Wire Mode Configuration

Refer to the M523*x*EVB evaluation board user's manual for an example of how to connect an external PHY. Schematics for this board are accessible at the MCF5235 site by navigating to: http://www.freescale.com/coldfire.

6.2 Package Dimensions—196 MAPBGA

Figure 3 shows MCF5232CVMxxx package dimensions.

Figure 3. 196 MAPBGA Package Dimensions (Case No. 1128A-01)

6.2.1 Pinout—256 MAPBGA

Figure 4 through Figure 6 show pinouts of the MCF5233CVMxxx, MCF5234CVMxxx, and MCF5235CVMxxx packages.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	VSS	TPUCH6	TPUCH4	TPUCH2	TPUCH17	TPUCH1	TPUCH0	VDD	BS1	BSO	U1RXD/ CAN0RX	U1TXD/ CAN0TX	CS6	CS4	A21	VSS	A
В	TPUCH8	TPUCH7	TPUCH5	TPUCH3	TPUCH18	TPUCH19	TPUCH16	QSPI_ CLK	BS2	QSPI_ CS1	U1RTS	CS3	CS1	A23	A20	A19	В
С	TPUCH10	TPUCH9	TPUCH25	TPUCH24	TPUCH22	TPUCH20	I2C_SDA/ U2RXD	QSPI_ DIN	BS3	SD_CKE	U1CTS	CS7	CS5	A22	A18	A17	С
D	TPUCH12	TPUCH11	TPUCH27	TPUCH26	TPUCH23	TPUCH21	I2C_SCL/ U2TXD	QSPI_ DOUT	QSPI_ CS0	U2RXD/ CAN1RX	U2TXD/ CAN1TX	CS2	CS0	A14	A15	A16	D
E	TPUCH14	TPUCH13	TPUCH29	TPUCH28	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	A10	A11	A12	A13	E
F	TCRCLK	TPUCH15	TPUCH31	TPUCH30	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	A7	A8	A9	VSS	F
G	UOCTS	UORXD	DTOOUT	DTOIN	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A4	A5	A6	VDD	G
Н	VDD	UOTXD	UORTS	NC	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A0	A1	A2	A3	н
J	VSS	CLK MOD0	CLK MOD1	TEST	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	utpu odis	ltpu Odis	DT3IN	DT3OUT	J
К	D28	D29	D30	D31	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	TEA	TA	TIP	TS	к
L	D24	D25	D26	D27	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	SD_WE	I2C_SCL/ CAN0TX	I2C_SDA/ CANORX	R/W	L
Μ	D21	D22	D23	NC	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	SD_ CS0	SD_ SRAS	SD_ SCAS	CLKOUT	М
N	D19	D20	D13	D9	NC	D3	D0	TSIZ1	IRQ5	IRQ1	TRST/ DSCLK	PST0	JTAG_ EN	DDATA3	SD_CS1	VSS	N
Ρ	D17	D18	D12	D8	D5	D2	DT1IN	TSIZ0	IRQ4	DT2IN	<u>TMS/</u> BKPT	PST1	RCON	DDATA2	VDDPLL	EXTAL	Ρ
R	D16	D15	D11	D7	D4	D1	DT1OUT	IRQ7	IRQ3	DT2OUT	TDO/ DSO	PST2	DDATA0	PLL_ TEST	VSSPLL	XTAL	R
Т	VSS	D14	D10	D6	VDD	VSS	OE	IRQ6	IRQ2	TCLK/ PSTCLK	TDI/DSI	PST3	DDATA1	RSTOUT	RESET	VSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	<u> </u>

Figure 4. MCF5233CVMxxx Pinout (256 MAPBGA)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	VSS	TPUCH6	TPUCH4	TPUCH2	TPUCH17/ ETXD1	TPUCH1	TPUCH0	VDD	BS1	BSO	U1RXD/ CAN0RX	U1TXD/ CAN0TX	CS6	CS4	A21	VSS	A
В	TPUCH8	TPUCH7	TPUCH5	TPUCH3	TPUCH18/ ETXD2	TPUCH19/ ETXD3	TPUCH16/ ETXD0	QSPI_ CLK	BS2	QSPI_ CS1	U1RTS	CS3	CS1	A23	A20	A19	В
с	TPUCH10	TPUCH9	TPUCH25/ ERXD1	TPUCH24/ ERXD0	TPUCH22/ ETXCLK	TPUCH20/ ETXER	I2C_SDA/ U2RXD/ EMDIO	QSPI_ DIN	BS3	SD_CKE	U1CTS	CS7	CS5	A22	A18	A17	с
D	TPUCH12	TPUCH11	TPUCH27/ ERXD3	TPUCH26/ ERXD2	TPUCH23/ ERXER	TPUCH21/ ETXEN	I2C_SCL/ U2TXD/ EMDC	QSPI_ DOUT	QSPI_ CS0	U2RXD/ CAN1RX	U2TXD/ CAN1TX	CS2	CS0	A14	A15	A16	D
E	TPUCH14	TPUCH13	TPUCH29/ ERXCLK	TPUCH2/ ERXDV	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	A10	A11	A12	A13	E
F	TCRCLK	TPUCH15	TPUCH31/ ECOL	TPUCH30/ ECRS	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	A7	A8	A9	VSS	F
G	UOCTS	U0RXD	DT0OUT	DT0IN	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A4	A5	A6	VDD	G
н	VDD	U0TXD	UORTS	NC	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A0	A1	A2	A3	н
J	VSS	CLK MOD0	CLK MOD1	TEST	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	utpu Odis	LTPU ODIS	DT3IN	DT3OUT	J
к	D28	D29	D30	D31	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	TEA	TA	TIP	TS	к
L	D24	D25	D26	D27	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	SD_WE	I2C_SCL/ CAN0TX	I2C_SDA/ CAN0RX	R/W	L
М	D21	D22	D23	eTPU/ EthENB	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	SD_CS0	SD_ SRAS	SD_ SCAS	CLKOUT	М
N	D19	D20	D13	D9	NC	D3	D0	TSIZ1	IRQ5	IRQ1	TRST/ DSCLK	PST0	JTAG_ EN	DDATA3	SD_CS1	VSS	N
Ρ	D17	D18	D12	D8	D5	D2	DT1IN	TSIZ0	IRQ4	DT2IN	TMS/ BKPT	PST1	RCON	DDATA2	VDDPLL	EXTAL	Ρ
R	D16	D15	D11	D7	D4	D1	DT10UT	IRQ7	IRQ3	DT2OUT	TDO/ DSO	PST2	DDATA0	PLL_ TEST	VSSPLL	XTAL	R
т	VSS	D14	D10	D6	VDD	VSS	ŌE	IRQ6	IRQ2	TCLK/ PSTCLK	TDI/DSI	PST3	DDATA1	RSTOUT	RESET	VSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 6. MCF5235CVMxxx Pinout (256 MAPBGA)

6.2.2 Package Dimensions—256 MAPBGA

Figure 7 shows MCF5235CVMxxx, MCF5234CVMxxx, and MCF5233CVMxx package dimensions.

Figure 7. 256 MAPBGA Package Outline

6.4 Package Dimensions—160 QFP

Figure 9 shows MCF5232CAB80 package dimensions.

Figure 9. 160 QFP Package Dimensions

- ¹ Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.
- ² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS} or OV_{DD}).
- ³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁴ All functional non-supply pins are internally clamped to V_{SS} and OV_{DD}.
- ⁵ Power supply must maintain regulation within operating OV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > OV_{DD}$) is greater than I_{DD} , the injection current may flow out of OV_{DD} and could result in external power supply going out of regulation. Insure external OV_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power (ex; no clock).Power supply must maintain regulation within operating OV_{DD} range during instantaneous and operating maximum current conditions.

7.2 Thermal Characteristics

The below table lists thermal resistance values.

Characteristic		Symbol	256 MAPBGA	196 MAPBGA	160 QFP	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	26 ^{1,2}	32 ^{1,2}	40 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	23 ^{1,2}	29 ^{1,2}	36 ^{1,2}	°C/W
Junction to board		θ_{JB}	15 ³	20 ³	25 ³	°C/W
Junction to case		θ _{JC}	10 ⁴	10 ⁴	10 ⁴	°C/W
Junction to top of package		Ψ _{jt}	2 ^{1,5}	2 ^{1,5}	2 ^{1,5}	°C/W
Maximum operating junction temperature		Тj	102	104	105 ⁶	°C

Table 8. Thermal Characteristics

 θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- ² Per JEDEC JESD51-6 with the board horizontal.
- ³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
- ⁶ At 100MHz.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$\Gamma_{\rm J} = \Gamma_{\rm A} + (P_{\rm D} \times \Theta_{\rm JMA}) \quad (1)$$

Where:

$$\begin{split} T_A &= \text{Ambient Temperature, }^\circ\text{C}\\ \Theta_{JMA} &= \text{Package Thermal Resistance, Junction-to-Ambient, }^\circ\text{C/W}\\ P_D &= P_{INT} + P_{I/O}\\ P_{INT} &= I_{DD} \times V_{DD}, \text{Watts - Chip Internal Power}\\ P_{I/O} &= \text{Power Dissipation on Input and Output Pins} - \text{User Determined} \end{split}$$

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{\rm D} = \mathbf{K} \div (\mathbf{T}_{\rm I} + 273^{\circ}C) \quad (2)$$

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \text{ °C}) + \Theta_{JMA} \times P_D^2 \quad (3)$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

7.3 DC Electrical Specifications

Table 9. DC Electrical Specifications¹

Characteristic	Symbol	Min	Typical	Max	Unit
Core Supply Voltage	V _{DD}	1.4	—	1.6	V
Pad Supply Voltage	OV _{DD}	3.0		3.6	V
PLL Supply Voltage	V _{DDPLL}	3.0	_	3.6	V
Input High Voltage	V _{IH}	$0.7 \times \mathrm{OV}_\mathrm{DD}$	_	3.65	V
Input Low Voltage	V _{IL}	V _{SS} – 0.3	_	$0.35\times\text{OV}_\text{DD}$	V
Input Hysteresis	V _{HYS}	$0.06\times \text{OV}_{\text{DD}}$	_	—	mV
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	l _{in}	-1.0	_	1.0	μA
High Impedance (Off-State) Leakage Current V _{in} = V _{DD} or V _{SS} , All input/output and output pins	I _{OZ}	-1.0	_	1.0	μA
Output High Voltage (All input/output and all output pins) $I_{OH} = -5.0 \text{ mA}$	V _{OH}	OV _{DD} - 0.5	_	_	V
Output Low Voltage (All input/output and all output pins) $I_{OL} = 5.0 \text{mA}$	V _{OL}	—	_	0.5	V
Weak Internal Pull Up Device Current, tested at V_{IL} Max. ²	I _{APU}	-10	_	- 130	μA

Characteristic	Symbol	Min	Typical	Мах	Unit
Input Capacitance ³	C _{in}				pF
All input-only pins		—		7	
All input/output (three-state) pins		—		7	
Load Capacitance ⁴					
Low drive strength	CL		—	25	pF
High drive strength			—	50	pF
Core Operating Supply Current ⁵	I _{DD}				
Master Mode		—	135	150	mA
Pad Operating Supply Current	OI _{DD}				
Master Mode		—	100	_	mA
Low Power Modes		—	TBD	—	μΑ
DC Injection Current ^{3, 6, 7, 8}	I _{IC}				
$V_{NEGCLAMP} = V_{SS} - 0.3 V$, $V_{POSCLAMP} = V_{DD} + 0.3$					
Single Pin Limit		-1.0		1.0	mA
Total processor Limit, Includes sum of all stressed pins		-10		10	mA

Table 9. DC Electrical Specifications¹ (continued)

¹ Refer to Table 10 for additional PLL specifications.

² Refer to the MCF5235 signals section for pins having weak internal pull-up devices.

³ This parameter is characterized before qualification rather than 100% tested.

⁴ pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination. See <u>High Speed Signal Propagation:</u> <u>Advanced Black Magic</u> by Howard W. Johnson for design guidelines.

⁵ Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.

⁶ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD}.

⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁸ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Insure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not present during the power-up sequence until the PLL has attained lock.

7.4 Oscillator and PLLMRFM Electrical Characteristics

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	PLL Reference Frequency Range Crystal reference External reference 1:1 mode (NOTE: $f_{sys/2} = 2 \times f_{ref_1:1}$)	f _{ref_crystal} f _{ref_ext} f _{ref_1:1}	8 8 24	25 25 75	MHz
2	Core frequency CLKOUT Frequency ² External reference On-Chip PLL Frequency	f _{sys} f _{sys/2}	0 f _{ref} ÷ 32	150 75 75	MHz MHz MHz
3	Loss of Reference Frequency ^{3, 5}	f _{LOR}	100	1000	kHz
4	Self Clocked Mode Frequency ^{4, 5}	f _{SCM}	10.25	15.25	MHz
5	Crystal Start-up Time ^{5, 6}	t _{cst}	_	10	ms
6	XTAL Load Capacitance ⁵		5	30	pF
7	PLL Lock Time ^{5, 7,13}	t _{lpll}	_	750	μS
8	Power-up To Lock Time ^{5, 6,8} With Crystal Reference (includes 5 time) Without Crystal Reference ⁹	t _{lplk}		11 750	ms μs
9	1:1 Mode Clock Skew (between CLKOUT and EXTAL) ¹⁰	t _{skew}	-1	1	ns
10	Duty Cycle of reference ⁵	t _{dc}	40	60	%
11	Frequency un-LOCK Range	f _{UL}	-3.8	4.1	% f _{sys/2}
12	Frequency LOCK Range	f _{LCK}	-1.7	2.0	% f _{sys/2}
13	CLKOUT Period Jitter, ^{5, 6, 8,11, 12} Measured at f _{sys/2} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval)	C _{jitter}		5.0 .01	% f _{sys/2}
14	Frequency Modulation Range Limit ^{13,14} (f _{sys/2} Max must not be exceeded)	C _{mod}	0.8	2.2	%f _{sys/2}
15	ICO Frequency. $f_{ico} = f_{ref} \times 2 \times (MFD+2)^{15}$	f _{ico}	48	150	MHz

Table 10. HiP7 PLLMRFM Electrical Specifications¹

¹ All values given are initial design targets and subject to change.

² All internal registers retain data at 0 Hz.

³ "Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.

⁴ Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f_{I OR} with default MFD/RFD settings.

⁵ This parameter is guaranteed by characterization before qualification rather than 100% tested.

⁶ Proper PC board layout procedures must be followed to achieve specifications.

Name	Characteristic	Symbol	Min	Max	Unit
	Address and Attribute C	Outputs			
B8	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], TIP, R/W) valid	t _{CHAV}	_	9	ns
B9	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], TIP, R/W) invalid	t _{CHAI}	1.5	—	ns
	Data Outputs				
B11	CLKOUT high to data output (D[31:0]) valid	t _{CHDOV}	—	9	ns
B12	CLKOUT high to data output (D[31:0]) invalid	t _{CHDOI}	1.5	_	ns
B13	CLKOUT high to data output (D[31:0]) high impedance	t _{CHDOZ}	_	9	ns

Table 12. External Bus Output Timing Specifications (continued)

CS transitions after the falling edge of CLKOUT.
 BS transitions after the falling edge of CLKOUT.
 OE transitions after the falling edge of CLKOUT.

Figure 15 shows an SDRAM write cycle.

Figure 15. SDRAM Write Cycle

7.7 General Purpose I/O Timing

Table 14. GPIO Timing¹

NUM	Characteristic	Symbol	Min	Мах	Unit
G1	CLKOUT High to GPIO Output Valid	t _{CHPOV}	_	10	ns
G2	CLKOUT High to GPIO Output Invalid	t _{CHPOI}	1.5	—	ns
G3	GPIO Input Valid to CLKOUT High	t _{PVCH}	9	—	ns
G4	CLKOUT High to GPIO Input Invalid	t _{CHPI}	1.5	—	ns

¹ GPIO pins include: INT, ETPU, UART, FlexCAN, Timer, DREQn and DACKn pins.

Figure 16. GPIO Timing

7.8 Reset and Configuration Override Timing

Table 15. Reset and Configuration Override Timing $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = \text{T}_{L} \text{ to } \text{T}_{H})^{1}$

NUM	Characteristic	Symbol	Min	Max	Unit
R1	RESET Input valid to CLKOUT High	t _{RVCH}	9	_	ns
R2	CLKOUT High to RESET Input invalid	t _{CHRI}	1.5	_	ns
R3	RESET Input valid Time ²	t _{RIVT}	5	_	t _{CYC}
R4	CLKOUT High to RSTOUT Valid	t _{CHROV}	—	10	ns
R5	RSTOUT valid to Config. Overrides valid	t _{ROVCV}	0	—	ns
R6	Configuration Override Setup Time to RSTOUT invalid	t _{COS}	20	_	t _{CYC}
R7	Configuration Override Hold Time after RSTOUT invalid	t _{COH}	0	_	ns
R8	RSTOUT invalid to Configuration Override High Impedance	t _{ROICZ}	_	1	t _{CYC}

¹ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

Figure 17. RESET and Configuration Override Timing

Refer to the chip configuration module (CCM) chapter in the device's reference manual for more information.

Figure 18. I²C Input/Output Timings

7.10 Fast Ethernet AC Timing Specifications

MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

7.10.1 MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK)

The receiver functions correctly up to a ERXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ERXCLK frequency.

Table 18 lists MII receive channel timings.

Table 18. MII Receive Signal Timing

Num	Characteristic	Min	Max	Unit
M1	ERXD[3:0], ERXDV, ERXER to ERXCLK setup	5	—	ns
M2	ERXCLK to ERXD[3:0], ERXDV, ERXER hold	5	—	ns
M3	ERXCLK pulse width high	35%	65%	ERXCLK period
M4	ERXCLK pulse width low	35%	65%	ERXCLK period

Figure 19 shows MII receive signal timings listed in Table 18.

Figure 19. MII Receive Signal Timing Diagram

7.14 Debug AC Timing Specifications

Table 25 lists specifications for the debug AC timing parameters shown in Figure 29.

Num Characteristic		150	MHz	Unite	
	Characteristic	Min	Мах	Units	
DE0	PSTCLK cycle time	_	0.5	t _{cyc}	
DE1	PST valid to PSTCLK high	4	_	ns	
DE2	PSTCLK high to PST invalid	1.5	_	ns	
DE3	DSCLK cycle time	5	_	t _{cyc}	
DE4	DSI valid to DSCLK high	1	_	t _{cyc}	
DE5 ¹	DSCLK high to DSO invalid	4	_	t _{cyc}	
DE6	BKPT input data setup time to CLKOUT rise	4	_	ns	
DE7	CLKOUT high to BKPT high Z	0	10	ns	

Table 25. Debug AC Timing Specification

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 28 shows real-time trace timing for the values in Table 25.

Figure 28. Real-Time Trace AC Timing

Figure 29 shows BDM serial port AC timing for the values in Table 25.

Documentation

Figure 29. BDM Serial Port AC Timing

8 Documentation

Documentation regarding the MCF523x and their development support tools is available from a local Freescale distributor, a Freescale semiconductor sales office, the Freescale Literature Distribution Center, or through the Freescale web address at http://www.freescale.com/coldfire.

9 Document Revision History

The below table provides a revision history for this document.

Rev. No.	Substantive Change(s)
0	Preliminary release.
1	Updated Signal List table
1.1	• Removed duplicate information in the module description sections. The information is all in the Signals Description Table.
1.2	 Corrected Figure 8 pin 81. VDD instead of VSS Changed instances of Motorola to Freescale
1.3	 Removed detailed signal description section. This information can be found in the MCF5235RM Chapter 2. Removed detailed feature list. This information can be found in the MCF5235RM Chapter 1. Corrected Figure 2 pin F10. VSS instead of VDD. Change made in Table 2 as well. Corrected Figure 8 pin 81. OVDD instead of VDD. Change made in Table 2 as well. Cleaned up many inconsistencies within the pinout figure signal names Corrected document IDs in Documentation Table
1.4	 Added values for 'Maximum operating junction temperature' in Table 8. Added typical values for 'Core operating supply current (master mode)' in Table 9. Added typical values for 'Pad operating supply current (master mode)' in Table 9. Removed unnecessary PLL specifications, #6-9, in Table 10.