

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	CANbus, EBI/EMI, I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	97
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 1.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf5232cvm150j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

3 Features

For a detailed feature list see the MCF5235 Reference Manual (MCF5235RM).

Signal Descriptions

4 Signal Descriptions

This section describes signals that connect off chip, including a table of signal properties. For a more detailed discussion of the MCF523*x* signals, consult the *MCF5235 Reference Manual* (MCF5235RM).

4.1 Signal Properties

Table 2 lists all of the signals grouped by function. The "Dir" column is the direction for the primary function of the pin. Refer to Section 6, "Mechanicals/Pinouts and Part Numbers," for package diagrams.

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A24), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality.

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5232 MCF5232 160 196 QFP MAPBGA		MCF5233 256 MAPBGA	MCF5234 256 MAPBGA	MCF5235 256 MAPBGA			
Reset												
RESET	_			I	83	N13	T15	T15	T15			
RSTOUT	_	_	_	0	82	P13	T14	T14	T14			
Clock												
EXTAL	_	—	—	Ι	86	M14	P16	P16	P16			
XTAL	_	—	_	0	85	N14	R16	R16	R16			
CLKOUT		—	—	0	89	K14	M16	M16	M16			
			Ν	Node	Selection							
CLKMOD[1:0]	_	—	_	I	19,20	G5, H5	J3, J2	J3, J2	J3, J2			
RCON	_	—	—	Ι	79	K10	P13	P13	P13			
External Memory Interface and Ports												
A[23:21]	PADDR[7:5]	<u>CS</u> [6:4]	—	0	126, 125, 124	B11, C11, D11	B14, C14, A15	B14, C14, A15	B14, C14, A15			

Table 2. MCF523x Signal Information and Muxing

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5232 160 QFP	MCF5232 196 MAPBGA	MCF5233 256 MAPBGA	MCF5234 256 MAPBGA	MCF5235 256 MAPBGA
				٦	ſest				
TEST	—	_	—	Ι	18	F5	J4	J4	J4
PLL_TEST	_	—	—	I	—		R14	R14	R14
Power Supplies									
VDDPLL	—	—	—	Ι	87	M13		P15	
VSSPLL	_	—	—	I	84	L14	R15		
OVDD		_	_	I	1, 9, 17, 32, 41, 55, 62, 69, 81, 90, 95, 105, 114, 128, 132, 138, 146	E5, E7, E10, F7, F9, G6, G8, H7, H8, H9, J6, J8, J10, K5, K6, K8	E6:11, F5, F7:10, F12, G5, G6, G11 G12, H5, H6, H11, H12, J5, J6, J11 J12, K5, K6, K11, K12, L5, L7:10, L12, M6:M11		
VSS	_	_	_	I	8, 16, 25, 31, 40, 54, 61, 67, 80, 88, 94, 104, 113, 127, 131, 137, 145, 153, 160	A1, A14, E6, E9, F6, F8, F10, G7, G9, H6, J5, J7, J9, K7, P1, P14	A1, A16, G7:10, H7: L11, M5,	E5, E12, F6, 10, J1, J7:10 M12, N16, T	F11, F16, , K7:10, L6, 1, T6, T16
VDD	—	_	—	I	15, 53, 103, 144	D6, F11, G4, L4	A	8, G16, H1, T	Γ5

 Table 2. MCF523x Signal Information and Muxing (continued)

¹ Refers to pin's primary function. All pins which are configurable for GPIO have a pullup enabled in GPIO mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM.

² If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.

5 Design Recommendations

5.1 Layout

- Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power and ground planes for the MCF523*x*.
- See application note AN1259, System Design and Layout Techniques for Noise Reduction in Processor-Based Systems.
- Match the PC layout trace width and routing to match trace length to operating frequency and board impedance. Add termination (series or therein) to the traces to dampen reflections. Increase the PCB impedance (if possible) keeping the trace lengths balanced and short. Then do cross-talk analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6 mils trace and separation. Clocks get extra separation and more precise balancing.

Design Recommendations

5.2 Power Supply

• 33 μ F, 0.1 μ F, and 0.01 μ F across each power supply

5.2.1 Supply Voltage Sequencing and Separation Cautions

Figure 1 shows situations in sequencing the I/O V_{DD} (OV_{DD}), PLL V_{DD} (V_{DDPLL}), and Core V_{DD} (V_{DD}). OV_{DD} is specified relative to V_{DD} .

Figure 1. Supply Voltage Sequencing and Separation Cautions

5.2.1.1 Power Up Sequence

If OV_{DD} is powered up with V_{DD} at 0 V, then the sense circuits in the I/O pads cause all pad output drivers connected to the OV_{DD} to be in a high impedance state. There is no limit on how long after OV_{DD} powers up before V_{DD} must power up. V_{DD} should not lead the OV_{DD} or V_{DDPLL} by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 ms or slower rise time for all supplies.
- 2. V_{DD} and OV_{DD}/V_{DDPLL} should track up to 0.9 V, then separate for the completion of ramps with OV_{DD} going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

5.7.3 FlexCAN

The FlexCAN module interface to the CAN bus is composed of 2 pins: CANTX and CANRX, which are the serial transmitted data and the serial received data. The use of an external CAN transceiver to interface to the CAN bus is generally required. The transceiver is capable of driving the large current needed for the CAN bus and has current protection, against a defective CAN bus or defective stations.

5.7.4 BDM

Use the BDM interface as shown in the M523*x*EVB evaluation board user's manual. The schematics for this board are accessible at the Freescale website at: http://www.freescale.com/coldfire.

6 Mechanicals/Pinouts and Part Numbers

This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF523x devices. See Table 2 for a list the signal names and pin locations for each device.

6.1 Pinout—196 MAPBGA

The following figure shows a pinout of the MCF5232CVMxxx package.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A		TPUCH6	TPUCH3	TPUCH2	QSPI_ DOUT	QSPI_CS0	U2RXD	U2TXD	CS3	CS6	CS4	A20	A17		A
В	TPUCH8	TPUCH7	TPUCH4	TPUCH0	QSPI_ DIN	BS3	QSPI_CS1	U1CTS	CS7	CS1	A23	A19	A16	A15	в
С	TPUCH10	TPUCH9	TPUCH5	TPUCH1	QSPI_CLK	BS2	BS0	U1RTS	CS2	CS5	A22	A18	A14	A13	с
D	TPUCH13	TPUCH12	TPUCH11	NC	NC	VDD	BS1	U1RXD/ CAN0RX	U1TXD/ CAN0TX	CS0	A21	A12	A11	A10	D
E	TPUCH14	TPUCH15	TCRCLK	DT0IN	OVDD	VSS	OVDD	SD_CKE	VSS	OVDD	A9	A8	A7	A6	E
F	U0TXD	U0RXD	UOCTS	DTOOUT	TEST		OVDD	VSS	OVDD	VSS	VDD	A5	A4	A3	F
G	D31	D30	UORTS	VDD	CLKMOD1	OVDD	VSS	OVDD	VSS	LTPU ODIS	A2	A1	A0	DT3OUT	G
н	D29	D28	D27	D26	CLKMOD0	VSS	OVDD	OVDD	OVDD	UTPU ODIS	TA	TIP	TS	DT3IN	н
J	D25	D24	D23	D22	VSS	OVDD	VSS	OVDD	VSS	OVDD	I2C_SCL	I2C_SDA	R/W	TEA	J
к	D21	D20	D19	D18	OVDD	OVDD		OVDD	JTAG_EN	RCON	SD_SRAS	SD_SCAS	SD_WE	CLKOUT	к
L	D17	D16	D10	VDD	D3	DT1IN	IRQ5	IRQ1	DT2OUT	PST0	DDATA0	SD_CS1	SD_CS0	VSSPLL	L
М	D15	D13	D9	D6	D2	DT1OUT	IRQ6	IRQ2	DT2IN	TDI/DSI	PST3	DDATA3	VDDPLL	EXTAL	м
N	D14	D12	D8	D5	D1	ŌĒ	IRQ7	IRQ3	TRST/ DSCLK	TDO/DSO	PST2	DDATA2	RESET	XTAL	N
Ρ	VSS	D11	D7	D4	D0	TSIZ1	TSIZ0	IRQ4	TCLK/ PSTCLK	TMS/ BKPT	PST1	DDATA1	RSTOUT	VSS	Ρ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Figure 2. MCF5232CVMxxx Pinout (196 MAPBGA)

6.2.1 Pinout—256 MAPBGA

Figure 4 through Figure 6 show pinouts of the MCF5233CVMxxx, MCF5234CVMxxx, and MCF5235CVMxxx packages.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	VSS	TPUCH6	TPUCH4	TPUCH2	TPUCH17	TPUCH1	TPUCH0	VDD	BS1	BSO	U1RXD/ CAN0RX	U1TXD/ CAN0TX	CS6	CS4	A21	VSS	A
В	TPUCH8	TPUCH7	TPUCH5	TPUCH3	TPUCH18	TPUCH19	TPUCH16	QSPI_ CLK	BS2	QSPI_ CS1	U1RTS	CS3	CS1	A23	A20	A19	В
С	TPUCH10	TPUCH9	TPUCH25	TPUCH24	TPUCH22	TPUCH20	I2C_SDA/ U2RXD	QSPI_ DIN	BS3	SD_CKE	U1CTS	CS7	CS5	A22	A18	A17	С
D	TPUCH12	TPUCH11	TPUCH27	TPUCH26	TPUCH23	TPUCH21	I2C_SCL/ U2TXD	QSPI_ DOUT	QSPI_ CS0	U2RXD/ CAN1RX	U2TXD/ CAN1TX	CS2	CS0	A14	A15	A16	D
E	TPUCH14	TPUCH13	TPUCH29	TPUCH28	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	A10	A11	A12	A13	E
F	TCRCLK	TPUCH15	TPUCH31	TPUCH30	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	A7	A8	A9	VSS	F
G	UOCTS	UORXD	DTOOUT	DTOIN	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A4	A5	A6	VDD	G
Н	VDD	UOTXD	UORTS	NC	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A0	A1	A2	A3	н
J	VSS	CLK MOD0	CLK MOD1	TEST	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	utpu odis	ltpu Odis	DT3IN	DT3OUT	J
К	D28	D29	D30	D31	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	TEA	TA	TIP	TS	к
L	D24	D25	D26	D27	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	SD_WE	I2C_SCL/ CAN0TX	I2C_SDA/ CANORX	R/W	L
Μ	D21	D22	D23	NC	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	SD_ CS0	SD_ SRAS	SD_ SCAS	CLKOUT	М
N	D19	D20	D13	D9	NC	D3	D0	TSIZ1	IRQ5	IRQ1	TRST/ DSCLK	PST0	JTAG_ EN	DDATA3	SD_CS1	VSS	N
Ρ	D17	D18	D12	D8	D5	D2	DT1IN	TSIZ0	IRQ4	DT2IN	<u>TMS/</u> BKPT	PST1	RCON	DDATA2	VDDPLL	EXTAL	Ρ
R	D16	D15	D11	D7	D4	D1	DT1OUT	IRQ7	IRQ3	DT2OUT	TDO/ DSO	PST2	DDATA0	PLL_ TEST	VSSPLL	XTAL	R
Т	VSS	D14	D10	D6	VDD	VSS	OE	IRQ6	IRQ2	TCLK/ PSTCLK	TDI/DSI	PST3	DDATA1	RSTOUT	RESET	VSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	<u> </u>

Figure 4. MCF5233CVMxxx Pinout (256 MAPBGA)

Mechanicals/Pinouts and Part Numbers

6.4 Package Dimensions—160 QFP

Figure 9 shows MCF5232CAB80 package dimensions.

Figure 9. 160 QFP Package Dimensions

6.5 Ordering Information

Table 6. Orderable	Part Numbers
--------------------	--------------

Freescale Part Number	Description	Package	Speed	Lead-Free?	Temperature
MCF5232CAB80	MCF5232 RISC Microprocessor	160 QFP	80MHz	Yes	-40° to $+85^{\circ}$ C
MCF5232CVM100	MCF5232 RISC Microprocessor	196 MAPBGA	100MHz	Yes	-40° to $+85^{\circ}$ C
MCF5232CVM150	MCF5232 RISC Microprocessor	196 MAPBGA	150MHz	Yes	-40° to $+85^{\circ}$ C
MCF5233CVM100	MCF5233 RISC Microprocessor	256 MAPBGA	100MHz	Yes	-40° to $+85^{\circ}$ C
MCF5233CVM150	MCF5233 RISC Microprocessor	256 MAPBGA	150MHz	Yes	-40° to $+85^{\circ}$ C
MCF5234CVM100	MCF5234 RISC Microprocessor	256 MAPBGA	100MHz	Yes	-40° to $+85^{\circ}$ C
MCF5234CVM150	MCF5234 RISC Microprocessor	256 MAPBGA	150MHz	Yes	-40° to $+85^{\circ}$ C
MCF5235CVM100	MCF5235 RISC Microprocessor	256 MAPBGA	100MHz	Yes	-40° to $+85^{\circ}$ C
MCF5235CVM150	MCF5235 RISC Microprocessor	256 MAPBGA	150MHz	Yes	-40° to $+85^{\circ}$ C
MCF5235CVF150	MCF5235 RISC Microprocessor,	256 MAPBGA	150MHz	No	-40° to $+85^{\circ}$ C

7 Electrical Characteristics

This chapter contains electrical specification tables and reference timing diagrams for the MCF5235 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5235.

NOTE

The parameters specified in this processor document supersede any values found in the module specifications.

7.1 Maximum Ratings

Table 7. Absolute Maximum Ratings^{1, 2}

Rating	Symbol	Value	Unit
Core Supply Voltage	V _{DD}	– 0.5 to +2.0	V
Pad Supply Voltage	OV _{DD}	- 0.3 to +4.0	V
PLL Supply Voltage	V _{DDPLL}	– 0.3 to +4.0	V
Digital Input Voltage ³	V _{IN}	– 0.3 to + 4.0	V
Instantaneous Maximum Current Single pin limit (applies to all pins) ^{3,4,5}	Ι _D	25	mA
Operating Temperature Range (Packaged)	T _A (T _L - T _H)	- 40 to 85	°C
Storage Temperature Range	T _{stg}	– 65 to 150	°C

- ¹ Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.
- ² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS} or OV_{DD}).
- ³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁴ All functional non-supply pins are internally clamped to V_{SS} and OV_{DD}.
- ⁵ Power supply must maintain regulation within operating OV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > OV_{DD}$) is greater than I_{DD} , the injection current may flow out of OV_{DD} and could result in external power supply going out of regulation. Insure external OV_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power (ex; no clock).Power supply must maintain regulation within operating OV_{DD} range during instantaneous and operating maximum current conditions.

7.2 Thermal Characteristics

The below table lists thermal resistance values.

Characteristic		Symbol	256 MAPBGA	196 MAPBGA	160 QFP	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	26 ^{1,2}	32 ^{1,2}	40 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	23 ^{1,2}	29 ^{1,2}	36 ^{1,2}	°C/W
Junction to board		θ_{JB}	15 ³	20 ³	25 ³	°C/W
Junction to case		θ _{JC}	10 ⁴	10 ⁴	10 ⁴	°C/W
Junction to top of package		Ψ _{jt}	2 ^{1,5}	2 ^{1,5}	2 ^{1,5}	°C/W
Maximum operating junction temperature		Тj	102	104	105 ⁶	°C

Table 8. Thermal Characteristics

 θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- ² Per JEDEC JESD51-6 with the board horizontal.
- ³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
- ⁶ At 100MHz.

Characteristic	Symbol	Min	Typical	Мах	Unit
Input Capacitance ³	C _{in}		_		pF
All input-only pins		—		7	
All input/output (three-state) pins				1	
Load Capacitance ⁴					
Low drive strength	CL		—	25	pF
High drive strength			—	50	pF
Core Operating Supply Current ⁵	I _{DD}				
Master Mode		—	135	150	mA
Pad Operating Supply Current	OI _{DD}				
Master Mode		—	100	—	mA
Low Power Modes		—	TBD	—	μA
DC Injection Current ^{3, 6, 7, 8}	I _{IC}				
$V_{\text{NEGCLAMP}} = V_{\text{SS}} - 0.3 \text{ V}, V_{\text{POSCLAMP}} = V_{\text{DD}} + 0.3$					
Single Pin Limit		-1.0		1.0	mA
Iotal processor Limit, Includes sum of all stressed pins		-10		10	mA

Table 9. DC Electrical Specifications¹ (continued)

¹ Refer to Table 10 for additional PLL specifications.

² Refer to the MCF5235 signals section for pins having weak internal pull-up devices.

³ This parameter is characterized before qualification rather than 100% tested.

⁴ pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination. See <u>High Speed Signal Propagation:</u> <u>Advanced Black Magic</u> by Howard W. Johnson for design guidelines.

⁵ Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.

⁶ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD}.

⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁸ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Insure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not present during the power-up sequence until the PLL has attained lock.

- ⁷ This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- ⁸ Assuming a reference is available at power up, lock time is measured from the time V_{DD} and V_{DDSYN} are valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the crystal start up time must be added to the PLL lock time to determine the total start-up time.
- ⁹ $t_{lpll} = (64 + 4 + 5 + 5 \times \tau) \times T_{ref}$, where $T_{ref} = 1/F_{ref_crystal} = 1/F_{ref_ext} = 1/F_{ref_1:1}$, and $\tau = 1.57 \times 10^{-6} \times 2(MFD + 2)$.
- ¹⁰ PLL is operating in 1:1 PLL mode.
- ¹¹ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys/2}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDSYN} and V_{SSSYN} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.
- ¹² Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.
- ¹³ Modulation percentage applies over an interval of 10µs, or equivalently the modulation rate is 100KHz.
- ¹⁴ Modulation rate selected must not result in f_{sys/2} value greater than the f_{sys/2} maximum specified value. Modulation range determined by hardware design.

¹⁵ $f_{sys/2} = f_{ico} / (2 \cdot 2^{RFD})$

7.5 External Interface Timing Characteristics

Table 11 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the CLKOUT output.

All other timing relationships can be derived from these values.

Name	Characteristic ¹	Symbol	Min	Max	Unit
freq	System bus frequency	f _{sys/2}	50	75	MHz
B0	CLKOUT period	t _{cyc}	_	1/75	ns
	Control Inputs				
B1a	Control input valid to CLKOUT high ²	t _{CVCH}	9	—	ns
B1b	BKPT valid to CLKOUT high ³	t _{BKVCH}	9	—	ns
B2a	CLKOUT high to control inputs invalid ²	t _{CHCII}	0	—	ns
B2b	CLKOUT high to asynchronous control input BKPT invalid ³	t _{BKNCH}	0	—	ns
	Data Inputs				
B4	Data input (D[31:0]) valid to CLKOUT high	t _{DIVCH}	4	—	ns
B5	CLKOUT high to data input (D[31:0]) invalid	t _{CHDII}	0	—	ns

Table 11. Processor Bus Input Timing Specifications

¹ Timing specifications are tested using full drive strength pad configurations in a 50ohm transmission line environment..

 2 TEA and TA pins are being referred to as control inputs.

³ Refer to figure A-19.

Timings listed in Table 11 are shown in Figure 10.

* The timings are also valid for inputs sampled on the negative clock edge.

7.6 **Processor Bus Output Timing Specifications**

Table 12 lists processor bus output timings.

Table 12.	External	Bus	Output	Timing	Sp	pecifications
-----------	----------	-----	--------	--------	----	---------------

Name	Characteristic	Symbol	Min	Max	Unit	
Control Outputs						
B6a	CLKOUT high to chip selects valid ¹	t _{CHCV}	_	0.5t _{CYC} +5	ns	
B6b	CLKOUT high to byte enables (BS[3:0]) valid ²	t _{CHBV}		0.5t _{CYC} +5	ns	
B6c	CLKOUT high to output enable (\overline{OE}) valid ³	t _{CHOV}	_	0.5t _{CYC} +5	ns	
B7	CLKOUT high to control output ($\overline{BS}[3:0], \overline{OE}$) invalid	t _{CHCOI}	0.5t _{CYC} +1.5	_	ns	
B7a	CLKOUT high to chip selects invalid	t _{CHCI}	0.5t _{CYC} +1.5	_	ns	

Name	Characteristic	Max	Unit		
Address and Attribute Outputs					
B8	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], TIP, R/W) valid	t _{CHAV}	_	9	ns
B9	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], TIP, R/W) invalid	t _{CHAI}	1.5	—	ns
Data Outputs					
B11	CLKOUT high to data output (D[31:0]) valid	t _{CHDOV}	_	9	ns
B12	CLKOUT high to data output (D[31:0]) invalid	t _{CHDOI}	1.5	_	ns
B13	CLKOUT high to data output (D[31:0]) high impedance	t _{CHDOZ}	_	9	ns

Table 12. External Bus Output Timing Specifications (continued)

CS transitions after the falling edge of CLKOUT.
 BS transitions after the falling edge of CLKOUT.
 OE transitions after the falling edge of CLKOUT.

Figure 16. GPIO Timing

7.8 Reset and Configuration Override Timing

Table 15. Reset and Configuration Override Timing $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = \text{T}_{L} \text{ to } \text{T}_{H})^{1}$

NUM	Characteristic	Symbol	Min	Max	Unit
R1	RESET Input valid to CLKOUT High	t _{RVCH}	9	_	ns
R2	CLKOUT High to RESET Input invalid	t _{CHRI}	1.5	_	ns
R3	RESET Input valid Time ²	t _{RIVT}	5	_	t _{CYC}
R4	CLKOUT High to RSTOUT Valid	t _{CHROV}	—	10	ns
R5	RSTOUT valid to Config. Overrides valid	t _{ROVCV}	0	—	ns
R6	Configuration Override Setup Time to RSTOUT invalid	t _{COS}	20	_	t _{CYC}
R7	Configuration Override Hold Time after RSTOUT invalid	t _{COH}	0	_	ns
R8	RSTOUT invalid to Configuration Override High Impedance	t _{ROICZ}	_	1	t _{CYC}

¹ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

Figure 17. RESET and Configuration Override Timing

Refer to the chip configuration module (CCM) chapter in the device's reference manual for more information.

7.10.4 MII Serial Management Channel Timing (EMDIO and EMDC)

Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

Num	Characteristic	Min	Max	Unit
M10	EMDC falling edge to EMDIO output invalid (minimum propagation delay)	0	_	ns
M11	EMDC falling edge to EMDIO output valid (max prop delay)		25	ns
M12	EMDIO (input) to EMDC rising edge setup	10	_	ns
M13	EMDIO (input) to EMDC rising edge hold	0	-	ns
M14	EMDC pulse width high	40%	60%	MDC period
M15	EMDC pulse width low	40%	60%	MDC period

Table 21. MII Serial Management Channel Tin	ning
---	------

Figure 22 shows MII serial management channel timings listed in Table 21.

Figure 22. MII Serial Management Channel Timing Diagram

7.11 32-Bit Timer Module AC Timing Specifications

Table 22 lists timer module AC timings.

	Table 22.	Timer	Module	AC	Timing	S	pecifications
--	-----------	-------	--------	----	--------	---	---------------

Name	Characteristic	0–66	0–66 MHz	
Name	Unaracteristic	Min	Max	onn
T1	DT0IN / DT1IN / DT2IN / DT3IN cycle time	3	_	t _{CYC}
T2	DT0IN / DT1IN / DT2IN / DT3IN pulse width	1		t _{CYC}

7.12 **QSPI Electrical Specifications**

Table 23 lists QSPI timings.

Table 2	23. QS	PI Module	s AC Timi	ing Specificatio	ns
140101				mg opeemeaner	

Name	Characteristic	Min	Max	Unit
QS1	QSPI_CS[1:0] to QSPI_CLK	1	510	tcyc
QS2	QSPI_CLK high to QSPI_DOUT valid.	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid. (Output hold)	2	_	ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9	_	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9	_	ns

The values in Table 23 correspond to Figure 23.

Figure 23. QSPI Timing

JTAG and Boundary Scan Timing 7.13

Table 24. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK Frequency of Operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK Cycle Period	t _{JCYC}	4	—	t _{CYC}
J3	TCLK Clock Pulse Width	t _{JCW}	26	—	ns
J4	TCLK Rise and Fall Times	t _{JCRF}	0	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	t _{BSDST}	4	—	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	t _{BSDHT}	26	—	ns
J7	TCLK Low to Boundary Scan Output Data Valid	t _{BSDV}	0	33	ns
J8	TCLK Low to Boundary Scan Output High Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	t _{TAPBHT}	10	—	ns
J11	TCLK Low to TDO Data Valid	t _{TDODV}	0	26	ns
J12	TCLK Low to TDO High Z	t _{TDODZ}	0	8	ns
J13	TRST Assert Time	t _{TRSTAT}	100	—	ns
J14	TRST Setup Time (Negation) to TCLK High	t _{TRSTST}	10	—	ns
¹ JTAG	EN is expected to be a static signal. Hence, specific timing is	not associated	with it		

JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

Figure 24. Test Clock Input Timing

Document Revision History

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH

reescale Habieter Deutschland Gmt Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF5235EC Rev. 4 08/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

