

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	61
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 1.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5233cvm100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCF523*x* Family Configurations

Table 1.	MCF523x	Family	Config	gurations

Module	MCF5232	MCF5233	MCF5234	MCF5235
ColdFire V2 Core with EMAC (Enhanced Multiply-Accumulate Unit)	х	х	х	х
Enhanced Time Processor Unit with memory (eTPU)	16-ch 6K	32-ch 6K	16-ch 6K	32-ch 6K
System Clock		up to 1	50 MHz	
Performance (Dhrystone/2.1 MIPS)		up to	0 144	
Instruction/Data Cache		8 Kb	oytes	
Static RAM (SRAM)		64 K	bytes	
Interrupt Controllers (INTC)	2	2	2	2
Edge Port Module (EPORT)	х	х	х	х
External Interface Module (EIM)	х	х	х	х
4-channel Direct-Memory Access (DMA)	х	х	х	х
SDRAM Controller	х	х	х	х
Fast Ethernet Controller (FEC)	_		х	х
Cryptography - Security module for data packets processing	_	_	_	х
Watchdog Timer (WDT)	х	х	х	х
Four Periodic Interrupt Timers (PIT)	х	х	х	х
32-bit DMA Timers	4	4	4	4
QSPI	х	х	х	х
UART(s)	3	3	3	3
l ² C	х	х	х	х
FlexCAN 2.0B - Controller-Area Network communication module	1	2	1	2
General Purpose I/O Module (GPIO)	х	х	х	х
JTAG - IEEE 1149.1 Test Access Port	х	х	х	х
Package	160 QFP 196 MAPBGA	256 MAPBGA	256 MAPBGA	256 MAPBGA

2 Block Diagram

The superset device in the MCF523*x* family comes in a 256 mold array process ball grid array (MAPBGA) package. Figure shows a top-level block diagram of the MCF5235, the superset device.

Features

3 Features

For a detailed feature list see the MCF5235 Reference Manual (MCF5235RM).

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5232 160 QFP	MCF5232 196 MAPBGA	MCF5233 256 MAPBGA	MCF5234 256 MAPBGA	MCF5235 256 MAPBGA				
	Test												
TEST — — I 18 F5 J4 J4 J4 J4													
PLL_TEST	_	—	—	I	—		R14	R14					
Power Supplies													
VDDPLL	—	—	—	Ι	87	M13		P15					
VSSPLL	_	—	—	I	84	L14	R15						
OVDD		_	_	I	1, 9, 17, 32, 41, 55, 62, 69, 81, 90, 95, 105, 114, 128, 132, 138, 146	E5, E7, E10, F7, F9, G6, G8, H7, H8, H9, J6, J8, J10, K5, K6, K8	E6:11, F5, F G12, H5, H J12, K5, K	7:10, F12, G 6, H11, H12, 6, K11, K12, L12, M6:M11	5, G6, G11, J5, J6, J11, L5, L7:10,				
VSS	_	_	_	I	8, 16, 25, 31, 40, 54, 61, 67, 80, 88, 94, 104, 113, 127, 131, 137, 145, 153, 160	A1, A14, E6, E9, F6, F8, F10, G7, G9, H6, J5, J7, J9, K7, P1, P14	A1, A16, G7:10, H7: L11, M5,	E5, E12, F6, 10, J1, J7:10 M12, N16, T	F11, F16, , K7:10, L6, 1, T6, T16				
VDD	—	_	—	I	15, 53, 103, 144	D6, F11, G4, L4	A	8, G16, H1, T	Γ5				

 Table 2. MCF523x Signal Information and Muxing (continued)

¹ Refers to pin's primary function. All pins which are configurable for GPIO have a pullup enabled in GPIO mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM.

² If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.

5 Design Recommendations

5.1 Layout

- Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power and ground planes for the MCF523*x*.
- See application note AN1259, System Design and Layout Techniques for Noise Reduction in Processor-Based Systems.
- Match the PC layout trace width and routing to match trace length to operating frequency and board impedance. Add termination (series or therein) to the traces to dampen reflections. Increase the PCB impedance (if possible) keeping the trace lengths balanced and short. Then do cross-talk analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6 mils trace and separation. Clocks get extra separation and more precise balancing.

Design Recommendations

5.2 Power Supply

• 33 μ F, 0.1 μ F, and 0.01 μ F across each power supply

5.2.1 Supply Voltage Sequencing and Separation Cautions

Figure 1 shows situations in sequencing the I/O V_{DD} (OV_{DD}), PLL V_{DD} (V_{DDPLL}), and Core V_{DD} (V_{DD}). OV_{DD} is specified relative to V_{DD} .

Figure 1. Supply Voltage Sequencing and Separation Cautions

5.2.1.1 Power Up Sequence

If OV_{DD} is powered up with V_{DD} at 0 V, then the sense circuits in the I/O pads cause all pad output drivers connected to the OV_{DD} to be in a high impedance state. There is no limit on how long after OV_{DD} powers up before V_{DD} must power up. V_{DD} should not lead the OV_{DD} or V_{DDPLL} by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 ms or slower rise time for all supplies.
- 2. V_{DD} and OV_{DD}/V_{DDPLL} should track up to 0.9 V, then separate for the completion of ramps with OV_{DD} going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

5.2.1.2 Power Down Sequence

If V_{DD} is powered down first, then sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after V_{DD} powers down before OV_{DD}/V_{DDPLL} must power down. V_{DD} should not lag OV_{DD} or V_{DDPLL} going low by more than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop V_{DD} to 0 V.
- 2. Drop OV_{DD}/V_{DDPLL} supplies.

5.3 Decoupling

- Place the decoupling caps as close to the pins as possible, but they can be outside the footprint of the package.
- 0.1 μ F and 0.01 μ F at each supply input

5.4 Buffering

• Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses when excessive loading is expected. See Section 7, "Electrical Characteristics."

5.5 Pull-up Recommendations

• Use external pull-up resistors on unused inputs. See pin table.

5.6 Clocking Recommendations

- Use a multi-layer board with a separate ground plane.
- Place the crystal and all other associated components as close to the EXTAL and XTAL (oscillator pins) as possible.
- Do not run a high frequency trace around crystal circuit.
- Ensure that the ground for the bypass capacitors is connected to a solid ground trace.
- Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop currents in the vicinity of the crystal.
- Tie the ground pin to the most solid ground in the system.
- Do not connect the trace that connects the oscillator and the ground plane to any other circuit element. This tends to make the oscillator unstable.
- Tie XTAL to ground when an external oscillator is clocking the device.

5.7 Interface Recommendations

5.7.1 SDRAM Controller

5.7.1.1 SDRAM Controller Signals in Synchronous Mode

Table 3 shows the behavior of SDRAM signals in synchronous mode.

Table 3. Synchronous	DRAM Signal	Connections
----------------------	-------------	-------------

Signal	Description
SD_SRAS	Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM SD_SRAS. Do not confuse SD_SRAS with the DRAM controller's SD_CS[1:0], which should not be interfaced to the SDRAM SD_SRAS signals.
SD_SCAS	Synchronous column address strobe. Indicates a valid column address is present and can be latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled SD_SCAS on the SDRAM.
DRAMW	DRAM read/write. Asserted for write operations and negated for read operations.
SD_CS[1:0]	Row address strobe. Select each memory block of SDRAMs connected to the MCF523x. One \overline{SD}_{CS} signal selects one SDRAM block and connects to the corresponding \overline{CS} signals.
SD_CKE	Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down mode where operations are suspended or they can enter self-refresh mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SD_CKE to provide command-bit functionality.
BS[3:0]	Column address strobe. For synchronous operation, $\overline{\text{BS}}$ [3:0] function as byte enables to the SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs.
CLKOUT	Bus clock output. Connects to the CLK input of SDRAMs.

5.7.1.2 Address Multiplexing

See the SDRAM controller module chapter in the *MCF5235 Reference Manual* for details on address multiplexing.

5.7.2 Ethernet PHY Transceiver Connection

The FEC supports both an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3 standard defines and the FEC module supports 18 signals. These are shown in Table 4.

Signal Description	MCF523 <i>x</i> Pin
Transmit clock	ETXCLK
Transmit enable	ETXEN
Transmit data	ETXD[3:0]

Table 4. MII Mode

Design Recommendations

Signal Description	MCF523 <i>x</i> Pin
Transmit error	ETXER
Collision	ECOL
Carrier sense	ECRS
Receive clock	ERXCLK
Receive enable	ERXDV
Receive data	ERXD[3:0]
Receive error	ERXER
Management channel clock	EMDC
Management channel serial data	EMDIO

Table 4.	MII	Mode	(continued)
----------	-----	------	-------------

The serial mode interface operates in what is generally referred to as AMD mode. The MCF523x configuration for seven-wire serial mode connections to the external transceiver are shown in Table 5.

Signal Description	MCF523 <i>x</i> Pin
Transmit clock	ETXCLK
Transmit enable	ETXEN
Transmit data	ETXD[0]
Collision	ECOL
Receive clock	ERXCLK
Receive enable	ERXDV
Receive data	ERXD[0]
Unused, configure as PB14	ERXER
Unused input, tie to ground	ECRS
Unused, configure as PB[13:11]	ERXD[3:1]
Unused output, ignore	ETXER
Unused, configure as PB[10:8]	ETXD[3:1]
Unused, configure as PB15	EMDC
Input after reset, connect to ground	EMDIO

Table 5. Seven-Wire Mode Configuration

Refer to the M523*x*EVB evaluation board user's manual for an example of how to connect an external PHY. Schematics for this board are accessible at the MCF5235 site by navigating to: http://www.freescale.com/coldfire.

Mechanicals/Pinouts and Part Numbers

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	VSS	TPUCH6	TPUCH4	TPUCH2	TPUCH17/ ETXD1	TPUCH1	TPUCH0	VDD	BS1	BSO	U1RXD/ CAN0RX	U1TXD/ CAN0TX	CS6	CS4	A21	VSS	A
В	TPUCH8	TPUCH7	TPUCH5	TPUCH3	TPUCH18/ ETXD2	TPUCH19/ ETXD3	TPUCH16/ ETXD0	QSPI_ CLK	BS2	QSPI_ CS1	U1RTS	CS3	CS1	A23	A20	A19	В
с	TPUCH10	TPUCH9	TPUCH25/ ERXD1	TPUCH24/ ERXD0	TPUCH22/ ETXCLK	TPUCH20/ ETXER	I2C_SDA/ U2RXD/ EMDIO	QSPI_ DIN	BS3	SD_CKE	U1CTS	CS7	CS5	A22	A18	A17	с
D	TPUCH12	TPUCH11	TPUCH27/ ERXD3	TPUCH26/ ERXD2	TPUCH23/ ERXER	TPUCH21/ ETXEN	I2C_SCL/ U2TXD/ EMDC	QSPI_ DOUT	QSPI_ CS0	U2RXD/ CAN1RX	U2TXD/ CAN1TX	CS2	CS0	A14	A15	A16	D
E	TPUCH14	TPUCH13	TPUCH29/ ERXCLK	TPUCH2/ ERXDV	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	A10	A11	A12	A13	E
F	TCRCLK	TPUCH15	TPUCH31/ ECOL	TPUCH30/ ECRS	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	A7	A8	A9	VSS	F
G	UOCTS	U0RXD	DT0OUT	DT0IN	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A4	A5	A6	VDD	G
н	VDD	U0TXD	UORTS	NC	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A0	A1	A2	A3	н
J	VSS	CLK MOD0	CLK MOD1	TEST	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	utpu Odis	LTPU ODIS	DT3IN	DT3OUT	J
к	D28	D29	D30	D31	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	TEA	TA	TIP	TS	к
L	D24	D25	D26	D27	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	SD_WE	I2C_SCL/ CAN0TX	I2C_SDA/ CAN0RX	R/W	L
М	D21	D22	D23	eTPU/ EthENB	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	SD_CS0	SD_ SRAS	SD_ SCAS	CLKOUT	М
Ν	D19	D20	D13	D9	NC	D3	D0	TSIZ1	IRQ5	IRQ1	TRST/ DSCLK	PST0	JTAG_ EN	DDATA3	SD_CS1	VSS	N
Ρ	D17	D18	D12	D8	D5	D2	DT1IN	TSIZ0	IRQ4	DT2IN	TMS/ BKPT	PST1	RCON	DDATA2	VDDPLL	EXTAL	Ρ
R	D16	D15	D11	D7	D4	D1	DT10UT	IRQ7	IRQ3	DT2OUT	TDO/ DSO	PST2	DDATA0	PLL_ TEST	VSSPLL	XTAL	R
т	VSS	D14	D10	D6	VDD	VSS	ŌE	IRQ6	IRQ2	TCLK/ PSTCLK	TDI/DSI	PST3	DDATA1	RSTOUT	RESET	VSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 6. MCF5235CVMxxx Pinout (256 MAPBGA)

Characteristic	Symbol	Min	Typical	Мах	Unit
Input Capacitance ³	C _{in}		_		pF
All input-only pins		—		7	
All input/output (three-state) pins				1	
Load Capacitance ⁴					
Low drive strength	CL		—	25	pF
High drive strength			—	50	pF
Core Operating Supply Current ⁵	I _{DD}				
Master Mode		—	135	150	mA
Pad Operating Supply Current	OI _{DD}				
Master Mode		—	100	—	mA
Low Power Modes		—	TBD	—	μA
DC Injection Current ^{3, 6, 7, 8}	I _{IC}				
$V_{\text{NEGCLAMP}} = V_{\text{SS}} - 0.3 \text{ V}, V_{\text{POSCLAMP}} = V_{\text{DD}} + 0.3$					
Single Pin Limit		-1.0		1.0	mA
Iotal processor Limit, Includes sum of all stressed pins		-10		10	mA

Table 9. DC Electrical Specifications¹ (continued)

¹ Refer to Table 10 for additional PLL specifications.

² Refer to the MCF5235 signals section for pins having weak internal pull-up devices.

³ This parameter is characterized before qualification rather than 100% tested.

⁴ pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination. See <u>High Speed Signal Propagation:</u> <u>Advanced Black Magic</u> by Howard W. Johnson for design guidelines.

⁵ Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.

⁶ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD}.

⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁸ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Insure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not present during the power-up sequence until the PLL has attained lock.

Timings listed in Table 11 are shown in Figure 10.

* The timings are also valid for inputs sampled on the negative clock edge.

7.6 **Processor Bus Output Timing Specifications**

Table 12 lists processor bus output timings.

Table 12	. External	Bus	Output	Timing	Specifications
----------	------------	-----	--------	--------	-----------------------

Name	Characteristic	Symbol	Min	Max	Unit				
	Control Outputs								
B6a	CLKOUT high to chip selects valid ¹	t _{CHCV}	—	0.5t _{CYC} +5	ns				
B6b	CLKOUT high to byte enables (BS[3:0]) valid ²	t _{CHBV}	_	0.5t _{CYC} +5	ns				
B6c	CLKOUT high to output enable (\overline{OE}) valid ³	t _{CHOV}	_	0.5t _{CYC} +5	ns				
B7	CLKOUT high to control output ($\overline{BS}[3:0], \overline{OE}$) invalid	t _{CHCOI}	0.5t _{CYC} +1.5	—	ns				
B7a	CLKOUT high to chip selects invalid	t _{CHCI}	0.5t _{CYC} +1.5		ns				

Name	Characteristic	Symbol	Min	Max	Unit					
	Address and Attribute Outputs									
B8	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], TIP, R/W) valid	t _{CHAV}	_	9	ns					
B9	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], TIP, R/W) invalid	t _{CHAI}	1.5	—	ns					
Data Outputs										
B11	CLKOUT high to data output (D[31:0]) valid	t _{CHDOV}	—	9	ns					
B12	CLKOUT high to data output (D[31:0]) invalid	t _{CHDOI}	1.5	_	ns					
B13	CLKOUT high to data output (D[31:0]) high impedance	t _{CHDOZ}	_	9	ns					

Table 12. External Bus Output Timing Specifications (continued)

CS transitions after the falling edge of CLKOUT.
 BS transitions after the falling edge of CLKOUT.
 OE transitions after the falling edge of CLKOUT.

Read/write bus timings listed in Table 12 are shown in Figure 11, Figure 12, and Figure 13.

Figure 11. Read/Write (Internally Terminated) SRAM Bus Timing

Figure 13 shows an SRAM bus cycle terminated by $\overline{\text{TEA}}$ showing timings listed in Table 12.

Figure 14 shows an SDRAM read cycle.

Figure	14.	SDRAM	Read	Cycle
--------	-----	-------	------	-------

Table	13.	SDRAM	Timing
-------	-----	-------	--------

NUM	Characteristic	Symbol	Min	Max	Unit
D1	CLKOUT high to SDRAM address valid	t _{CHDAV}		9	ns
D2	CLKOUT high to SDRAM control valid	t _{CHDCV}	—	9	ns
D3	CLKOUT high to SDRAM address invalid	t _{CHDAI}	1.5	_	ns
D4	CLKOUT high to SDRAM control invalid	t _{CHDCI}	1.5	_	ns
D5	SDRAM data valid to CLKOUT high	t _{DDVCH}	4	_	ns
D6	CLKOUT high to SDRAM data invalid	t _{CHDDI}	1.5	_	ns
D7 ¹	CLKOUT high to SDRAM data valid	t _{CHDDVW}	—	9	ns
D8 ¹	CLKOUT high to SDRAM data invalid	t _{CHDDIW}	1.5	_	ns

¹ D7 and D8 are for write cycles only.

Figure 18. I²C Input/Output Timings

7.10 Fast Ethernet AC Timing Specifications

MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

7.10.1 MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK)

The receiver functions correctly up to a ERXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ERXCLK frequency.

Table 18 lists MII receive channel timings.

Table 18. MII Receive Signal Timing

Num	Characteristic	Min	Max	Unit
M1	ERXD[3:0], ERXDV, ERXER to ERXCLK setup	5	—	ns
M2	ERXCLK to ERXD[3:0], ERXDV, ERXER hold	5	—	ns
M3	ERXCLK pulse width high	35%	65%	ERXCLK period
M4	ERXCLK pulse width low	35%	65%	ERXCLK period

Figure 19 shows MII receive signal timings listed in Table 18.

Figure 19. MII Receive Signal Timing Diagram

7.10.2 MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK)

 Table 19 lists MII transmit channel timings.

The transmitter functions correctly up to a ETXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ETXCLK frequency.

Num	Characteristic	Min	Мах	Unit
M5	ETXCLK to ETXD[3:0], ETXEN, ETXER invalid	5	_	ns
M6	ETXCLK to ETXD[3:0], ETXEN, ETXER valid		25	ns
M7	ETXCLK pulse width high	35%	65%	ETXCLK period
M8	ETXCLK pulse width low	35%	65%	ETXCLK period

Table	19.	MII	Transmit	Signal	Timing
-------	-----	-----	----------	--------	--------

Figure 20 shows MII transmit signal timings listed in Table 19.

Figure 20. MII Transmit Signal Timing Diagram

7.10.3 MII Async Inputs Signal Timing (ECRS and ECOL)

Table 20 lists MII asynchronous inputs signal timing.

Table 20. MII Async Inputs Signal Timing

Num	Characteristic	Min	Мах	Unit
M9	ECRS, ECOL minimum pulse width	1.5	_	ETXCLK period

Figure 21 shows MII asynchronous input timings listed in Table 20.

Figure 21. MII Async Inputs Timing Diagram

7.11 32-Bit Timer Module AC Timing Specifications

Table 22 lists timer module AC timings.

	Table 22.	Timer	Module	AC	Timing	S	pecifications
--	-----------	-------	--------	----	--------	---	---------------

Name	e Characteristic		0–66 MHz			
Name	Unaracteristic	Min	Max	onn		
T1	DT0IN / DT1IN / DT2IN / DT3IN cycle time	3	_	t _{CYC}		
T2	DT0IN / DT1IN / DT2IN / DT3IN pulse width	1		t _{CYC}		

7.12 **QSPI Electrical Specifications**

Table 23 lists QSPI timings.

Table 2	23. QS	PI Module	s AC Timi	ing Specificatio	ns
140101				mg opeemeaner	

Name	Characteristic	Min	Max	Unit
QS1	QSPI_CS[1:0] to QSPI_CLK	1	510	tcyc
QS2	QSPI_CLK high to QSPI_DOUT valid.	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid. (Output hold)	2	_	ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9	_	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9	_	ns

The values in Table 23 correspond to Figure 23.

Figure 23. QSPI Timing

7.14 Debug AC Timing Specifications

Table 25 lists specifications for the debug AC timing parameters shown in Figure 29.

Num	Characteristic		MHz	Unite
Num			Мах	onita
DE0	PSTCLK cycle time	_	0.5	t _{cyc}
DE1	PST valid to PSTCLK high	4	_	ns
DE2	PSTCLK high to PST invalid	1.5	_	ns
DE3	DSCLK cycle time	5	_	t _{cyc}
DE4	DSI valid to DSCLK high	1	_	t _{cyc}
DE5 ¹	DSCLK high to DSO invalid	4	_	t _{cyc}
DE6	BKPT input data setup time to CLKOUT rise	4	_	ns
DE7	CLKOUT high to BKPT high Z		10	ns

Table 25. Debug AC Timing Specification

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 28 shows real-time trace timing for the values in Table 25.

Figure 28. Real-Time Trace AC Timing

Figure 29 shows BDM serial port AC timing for the values in Table 25.

Documentation

Figure 29. BDM Serial Port AC Timing

8 Documentation

Documentation regarding the MCF523x and their development support tools is available from a local Freescale distributor, a Freescale semiconductor sales office, the Freescale Literature Distribution Center, or through the Freescale web address at http://www.freescale.com/coldfire.

9 Document Revision History

The below table provides a revision history for this document.

Rev. No.	Substantive Change(s)
0	Preliminary release.
1	Updated Signal List table
1.1	• Removed duplicate information in the module description sections. The information is all in the Signals Description Table.
1.2	 Corrected Figure 8 pin 81. VDD instead of VSS Changed instances of Motorola to Freescale
1.3	 Removed detailed signal description section. This information can be found in the MCF5235RM Chapter 2. Removed detailed feature list. This information can be found in the MCF5235RM Chapter 1. Corrected Figure 2 pin F10. VSS instead of VDD. Change made in Table 2 as well. Corrected Figure 8 pin 81. OVDD instead of VDD. Change made in Table 2 as well. Cleaned up many inconsistencies within the pinout figure signal names Corrected document IDs in Documentation Table
1.4	 Added values for 'Maximum operating junction temperature' in Table 8. Added typical values for 'Core operating supply current (master mode)' in Table 9. Added typical values for 'Pad operating supply current (master mode)' in Table 9. Removed unnecessary PLL specifications, #6-9, in Table 10.

Document Revision History

Rev. No.	Substantive Change(s)
1.5	 Removed Overview, Features, Modes of Operation, and Address Multiplexing sections. This information can be found in the MCF5235 Reference Manual. Removed list of documentation table in Section 8, "Documentation.". An up-to-date list is always available on our web site.
1.6	Table 9: Changed core supply voltage (V _{DD}) from 1.35-1.65 to 1.4-1.6.
1.7	Table 10: Changed max f _{ICO} frequency from "75 MHz" to "150 MHz".
1.8	 Added Section 5.2.1, "Supply Voltage Sequencing and Separation Cautions." Updated 196MAPBGA package dimensions, Figure 3.
2	 Table 2: Changed SD_CKE pin location from 139 to "—" for the 160QFP device. Changed QSPI_CS1 pin location from "—" to 139 for the 160QFP device. Figure 8: Changed pin 139 label from "SD_CKE/QSPI_CS1" to "QSPI_CS1/SD_CKE". Removed second sentence from Section 7.10.1, "MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK)," and Section 7.10.2, "MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK)," regarding no minimum frequency requirement for TXCLK. Removed third and fourth paragraphs from Section 7.10.2, "MII Transmit Signal Timing (ETXD[3:0], ETXD[3:0], ETXEN, ETXER, ETXCLK)," as this feature is not supported on this device.
3	 Section 5.2.1, "Supply Voltage Sequencing and Separation Cautions" changed PLLV_{DD} to V_{DDPLL} to match rest of document. Section 5.2.1, "Supply Voltage Sequencing and Separation Cautions" Changed V_{DDPLL} voltage level from 1.5V to 3.3V throughout section. Section 5.2.1.1, "Power Up Sequence" first bullet, changed "Use 1 µs" to "Use 1 ms". Corrected position of spec D5 in Figure 14. Table 14: Added DACKn and DREQn to footnote. Table 9, added PLL supply voltage row
4	Added part number MCF5235CVF150 in Table 6

Table 26. MCF5235EC Revision History (continued)