

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	CANbus, EBI/EMI, I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	97
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64К х 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 1.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5233cvm150j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCF523*x* Family Configurations

Table 1.	MCF523x	Family	Config	gurations

Module	MCF5232	MCF5233	MCF5234	MCF5235
ColdFire V2 Core with EMAC (Enhanced Multiply-Accumulate Unit)	х	х	х	х
Enhanced Time Processor Unit with memory (eTPU)	16-ch 6K	32-ch 6K	16-ch 6K	32-ch 6K
System Clock		up to 1	50 MHz	
Performance (Dhrystone/2.1 MIPS)		up to	0 144	
Instruction/Data Cache		8 Kb	oytes	
Static RAM (SRAM)		64 K	bytes	
Interrupt Controllers (INTC)	2	2	2	2
Edge Port Module (EPORT)	х	х	х	х
External Interface Module (EIM)	х	х	х	х
4-channel Direct-Memory Access (DMA)	х	х	х	х
SDRAM Controller	х	х	х	х
Fast Ethernet Controller (FEC)	_	_	х	х
Cryptography - Security module for data packets processing	_	_	_	х
Watchdog Timer (WDT)	х	х	х	х
Four Periodic Interrupt Timers (PIT)	х	х	х	х
32-bit DMA Timers	4	4	4	4
QSPI	х	х	х	х
UART(s)	3	3	3	3
l ² C	х	х	х	х
FlexCAN 2.0B - Controller-Area Network communication module	1	2	1	2
General Purpose I/O Module (GPIO)	х	х	x	х
JTAG - IEEE 1149.1 Test Access Port	х	х	х	х
Package	160 QFP 196 MAPBGA	256 MAPBGA	256 MAPBGA	256 MAPBGA

2 Block Diagram

The superset device in the MCF523*x* family comes in a 256 mold array process ball grid array (MAPBGA) package. Figure shows a top-level block diagram of the MCF5235, the superset device.

Signal Descriptions

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5232 160 QFP	MCF5232 196 MAPBGA	MCF5233 256 MAPBGA	MCF5234 256 MAPBGA	MCF5235 256 MAPBGA
A[20:0]	_	_	—	0	123:115, 112:106, 102:98	A12, B12, C12, A13, B13, B14, C13, C14, D12, D13, D14, E11, E12, E13, E14, F12, F13, F14, G11, G12, G13	B15, B16, C15, C16, D16, D15, D14, E16, E15, E14, E13, F15, F14, F13, G15, G14, G13, H16, H15, H14, H13	B15, B16, C15, C16, D16, D15, D14, E16, E15, E14, E13, F15, F14, F13, G15, G14, G13, H16, H15, H14, H13	B15, B16, C15, C16, D16, D15, D14, E16, E15, E14, E13, F15, F14, F13, G15, G14, G13, H16, H15, H14, H13
D[31:16]	_	_	_	0	21:24,26:30, 33:39	G1, G2, H1, H2, H3, H4, J1, J2, J3, J4, K1, K2, K3, K4, L1, L2	K4, K3, K2, K1, L4, L3, L2, L1, M3, M2, M1, N2, N1, P2, P1, R1	K4, K3, K2, K1, L4, L3, L2, L1, M3, M2, M1, N2, N1, P2, P1, R1	K4, K3, K2, K1, L4, L3, L2, L1, M3, M2, M1, N2, N1, P2, P1, R1
D[15:8]	PDATAH[7:0]	_	—	0	42:49,	M1, N1, M2, N2, P2, L3, M3, N3,	R2, T2, N3, P3, R3, T3, N4, P4,	R2, T2, N3, P3, R3, T3, N4, P4,	R2, T2, N3, P3, R3, T3, N4, P4,
D[7:0]	PDATAL[7:0]	_	_	0	50:52, 56:60	P3, M4, N4, P4, L5, M5, N5, P5	R4, T4, P5, R5, N6, P6, R6, N7	R4, T4, P5, R5, N6, P6, R6, N7	R4, T4, P5, R5, N6, P6, R6, N7
BS[3:0]	PBS[7:4]	CAS[3:0]	_	0	143:140	B6, C6, D7, C7	C9, B9, A9, A10	C9, B9, A9, A10	C9, B9, A9, A10
ŌĒ	PBUSCTL7		—	0	63	N6	T7	T7	T7
TA	PBUSCTL6	—	—	I	97	H11	K14	K14	K14
TEA	PBUSCTL5	DREQ1	—	Ι	—	J14	K13	K13	K13
R/W	PBUSCTL4	—	—	0	96	J13	L16	L16	L16
TSIZ1	PBUSCTL3	DACK1	—	0	—	P6	N8	N8	N8
TSIZ0	PBUSCTL2	DACK0	—	0	—	P7	P8	P8	P8
TS	PBUSCTL1	DACK2	—	0	—	H13	K16	K16	K16
TIP	PBUSCTL0	DREQ0	—	0	—	H12	K15	K15	K15
				Chip	Selects				
<u>CS</u> [7:4]	PCS[7:4]	_	_	0	_	B9, A10, C10, A11	C12, A13, C13, A14	C12, A13, C13, A14	C12, A13, C13, A14
CS[3:2]	PCS[3:2]	SD_CS[1:0]		0	134,133	A9, C9	B12, D12	B12, D12	B12, D12
CS1	PCS1			0	130	B10	B13	B13	B13
CS0	—	—	—	0	129	D10	D13	D13	D13
			SE	ORAM	Controller				

Table 2. MCF523x Signal Information and Muxing (continued)

Signal Descriptions

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5232 160 QFP	MCF5232 196 MAPBGA	MCF5233 256 MAPBGA	MCF5234 256 MAPBGA	MCF5235 256 MAPBGA
ECRS	_	—	—	I	_	_	_	F4	F4
ERXCLK	_	—	—	I	_	_	_	E3	E3
ERXDV		—	—	I	_			E4	E4
ERXD[3:0]	_	_	—	I	_	_	_	D3, D4, C3, C4	D3, D4, C3, C4
ERXER	_	—	—	I	_	_	_	D5	D5
ETXCLK	_	—	—	I	_	_	_	C5	C5
ETXEN	_	—	—	0	_	_	_	D6	D6
ETXER	_			0	_	_	_	C6	C6
ETXD[3:0]	_	_	—	0	_	_	_	B6, B5, A5, B7	B6, B5, A5, B7
			F	eatur	e Control				
eTPU/EthENB		—	_	Ι	_	_	_	—	M4
		I			² C			1	
I2C_SDA	PFECI2C1	CAN0RX	_	I/O	_	J12	L15	L15	L15
I2C_SCL	PFECI2C0	CAN0TX	—	I/O	_	J11	L14	L14	L14
		I		D	MA			1	
DACK[2:0] and Please TS and DT2OL TSIZ0 and DT0 TEA and DT1II	DREQ[2:0] do r e refer to the fol JT for DACK2, OUT for DACK N for DREQ1, a	not have a dec lowing pins fo TSIZ1and DT 0, IRQ2 and I and TIP and I	dicated bond p or muxing: 1OUT for DA DT2IN for DR DT0IN for DR	pads. .CK1, .EQ2, .EQ0.	_	_	_	—	—
				Q	SPI				
QSPI_CS1	PQSPI4	SD_CKE	—	0	139	B7	B10	B10	B10
QSPI_CS0	PQSPI3	—	—	0	147	A6	D9	D9	D9
QSPI_CLK	PQSPI2	I2C_SCL	—	0	148	C5	B8	B8	B8
QSPI_DIN	PQSPI1	I2C_SDA	_	I	149	B5	C8	C8	C8
QSPI_DOUT	PQSPI0	—	_	0	150	A5	D8	D8	D8
			· · · · · · · · · · · · · · · · · · ·	UA	RTs				
U2TXD	PUARTH1	CAN1TX	—	0	—	A8	D11	D11	D11
U2RXD	PUARTH0	CAN1RX	—	Ι	—	A7	D10	D10	D10
U1CTS	PUARTL7	U2CTS	—	Ι	—	B8	C11	C11	C11
U1RTS	PUARTL6	U2RTS	—	0	—	C8	B11	B11	B11
U1TXD	PUARTL5	CAN0TX	—	0	135	D9	A12	A12	A12

Table 2. MCF523x Signal Information and Muxing (continued)

Signal Descriptions

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5232 160 QFP	MCF5232 196 MAPBGA	MCF5233 256 MAPBGA	MCF5234 256 MAPBGA	MCF5235 256 MAPBGA
U1RXD	PUARTL4	CANORX	—	I	136	D8	A11	A11	A11
UOCTS	PUARTL3	—	—	I	—	F3	G1	G1	G1
UORTS	PUARTL2	_		0	_	G3	H3	H3	H3
U0TXD	PUARTL1	—	—	0	14	F1	H2	H2	H2
UORXD	PUARTL0	—	—	I	13	F2	G2	G2	G2
				DMA	Timers				
DT3IN	PTIMER7	U2CTS	QSPI_CS2	I	—	H14	J15	J15	J15
DT3OUT	PTIMER6	U2RTS	QSPI_CS3	0	—	G14	J16	J16	J16
DT2IN	PTIMER5	DREQ2	DT2OUT	I	—	M9	P10	P10	P10
DT2OUT	PTIMER4	DACK2	—	0	—	L9	R10	R10	R10
DT1IN	PTIMER3	DREQ1	DT1OUT	I	—	L6	P7	P7	P7
DT1OUT	PTIMER2	DACK1	—	0	—	M6	R7	R7	R7
DT0IN	PTIMER1	DREQ0	—	I	—	E4	G4	G4	G4
DTOOUT	PTIMER0	DACK0	—	0	—	F4	G3	G3	G3
				BDM	/JTAG ²				
DSCLK		TRST	—	I	70	N9	N11	N11	N11
PSTCLK	_	TCLK	—	0	68	P9	T10	T10	T10
BKPT	_	TMS	—	I	71	P10	P11	P11	P11
DSI	_	TDI	—	I	73	M10	T11	T11	T11
DSO	_	TDO	—	0	72	N10	R11	R11	R11
JTAG_EN	_	—	—	I	78	K9	N13	N13	N13
DDATA[3:0]	—	—	—	0	—	M12, N12, P12, L11	N14, P14, T13, R13	N14, P14, T13, R13	N14, P14, T13, R13
PST[3:0]		_	—	0	77:74	M11, N11, P11, L10	T12, R12, P12, N12	T12, R12, P12, N12	T12, R12, P12, N12

Table 2. MCF523x Signal Information and Muxing (continued)

5.2.1.2 Power Down Sequence

If V_{DD} is powered down first, then sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after V_{DD} powers down before OV_{DD}/V_{DDPLL} must power down. V_{DD} should not lag OV_{DD} or V_{DDPLL} going low by more than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop V_{DD} to 0 V.
- 2. Drop OV_{DD}/V_{DDPLL} supplies.

5.3 Decoupling

- Place the decoupling caps as close to the pins as possible, but they can be outside the footprint of the package.
- 0.1 μ F and 0.01 μ F at each supply input

5.4 Buffering

• Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses when excessive loading is expected. See Section 7, "Electrical Characteristics."

5.5 Pull-up Recommendations

• Use external pull-up resistors on unused inputs. See pin table.

5.6 Clocking Recommendations

- Use a multi-layer board with a separate ground plane.
- Place the crystal and all other associated components as close to the EXTAL and XTAL (oscillator pins) as possible.
- Do not run a high frequency trace around crystal circuit.
- Ensure that the ground for the bypass capacitors is connected to a solid ground trace.
- Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop currents in the vicinity of the crystal.
- Tie the ground pin to the most solid ground in the system.
- Do not connect the trace that connects the oscillator and the ground plane to any other circuit element. This tends to make the oscillator unstable.
- Tie XTAL to ground when an external oscillator is clocking the device.

Mechanicals/Pinouts and Part Numbers

6.2 Package Dimensions—196 MAPBGA

Figure 3 shows MCF5232CVMxxx package dimensions.

Figure 3. 196 MAPBGA Package Dimensions (Case No. 1128A-01)

6.2.1 Pinout—256 MAPBGA

Figure 4 through Figure 6 show pinouts of the MCF5233CVMxxx, MCF5234CVMxxx, and MCF5235CVMxxx packages.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	VSS	TPUCH6	TPUCH4	TPUCH2	TPUCH17	TPUCH1	TPUCH0	VDD	BS1	BSO	U1RXD/ CAN0RX	U1TXD/ CAN0TX	CS6	CS4	A21	VSS	A
В	TPUCH8	TPUCH7	TPUCH5	TPUCH3	TPUCH18	TPUCH19	TPUCH16	QSPI_ CLK	BS2	QSPI_ CS1	U1RTS	CS3	CS1	A23	A20	A19	В
С	TPUCH10	TPUCH9	TPUCH25	TPUCH24	TPUCH22	TPUCH20	I2C_SDA/ U2RXD	QSPI_ DIN	BS3	SD_CKE	U1CTS	CS7	CS5	A22	A18	A17	С
D	TPUCH12	TPUCH11	TPUCH27	TPUCH26	TPUCH23	TPUCH21	I2C_SCL/ U2TXD	QSPI_ DOUT	QSPI_ CS0	U2RXD/ CAN1RX	U2TXD/ CAN1TX	CS2	CS0	A14	A15	A16	D
E	TPUCH14	TPUCH13	TPUCH29	TPUCH28	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	A10	A11	A12	A13	E
F	TCRCLK	TPUCH15	TPUCH31	TPUCH30	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	A7	A8	A9	VSS	F
G	UOCTS	UORXD	DTOOUT	DTOIN	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A4	A5	A6	VDD	G
Н	VDD	UOTXD	UORTS	NC	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A0	A1	A2	A3	н
J	VSS	CLK MOD0	CLK MOD1	TEST	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	utpu odis	ltpu Odis	DT3IN	DT3OUT	J
К	D28	D29	D30	D31	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	TEA	TA	TIP	TS	к
L	D24	D25	D26	D27	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	SD_WE	I2C_SCL/ CAN0TX	I2C_SDA/ CANORX	R/W	L
Μ	D21	D22	D23	NC	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	SD_ CS0	SD_ SRAS	SD_ SCAS	CLKOUT	М
N	D19	D20	D13	D9	NC	D3	D0	TSIZ1	IRQ5	IRQ1	TRST/ DSCLK	PST0	JTAG_ EN	DDATA3	SD_CS1	VSS	N
Ρ	D17	D18	D12	D8	D5	D2	DT1IN	TSIZ0	IRQ4	DT2IN	<u>TMS/</u> BKPT	PST1	RCON	DDATA2	VDDPLL	EXTAL	Ρ
R	D16	D15	D11	D7	D4	D1	DT1OUT	IRQ7	IRQ3	DT2OUT	TDO/ DSO	PST2	DDATA0	PLL_ TEST	VSSPLL	XTAL	R
Т	VSS	D14	D10	D6	VDD	VSS	OE	IRQ6	IRQ2	TCLK/ PSTCLK	TDI/DSI	PST3	DDATA1	RSTOUT	RESET	VSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	<u> </u>

Figure 4. MCF5233CVMxxx Pinout (256 MAPBGA)

Mechanicals/Pinouts and Part Numbers

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	VSS	TPUCH6	TPUCH4	TPUCH2	ETXD1	TPUCH1	TPUCH0	VDD	BS1	BSO	U1RXD/ CAN0RX	U1TXD/ CAN0TX	CS6	CS4	A21	VSS	A
В	TPUCH8	TPUCH7	TPUCH5	TPUCH3	ETXD2	ETXD3	ETXD0	QSPI_ CLK	BS2	QSPI_ CS1	U1RTS	CS3	CS1	A23	A20	A19	в
с	TPUCH10	TPUCH9	ERXD1	ERXD0	ETXCLK	ETXER	EMDIO	QSPI_ DIN	BS3	SD_CKE	U1CTS	CS7	CS5	A22	A18	A17	с
D	TPUCH12	TPUCH11	ERXD3	ERXD2	ERXER	ETXEN	EMDC	QSPI_ DOUT	QSPI_ CS0	U2RXD	U2TXD	CS2	CSO	A14	A15	A16	D
E	TPUCH14	TPUCH13	ERXCLK	ERXDV	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	A10	A11	A12	A13	E
F	TCRCLK	TPUCH15	ECOL	ECRS	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	A7	A8	A9	VSS	F
G	UOCTS	U0RXD	DT0OUT	DT0IN	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A4	A5	A6	VDD	G
Н	VDD	U0TXD	UORTS	NC	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	A0	A1	A2	A3	н
J	VSS	CLK MOD0	CLK MOD1	TEST	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	UTPU ODIS	LTPU ODIS	DT3IN	DT3OUT	J
к	D28	D29	D30	D31	OVDD	OVDD	VSS	VSS	VSS	VSS	OVDD	OVDD	TEA	TA	TIP	TS	к
L	D24	D25	D26	D27	OVDD	VSS	OVDD	OVDD	OVDD	OVDD	VSS	OVDD	SD_WE	I2C_SCL/ CAN0TX	I2C_SDA/ CANORX	R/W	L
М	D21	D22	D23	NC	VSS	OVDD	OVDD	OVDD	OVDD	OVDD	OVDD	VSS	SD_CS0	SD_ SRAS	SD_ SCAS	CLKOUT	М
N	D19	D20	D13	D9	NC	D3	D0	TSIZ1	IRQ5	IRQ1	TRST/ DSCLK	PST0	JTAG_ EN	DDATA3	SD_CS1	VSS	N
Ρ	D17	D18	D12	D8	D5	D2	DT1IN	TSIZ0	IRQ4	DT2IN	TMS/ BKPT	PST1	RCON	DDATA2	VDDPLL	EXTAL	Ρ
R	D16	D15	D11	D7	D4	D1	DT1OUT	IRQ7	IRQ3	DT2OUT	TDO/ DSO	PST2	DDATA0	PLL_ TEST	VSSPLL	XTAL	R
т	VSS	D14	D10	D6	VDD	VSS	OE	IRQ6	IRQ2	TCLK/ PSTCLK	TDI/DSI	PST3	DDATA1	RST OUT	RESET	VSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1

Figure 5. MCF5234CVMxxx Pinout (256 MAPBGA)

7.4 Oscillator and PLLMRFM Electrical Characteristics

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	PLL Reference Frequency Range Crystal reference External reference 1:1 mode (NOTE: $f_{sys/2} = 2 \times f_{ref_1:1}$)	f _{ref_crystal} f _{ref_ext} f _{ref_1:1}	8 8 24	25 25 75	MHz
2	Core frequency CLKOUT Frequency ² External reference On-Chip PLL Frequency	f _{sys} f _{sys/2}	0 f _{ref} ÷ 32	150 75 75	MHz MHz MHz
3	Loss of Reference Frequency ^{3, 5}	f _{LOR}	100	1000	kHz
4	Self Clocked Mode Frequency ^{4, 5}	f _{SCM}	10.25	15.25	MHz
5	Crystal Start-up Time ^{5, 6}	t _{cst}	_	10	ms
6	XTAL Load Capacitance ⁵		5	30	pF
7	PLL Lock Time ^{5, 7,13}	t _{lpll}	_	750	μS
8	Power-up To Lock Time ^{5, 6,8} With Crystal Reference (includes 5 time) Without Crystal Reference ⁹	t _{lplk}		11 750	ms μs
9	1:1 Mode Clock Skew (between CLKOUT and EXTAL) ¹⁰	t _{skew}	-1	1	ns
10	Duty Cycle of reference ⁵	t _{dc}	40	60	%
11	Frequency un-LOCK Range	f _{UL}	-3.8	4.1	% f _{sys/2}
12	Frequency LOCK Range	f _{LCK}	-1.7	2.0	% f _{sys/2}
13	CLKOUT Period Jitter, ^{5, 6, 8,11, 12} Measured at f _{sys/2} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval)	C _{jitter}		5.0 .01	% f _{sys/2}
14	Frequency Modulation Range Limit ^{13,14} (f _{sys/2} Max must not be exceeded)	C _{mod}	0.8	2.2	%f _{sys/2}
15	ICO Frequency. $f_{ico} = f_{ref} \times 2 \times (MFD+2)^{15}$	f _{ico}	48	150	MHz

Table 10. HiP7 PLLMRFM Electrical Specifications¹

¹ All values given are initial design targets and subject to change.

² All internal registers retain data at 0 Hz.

³ "Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.

⁴ Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f_{I OR} with default MFD/RFD settings.

⁵ This parameter is guaranteed by characterization before qualification rather than 100% tested.

⁶ Proper PC board layout procedures must be followed to achieve specifications.

- ⁷ This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- ⁸ Assuming a reference is available at power up, lock time is measured from the time V_{DD} and V_{DDSYN} are valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the crystal start up time must be added to the PLL lock time to determine the total start-up time.
- ⁹ $t_{lpll} = (64 + 4 + 5 + 5 \times \tau) \times T_{ref}$, where $T_{ref} = 1/F_{ref_crystal} = 1/F_{ref_ext} = 1/F_{ref_1:1}$, and $\tau = 1.57 \times 10^{-6} \times 2(MFD + 2)$.
- ¹⁰ PLL is operating in 1:1 PLL mode.
- ¹¹ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys/2}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDSYN} and V_{SSSYN} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.
- ¹² Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.
- ¹³ Modulation percentage applies over an interval of 10µs, or equivalently the modulation rate is 100KHz.
- ¹⁴ Modulation rate selected must not result in f_{sys/2} value greater than the f_{sys/2} maximum specified value. Modulation range determined by hardware design.

¹⁵ $f_{sys/2} = f_{ico} / (2 \cdot 2^{RFD})$

7.5 External Interface Timing Characteristics

Table 11 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the CLKOUT output.

All other timing relationships can be derived from these values.

Name	Characteristic ¹	Symbol	Min	Max	Unit
freq	System bus frequency	f _{sys/2}	50	75	MHz
B0	CLKOUT period	t _{cyc}	_	1/75	ns
	Control Inputs				
B1a	Control input valid to CLKOUT high ²	t _{CVCH}	9	—	ns
B1b	BKPT valid to CLKOUT high ³	t _{BKVCH}	9	—	ns
B2a	CLKOUT high to control inputs invalid ²	t _{CHCII}	0	—	ns
B2b	CLKOUT high to asynchronous control input BKPT invalid ³	t _{BKNCH}	0	—	ns
	Data Inputs				
B4	Data input (D[31:0]) valid to CLKOUT high	t _{DIVCH}	4	—	ns
B5	CLKOUT high to data input (D[31:0]) invalid	t _{CHDII}	0	—	ns

Table 11. Processor Bus Input Timing Specifications

¹ Timing specifications are tested using full drive strength pad configurations in a 50ohm transmission line environment..

 2 TEA and TA pins are being referred to as control inputs.

³ Refer to figure A-19.

Name	Characteristic	Symbol	Min	Max	Unit
	Address and Attribute C	Outputs			
B8	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], TIP, R/W) valid	t _{CHAV}	_	9	ns
B9	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], TIP, R/W) invalid	t _{CHAI}	1.5	—	ns
	Data Outputs				
B11	CLKOUT high to data output (D[31:0]) valid	t _{CHDOV}	—	9	ns
B12	CLKOUT high to data output (D[31:0]) invalid	t _{CHDOI}	1.5	_	ns
B13	CLKOUT high to data output (D[31:0]) high impedance	t _{CHDOZ}	_	9	ns

Table 12. External Bus Output Timing Specifications (continued)

CS transitions after the falling edge of CLKOUT.
 BS transitions after the falling edge of CLKOUT.
 OE transitions after the falling edge of CLKOUT.

Figure 15 shows an SDRAM write cycle.

Figure 15. SDRAM Write Cycle

7.7 General Purpose I/O Timing

Table 14. GPIO Timing¹

NUM	Characteristic	Symbol	Min	Мах	Unit
G1	CLKOUT High to GPIO Output Valid	t _{CHPOV}	_	10	ns
G2	CLKOUT High to GPIO Output Invalid	t _{CHPOI}	1.5	—	ns
G3	GPIO Input Valid to CLKOUT High	t _{PVCH}	9	—	ns
G4	CLKOUT High to GPIO Input Invalid	t _{CHPI}	1.5	—	ns

¹ GPIO pins include: INT, ETPU, UART, FlexCAN, Timer, DREQn and DACKn pins.

Figure 16. GPIO Timing

7.8 Reset and Configuration Override Timing

Table 15. Reset and Configuration Override Timing $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = \text{T}_{L} \text{ to } \text{T}_{H})^{1}$

NUM	Characteristic	Symbol	Min	Max	Unit
R1	RESET Input valid to CLKOUT High	t _{RVCH}	9	_	ns
R2	CLKOUT High to RESET Input invalid	t _{CHRI}	1.5	_	ns
R3	RESET Input valid Time ²	t _{RIVT}	5	_	t _{CYC}
R4	CLKOUT High to RSTOUT Valid	t _{CHROV}	—	10	ns
R5	RSTOUT valid to Config. Overrides valid	t _{ROVCV}	0	—	ns
R6	Configuration Override Setup Time to RSTOUT invalid	t _{COS}	20	_	t _{CYC}
R7	Configuration Override Hold Time after RSTOUT invalid	t _{COH}	0	_	ns
R8	RSTOUT invalid to Configuration Override High Impedance	t _{ROICZ}	_	1	t _{CYC}

¹ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

Figure 17. RESET and Configuration Override Timing

Refer to the chip configuration module (CCM) chapter in the device's reference manual for more information.

7.9 I²C Input/Output Timing Specifications

Table 16 lists specifications for the I^2C input timing parameters shown in Figure 18.

Num	Characteristic	Min	Max	Units
11	Start condition hold time	2	—	t _{cyc}
12	Clock low period	8	—	t _{cyc}
13	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	—	1	ms
14	Data hold time	0	—	ns
15	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	—	1	ms
16	Clock high time	4	—	t _{cyc}
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	2	—	t _{cyc}
19	Stop condition setup time	2	_	t _{cyc}

Table 16. I²C Input Timing Specifications between I2C_SCL and I2C_SDA

Table 17 lists specifications for the I^2C output timing parameters shown in Figure 18.

Table 17. I ² C Out	put Timing Specif	ications between I20	C_SCL and I2C_SDA
--------------------------------	-------------------	----------------------	-------------------

Num	Characteristic	Min	Мах	Units
11 ¹	Start condition hold time	6	_	t _{cyc}
12 ¹	Clock low period	10	_	t _{cyc}
13 ²	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	—	_	μs
14 ¹	Data hold time	7	_	t _{cyc}
15 ³	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	—	3	ns
l6 ¹	Clock high time	10	_	t _{cyc}
17 ¹	Data setup time	2	_	t _{cyc}
18 ¹	Start condition setup time (for repeated start condition only)	20	_	t _{cyc}
19 ¹	Stop condition setup time	10	_	t _{cyc}

Note: Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 17. The I^2C interface is designed to scale the actual data transition time to move it to the middle of the I2C_SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 17 are minimum values.

² Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

Figure 18 shows timing for the values in Table 16 and Table 17.

1

Figure 18. I²C Input/Output Timings

7.10 Fast Ethernet AC Timing Specifications

MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

7.10.1 MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK)

The receiver functions correctly up to a ERXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ERXCLK frequency.

Table 18 lists MII receive channel timings.

Table 18. MII Receive Signal Timing

Num	Characteristic	Min	Max	Unit
M1	ERXD[3:0], ERXDV, ERXER to ERXCLK setup	5	—	ns
M2	ERXCLK to ERXD[3:0], ERXDV, ERXER hold	5	—	ns
M3	ERXCLK pulse width high	35%	65%	ERXCLK period
M4	ERXCLK pulse width low	35%	65%	ERXCLK period

Figure 19 shows MII receive signal timings listed in Table 18.

Figure 19. MII Receive Signal Timing Diagram

7.10.2 MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK)

 Table 19 lists MII transmit channel timings.

The transmitter functions correctly up to a ETXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ETXCLK frequency.

Num	Characteristic	Min	Мах	Unit
M5	ETXCLK to ETXD[3:0], ETXEN, ETXER invalid	5	_	ns
M6	ETXCLK to ETXD[3:0], ETXEN, ETXER valid		25	ns
M7	ETXCLK pulse width high	35%	65%	ETXCLK period
M8	ETXCLK pulse width low	35%	65%	ETXCLK period

Table	19.	MII	Transmit	Signal	Timing
-------	-----	-----	----------	--------	--------

Figure 20 shows MII transmit signal timings listed in Table 19.

Figure 20. MII Transmit Signal Timing Diagram

7.10.3 MII Async Inputs Signal Timing (ECRS and ECOL)

Table 20 lists MII asynchronous inputs signal timing.

Table 20. MII Async Inputs Signal Timing

Num	Characteristic	Min	Мах	Unit
M9	ECRS, ECOL minimum pulse width	1.5	_	ETXCLK period

Figure 21 shows MII asynchronous input timings listed in Table 20.

Figure 21. MII Async Inputs Timing Diagram

7.10.4 MII Serial Management Channel Timing (EMDIO and EMDC)

Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

Num	Characteristic	Min	Max	Unit
M10	EMDC falling edge to EMDIO output invalid (minimum propagation delay)	0	_	ns
M11	EMDC falling edge to EMDIO output valid (max prop delay)		25	ns
M12	EMDIO (input) to EMDC rising edge setup	10	_	ns
M13	EMDIO (input) to EMDC rising edge hold	0	-	ns
M14	EMDC pulse width high	40%	60%	MDC period
M15	EMDC pulse width low	40%	60%	MDC period

Table 21. MII Serial Management Channel Tin	ning
---	------

Figure 22 shows MII serial management channel timings listed in Table 21.

Figure 22. MII Serial Management Channel Timing Diagram

7.14 Debug AC Timing Specifications

Table 25 lists specifications for the debug AC timing parameters shown in Figure 29.

Num	Characteristic	150 MHz Min Max		Units	
Num	Characteristic				
DE0	PSTCLK cycle time	_	0.5	t _{cyc}	
DE1	PST valid to PSTCLK high	4	_	ns	
DE2	PSTCLK high to PST invalid	1.5	_	ns	
DE3	DSCLK cycle time	5	_	t _{cyc}	
DE4	DSI valid to DSCLK high	1	_	t _{cyc}	
DE5 ¹	DSCLK high to DSO invalid	4	_	t _{cyc}	
DE6	BKPT input data setup time to CLKOUT rise	4	_	ns	
DE7	CLKOUT high to BKPT high Z	0	10	ns	

Table 25. Debug AC Timing Specification

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 28 shows real-time trace timing for the values in Table 25.

Figure 28. Real-Time Trace AC Timing

Figure 29 shows BDM serial port AC timing for the values in Table 25.

Document Revision History

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH

reescale Habieter Deutschland Gmt Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF5235EC Rev. 4 08/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

