

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	97
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 1.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf5234cvm100j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCF523*x* Family Configurations

Table 1.	MCF523x	Family	Config	gurations

Module	MCF5232	MCF5233	MCF5234	MCF5235
ColdFire V2 Core with EMAC (Enhanced Multiply-Accumulate Unit)	х	Х	х	х
Enhanced Time Processor Unit with memory (eTPU)	16-ch 6K	32-ch 6K	16-ch 6K	32-ch 6K
System Clock		up to 1	50 MHz	
Performance (Dhrystone/2.1 MIPS)		up to	0 144	
Instruction/Data Cache		8 Kb	oytes	
Static RAM (SRAM)		64 K	bytes	
Interrupt Controllers (INTC)	2	2	2	2
Edge Port Module (EPORT)	х	х	х	х
External Interface Module (EIM)	х	х	х	х
4-channel Direct-Memory Access (DMA)	х	х	х	х
SDRAM Controller	х	х	х	х
Fast Ethernet Controller (FEC)	_	_	х	х
Cryptography - Security module for data packets processing	_	_	_	х
Watchdog Timer (WDT)	х	х	х	х
Four Periodic Interrupt Timers (PIT)	х	х	х	х
32-bit DMA Timers	4	4	4	4
QSPI	х	х	х	х
UART(s)	3	3	3	3
l ² C	х	х	х	х
FlexCAN 2.0B - Controller-Area Network communication module	1	2	1	2
General Purpose I/O Module (GPIO)	х	х	х	х
JTAG - IEEE 1149.1 Test Access Port	х	х	х	х
Package	160 QFP 196 MAPBGA	256 MAPBGA	256 MAPBGA	256 MAPBGA

2 Block Diagram

The superset device in the MCF523*x* family comes in a 256 mold array process ball grid array (MAPBGA) package. Figure shows a top-level block diagram of the MCF5235, the superset device.

Signal Descriptions

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5232 160 QFP	MCF5232 196 MAPBGA	MCF5233 256 MAPBGA	MCF5234 256 MAPBGA	MCF5235 256 MAPBGA
U1RXD	PUARTL4	CANORX	—	I	136	D8	A11	A11	A11
UOCTS	PUARTL3	—	—	I	—	F3	G1	G1	G1
UORTS	PUARTL2	_		0	_	G3	H3	H3	H3
U0TXD	PUARTL1	—	—	0	14	F1	H2	H2	H2
UORXD	PUARTL0	—	—	I	13	F2	G2	G2	G2
				DMA	Timers				
DT3IN	PTIMER7	U2CTS	QSPI_CS2	I	—	H14	J15	J15	J15
DT3OUT	PTIMER6	U2RTS	QSPI_CS3	0	—	G14	J16	J16	J16
DT2IN	PTIMER5	DREQ2	DT2OUT	I	—	M9	P10	P10	P10
DT2OUT	PTIMER4	DACK2	—	0	—	L9	R10	R10	R10
DT1IN	PTIMER3	DREQ1	DT1OUT	I	—	L6	P7	P7	P7
DT1OUT	PTIMER2	DACK1	—	0	—	M6	R7	R7	R7
DT0IN	PTIMER1	DREQ0	—	I	_	E4	G4	G4	G4
DTOOUT	PTIMER0	DACK0	—	0	—	F4	G3	G3	G3
				BDM	/JTAG ²				
DSCLK		TRST	—	I	70	N9	N11	N11	N11
PSTCLK	_	TCLK	—	0	68	P9	T10	T10	T10
BKPT	_	TMS	—	I	71	P10	P11	P11	P11
DSI	_	TDI	—	I	73	M10	T11	T11	T11
DSO	_	TDO	—	0	72	N10	R11	R11	R11
JTAG_EN	_	—	—	I	78	K9	N13	N13	N13
DDATA[3:0]	—	—	—	0	—	M12, N12, P12, L11	N14, P14, T13, R13	N14, P14, T13, R13	N14, P14, T13, R13
PST[3:0]		_	—	0	77:74	M11, N11, P11, L10	T12, R12, P12, N12	T12, R12, P12, N12	T12, R12, P12, N12

Table 2. MCF523x Signal Information and Muxing (continued)

5.7.3 FlexCAN

The FlexCAN module interface to the CAN bus is composed of 2 pins: CANTX and CANRX, which are the serial transmitted data and the serial received data. The use of an external CAN transceiver to interface to the CAN bus is generally required. The transceiver is capable of driving the large current needed for the CAN bus and has current protection, against a defective CAN bus or defective stations.

5.7.4 BDM

Use the BDM interface as shown in the M523*x*EVB evaluation board user's manual. The schematics for this board are accessible at the Freescale website at: http://www.freescale.com/coldfire.

6 Mechanicals/Pinouts and Part Numbers

This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF523x devices. See Table 2 for a list the signal names and pin locations for each device.

6.3 Pinout—160 QFP

Figure 8 shows a pinout of the MCF5232CABxxx package.

Figure 8. MCF5232CABxxx Pinout (160 QFP)

The average chip-junction temperature (T_J) in °C can be obtained from:

$$\Gamma_{\rm J} = \Gamma_{\rm A} + (P_{\rm D} \times \Theta_{\rm JMA}) \quad (1)$$

Where:

$$\begin{split} T_A &= \text{Ambient Temperature, °C} \\ \Theta_{JMA} &= \text{Package Thermal Resistance, Junction-to-Ambient, °C/W} \\ P_D &= P_{INT} + P_{I/O} \\ P_{INT} &= I_{DD} \times V_{DD}, \text{Watts - Chip Internal Power} \\ P_{I/O} &= \text{Power Dissipation on Input and Output Pins} - User Determined} \end{split}$$

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{\rm D} = \mathbf{K} \div (\mathbf{T}_{\rm I} + 273^{\circ}C) \quad (2)$$

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \text{ °C}) + \Theta_{JMA} \times P_D^2 \quad (3)$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

7.3 DC Electrical Specifications

Table 9. DC Electrical Specifications¹

Characteristic	Symbol	Min	Typical	Max	Unit
Core Supply Voltage	V _{DD}	1.4	—	1.6	V
Pad Supply Voltage	OV _{DD}	3.0		3.6	V
PLL Supply Voltage	V _{DDPLL}	3.0	_	3.6	V
Input High Voltage	V _{IH}	$0.7 \times \mathrm{OV}_\mathrm{DD}$	_	3.65	V
Input Low Voltage	V _{IL}	V _{SS} – 0.3	_	$0.35\times\text{OV}_\text{DD}$	V
Input Hysteresis	V _{HYS}	$0.06\times \text{OV}_{\text{DD}}$	_	—	mV
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	l _{in}	-1.0	_	1.0	μA
High Impedance (Off-State) Leakage Current $V_{in} = V_{DD}$ or V_{SS} , All input/output and output pins	I _{OZ}	-1.0	_	1.0	μA
Output High Voltage (All input/output and all output pins) $I_{OH} = -5.0 \text{ mA}$	V _{OH}	OV _{DD} - 0.5	_	_	V
Output Low Voltage (All input/output and all output pins) $I_{OL} = 5.0 \text{mA}$	V _{OL}	—	_	0.5	V
Weak Internal Pull Up Device Current, tested at V_{IL} Max. ²	I _{APU}	-10	_	- 130	μA

Characteristic	Symbol	Min	Typical	Мах	Unit
Input Capacitance ³	C _{in}		_		pF
All input-only pins		—		7	
All input/output (three-state) pins				1	
Load Capacitance ⁴					
Low drive strength	CL		—	25	pF
High drive strength			—	50	pF
Core Operating Supply Current ⁵	I _{DD}				
Master Mode		—	135	150	mA
Pad Operating Supply Current	OI _{DD}				
Master Mode		—	100	—	mA
Low Power Modes		—	TBD	—	μA
DC Injection Current ^{3, 6, 7, 8}	I _{IC}				
$V_{\text{NEGCLAMP}} = V_{\text{SS}} - 0.3 \text{ V}, V_{\text{POSCLAMP}} = V_{\text{DD}} + 0.3$					
Single Pin Limit		-1.0		1.0	mA
Iotal processor Limit, Includes sum of all stressed pins		-10		10	mA

Table 9. DC Electrical Specifications¹ (continued)

¹ Refer to Table 10 for additional PLL specifications.

² Refer to the MCF5235 signals section for pins having weak internal pull-up devices.

³ This parameter is characterized before qualification rather than 100% tested.

⁴ pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination. See <u>High Speed Signal Propagation:</u> <u>Advanced Black Magic</u> by Howard W. Johnson for design guidelines.

⁵ Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.

⁶ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD}.

⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁸ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Insure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not present during the power-up sequence until the PLL has attained lock.

7.4 Oscillator and PLLMRFM Electrical Characteristics

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	PLL Reference Frequency Range Crystal reference External reference 1:1 mode (NOTE: $f_{sys/2} = 2 \times f_{ref_1:1}$)	f _{ref_crystal} f _{ref_ext} f _{ref_1:1}	8 8 24	25 25 75	MHz
2	Core frequency CLKOUT Frequency ² External reference On-Chip PLL Frequency	f _{sys} f _{sys/2}	0 f _{ref} ÷ 32	150 75 75	MHz MHz MHz
3	Loss of Reference Frequency ^{3, 5}	f _{LOR}	100	1000	kHz
4	Self Clocked Mode Frequency ^{4, 5}	f _{SCM}	10.25	15.25	MHz
5	Crystal Start-up Time ^{5, 6}	t _{cst}	_	10	ms
6	XTAL Load Capacitance ⁵		5	30	pF
7	PLL Lock Time ^{5, 7,13}	t _{lpll}	_	750	μS
8	Power-up To Lock Time ^{5, 6,8} With Crystal Reference (includes 5 time) Without Crystal Reference ⁹	t _{lplk}		11 750	ms μs
9	1:1 Mode Clock Skew (between CLKOUT and EXTAL) ¹⁰	t _{skew}	-1	1	ns
10	Duty Cycle of reference ⁵	t _{dc}	40	60	%
11	Frequency un-LOCK Range	f _{UL}	-3.8	4.1	% f _{sys/2}
12	Frequency LOCK Range	f _{LCK}	-1.7	2.0	% f _{sys/2}
13	CLKOUT Period Jitter, ^{5, 6, 8,11, 12} Measured at f _{sys/2} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval)	C _{jitter}		5.0 .01	% f _{sys/2}
14	Frequency Modulation Range Limit ^{13,14} (f _{sys/2} Max must not be exceeded)	C _{mod}	0.8	2.2	%f _{sys/2}
15	ICO Frequency. $f_{ico} = f_{ref} \times 2 \times (MFD+2)^{15}$	f _{ico}	48	150	MHz

Table 10. HiP7 PLLMRFM Electrical Specifications¹

¹ All values given are initial design targets and subject to change.

² All internal registers retain data at 0 Hz.

³ "Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.

⁴ Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f_{I OR} with default MFD/RFD settings.

⁵ This parameter is guaranteed by characterization before qualification rather than 100% tested.

⁶ Proper PC board layout procedures must be followed to achieve specifications.

- ⁷ This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- ⁸ Assuming a reference is available at power up, lock time is measured from the time V_{DD} and V_{DDSYN} are valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the crystal start up time must be added to the PLL lock time to determine the total start-up time.
- ⁹ $t_{lpll} = (64 + 4 + 5 + 5 \times \tau) \times T_{ref}$, where $T_{ref} = 1/F_{ref_crystal} = 1/F_{ref_ext} = 1/F_{ref_1:1}$, and $\tau = 1.57 \times 10^{-6} \times 2(MFD + 2)$.
- ¹⁰ PLL is operating in 1:1 PLL mode.
- ¹¹ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys/2}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDSYN} and V_{SSSYN} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.
- ¹² Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.
- ¹³ Modulation percentage applies over an interval of 10µs, or equivalently the modulation rate is 100KHz.
- ¹⁴ Modulation rate selected must not result in f_{sys/2} value greater than the f_{sys/2} maximum specified value. Modulation range determined by hardware design.

¹⁵ $f_{sys/2} = f_{ico} / (2 \cdot 2^{RFD})$

7.5 External Interface Timing Characteristics

Table 11 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the CLKOUT output.

All other timing relationships can be derived from these values.

Name	Characteristic ¹	Symbol	Min	Max	Unit			
freq	System bus frequency	f _{sys/2}	50	75	MHz			
B0	CLKOUT period	t _{cyc}	_	1/75	ns			
	Control Inputs							
B1a	Control input valid to CLKOUT high ²	t _{CVCH}	9	—	ns			
B1b	BKPT valid to CLKOUT high ³	t _{BKVCH}	9	—	ns			
B2a	CLKOUT high to control inputs invalid ²	t _{CHCII}	0	—	ns			
B2b	CLKOUT high to asynchronous control input BKPT invalid ³	t _{BKNCH}	0	—	ns			
	Data Inputs							
B4	Data input (D[31:0]) valid to CLKOUT high	t _{DIVCH}	4	—	ns			
B5	CLKOUT high to data input (D[31:0]) invalid	t _{CHDII}	0	—	ns			

Table 11. Processor Bus Input Timing Specifications

¹ Timing specifications are tested using full drive strength pad configurations in a 50ohm transmission line environment..

 2 TEA and TA pins are being referred to as control inputs.

³ Refer to figure A-19.

Timings listed in Table 11 are shown in Figure 10.

* The timings are also valid for inputs sampled on the negative clock edge.

7.6 **Processor Bus Output Timing Specifications**

Table 12 lists processor bus output timings.

Table 12	. External	Bus	Output	Timing	Specifications
----------	------------	-----	--------	--------	-----------------------

Name	Characteristic		Min	Max	Unit		
Control Outputs							
B6a	CLKOUT high to chip selects valid ¹	t _{CHCV}	—	0.5t _{CYC} +5	ns		
B6b	CLKOUT high to byte enables (BS[3:0]) valid ²	t _{CHBV}	_	0.5t _{CYC} +5	ns		
B6c	CLKOUT high to output enable (\overline{OE}) valid ³	t _{CHOV}	_	0.5t _{CYC} +5	ns		
B7	CLKOUT high to control output ($\overline{BS}[3:0], \overline{OE}$) invalid	t _{CHCOI}	0.5t _{CYC} +1.5	—	ns		
B7a	CLKOUT high to chip selects invalid	t _{CHCI}	0.5t _{CYC} +1.5		ns		

Read/write bus timings listed in Table 12 are shown in Figure 11, Figure 12, and Figure 13.

Figure 11. Read/Write (Internally Terminated) SRAM Bus Timing

Figure 12 shows a bus cycle terminated by \overline{TA} showing timings listed in Table 12.

Figure 12. SRAM Read Bus Cycle Terminated by TA

Figure 13 shows an SRAM bus cycle terminated by $\overline{\text{TEA}}$ showing timings listed in Table 12.

Figure 15 shows an SDRAM write cycle.

Figure 15. SDRAM Write Cycle

7.7 General Purpose I/O Timing

Table 14. GPIO Timing¹

NUM	Characteristic	Symbol	Min	Мах	Unit
G1	CLKOUT High to GPIO Output Valid	t _{CHPOV}	_	10	ns
G2	CLKOUT High to GPIO Output Invalid	t _{CHPOI}	1.5	—	ns
G3	GPIO Input Valid to CLKOUT High	t _{PVCH}	9	—	ns
G4	CLKOUT High to GPIO Input Invalid	t _{CHPI}	1.5	—	ns

¹ GPIO pins include: INT, ETPU, UART, FlexCAN, Timer, DREQn and DACKn pins.

Figure 16. GPIO Timing

7.8 Reset and Configuration Override Timing

Table 15. Reset and Configuration Override Timing $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = \text{T}_{L} \text{ to } \text{T}_{H})^{1}$

NUM	Characteristic	Symbol	Min	Max	Unit
R1	RESET Input valid to CLKOUT High	t _{RVCH}	9	_	ns
R2	CLKOUT High to RESET Input invalid	t _{CHRI}	1.5	_	ns
R3	RESET Input valid Time ²	t _{RIVT}	5	_	t _{CYC}
R4	CLKOUT High to RSTOUT Valid	t _{CHROV}	—	10	ns
R5	RSTOUT valid to Config. Overrides valid	t _{ROVCV}	0	—	ns
R6	Configuration Override Setup Time to RSTOUT invalid	t _{COS}	20	_	t _{CYC}
R7	Configuration Override Hold Time after RSTOUT invalid	t _{COH}	0	_	ns
R8	RSTOUT invalid to Configuration Override High Impedance	t _{ROICZ}	_	1	t _{CYC}

¹ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

Figure 17. RESET and Configuration Override Timing

Refer to the chip configuration module (CCM) chapter in the device's reference manual for more information.

Figure 18. I²C Input/Output Timings

7.10 Fast Ethernet AC Timing Specifications

MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

7.10.1 MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK)

The receiver functions correctly up to a ERXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ERXCLK frequency.

Table 18 lists MII receive channel timings.

Table 18. MII Receive Signal Timing

Num	Characteristic	Min	Max	Unit
M1	ERXD[3:0], ERXDV, ERXER to ERXCLK setup	5	—	ns
M2	ERXCLK to ERXD[3:0], ERXDV, ERXER hold	5	—	ns
M3	ERXCLK pulse width high	35%	65%	ERXCLK period
M4	ERXCLK pulse width low	35%	65%	ERXCLK period

Figure 19 shows MII receive signal timings listed in Table 18.

Figure 19. MII Receive Signal Timing Diagram

7.10.2 MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK)

 Table 19 lists MII transmit channel timings.

The transmitter functions correctly up to a ETXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ETXCLK frequency.

Num	Characteristic	Min	Мах	Unit
M5	ETXCLK to ETXD[3:0], ETXEN, ETXER invalid	5	_	ns
M6	ETXCLK to ETXD[3:0], ETXEN, ETXER valid		25	ns
M7	ETXCLK pulse width high	35%	65%	ETXCLK period
M8	ETXCLK pulse width low	35%	65%	ETXCLK period

Table	19.	MII	Transmit	Signal	Timing
-------	-----	-----	----------	--------	--------

Figure 20 shows MII transmit signal timings listed in Table 19.

Figure 20. MII Transmit Signal Timing Diagram

7.10.3 MII Async Inputs Signal Timing (ECRS and ECOL)

Table 20 lists MII asynchronous inputs signal timing.

Table 20. MII Async Inputs Signal Timing

Num	Characteristic	Min	Мах	Unit
M9	ECRS, ECOL minimum pulse width	1.5	_	ETXCLK period

Figure 21 shows MII asynchronous input timings listed in Table 20.

Figure 21. MII Async Inputs Timing Diagram

JTAG and Boundary Scan Timing 7.13

Table 24. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK Frequency of Operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK Cycle Period	t _{JCYC}	4	—	t _{CYC}
J3	TCLK Clock Pulse Width	t _{JCW}	26	—	ns
J4	TCLK Rise and Fall Times	t _{JCRF}	0	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	t _{BSDST}	4	—	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	t _{BSDHT}	26	—	ns
J7	TCLK Low to Boundary Scan Output Data Valid	t _{BSDV}	0	33	ns
J8	TCLK Low to Boundary Scan Output High Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	t _{TAPBHT}	10	—	ns
J11	TCLK Low to TDO Data Valid	t _{TDODV}	0	26	ns
J12	TCLK Low to TDO High Z	t _{TDODZ}	0	8	ns
J13	TRST Assert Time	t _{TRSTAT}	100	—	ns
J14	TRST Setup Time (Negation) to TCLK High	t _{TRSTST}	10	—	ns
¹ JTAG	EN is expected to be a static signal. Hence, specific timing is	not associated	with it		

JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

Figure 24. Test Clock Input Timing

(J13)

7.14 Debug AC Timing Specifications

Table 25 lists specifications for the debug AC timing parameters shown in Figure 29.

Num	Characteristic	150	MHz	Unite	
Num	onaracteristic		Мах	<u>e</u> to	
DE0	PSTCLK cycle time	_	0.5	t _{cyc}	
DE1	PST valid to PSTCLK high	4	_	ns	
DE2	PSTCLK high to PST invalid	1.5	_	ns	
DE3	DSCLK cycle time	5	_	t _{cyc}	
DE4	DSI valid to DSCLK high	1	_	t _{cyc}	
DE5 ¹	DSCLK high to DSO invalid	4	_	t _{cyc}	
DE6	BKPT input data setup time to CLKOUT rise	4	_	ns	
DE7	CLKOUT high to BKPT high Z	0	10	ns	

Table 25. Debug AC Timing Specification

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 28 shows real-time trace timing for the values in Table 25.

Figure 28. Real-Time Trace AC Timing

Figure 29 shows BDM serial port AC timing for the values in Table 25.

Documentation

Figure 29. BDM Serial Port AC Timing

8 Documentation

Documentation regarding the MCF523x and their development support tools is available from a local Freescale distributor, a Freescale semiconductor sales office, the Freescale Literature Distribution Center, or through the Freescale web address at http://www.freescale.com/coldfire.

9 Document Revision History

The below table provides a revision history for this document.

Rev. No.	Substantive Change(s)
0	Preliminary release.
1	Updated Signal List table
1.1	• Removed duplicate information in the module description sections. The information is all in the Signals Description Table.
1.2	 Corrected Figure 8 pin 81. VDD instead of VSS Changed instances of Motorola to Freescale
1.3	 Removed detailed signal description section. This information can be found in the MCF5235RM Chapter 2. Removed detailed feature list. This information can be found in the MCF5235RM Chapter 1. Corrected Figure 2 pin F10. VSS instead of VDD. Change made in Table 2 as well. Corrected Figure 8 pin 81. OVDD instead of VDD. Change made in Table 2 as well. Cleaned up many inconsistencies within the pinout figure signal names Corrected document IDs in Documentation Table
1.4	 Added values for 'Maximum operating junction temperature' in Table 8. Added typical values for 'Core operating supply current (master mode)' in Table 9. Added typical values for 'Pad operating supply current (master mode)' in Table 9. Removed unnecessary PLL specifications, #6-9, in Table 10.