E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, FlexIO, SPI, UART/USART, USB
Peripherals	DMA, I ² S, PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 14x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	36-XFBGA
Supplier Device Package	36-XFBGA (3.5x3.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl27z32vda4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering information

The following chips are available for ordering.

Product		Memory		Pa	Package		IO and ADC channel	
Part number	Marking (Line1/Line2)	Flash (KB)	SRAM (KB)	Pin count	Package	GPIOs	GPIOs (INT/HD) ¹	ADC channels (SE/DP)
MKL27Z64VLH4	MKL27Z64 / VLH4	64	16	64	LQFP	51	51/6	17/2
MKL27Z32VLH4	MKL27Z32 / VLH4	32	8	64	LQFP	51	51/6	17/2
MKL27Z64VDA4	M27M6	64	16	36	XFBGA	30	30/6	14/3
MKL27Z32VDA4	M27M5	32	8	36	XFBGA	30	30/6	14/3
MKL27Z64VFM4	M27M6V	64	16	32	QFN	24	24/6	8/0
MKL27Z32VFM4	M27M5V	32	8	32	QFN	24	24/6	8/0
MKL27Z64VMP4	TBD	64	16	64	MAPBGA	51	51/6	17/2
MKL27Z32VMP4	TBD	32	8	64	MAPBGA	51	51/6	17/2
MKL27Z64VFT4	TBD	64	16	48	QFN	37	37/6	15/1
MKL27Z32VFT4	TBD	32	8	48	QFN	37	37/6	15/1

Table 1. Ordering information

1. INT: interrupt pin numbers; HD: high drive pin numbers

NOTE

The 48 QFN and 64 MAPBGA packages supporting MKLx7ZxxVFT4 and MKLx7ZxxVMP4 part numbers for this product are not yet available. However, these packages are included in Package Your Way program for Kinetis MCUs. Visit Freescale.com/KPYW for more details.

2 Overview

The following figure shows the system diagram of this device

The PMC provides Run (Run), and Very Low Power Run (VLPR) configurations in ARM's Run operation mode. In these modes, the MCU core is active and can access all peripherals. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption. The configuration that matches the power versus performance requirements of the application can be selected.

The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in ARM's Sleep operation mode. In these modes, even though the MCU core is inactive, all of the peripherals can be enabled and operate as programmed. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption.

The PMC provides Stop (Stop), Very Low Power Stop (VLPS), Low Leakage Stop (LLS), and Very Low Leakage Stop (VLLS) configurations in ARM's Deep Sleep operational mode. In these modes, the MCU core and most of the peripherals are disabled. Depending on the requirements of the application, different portions of the analog, logic, and memory can be retained or disabled to conserve power.

The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are used to wake up the MCU from low power states. The NVIC is used to wake up the MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU core from STOP and VLPS modes. The LLWU is used to wake up the MCU core from LLS and VLLSx modes.

For additional information regarding operational modes, power management, the NVIC, AWIC, or the LLWU, please refer to the Reference Manual.

The following table provides information about the state of the peripherals in the various operational modes and the modules that can wake MCU from low power modes.

Core mode	Device mode	Descriptions
Run mode	Run	In Run mode, all device modules are operational.
	Very Low Power Run	In VLPR mode, all device modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled.
Sleep mode	Wait	In Wait mode, all peripheral modules are operational. The MCU core is placed into Sleep mode.
	Very Low Power Wait	In VLPW mode, all peripheral modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled. The MCU core is placed into Sleep mode.

 Table 6. Peripherals states in different operational modes

2.2.15 USB

This device contains one USB module which implements a USB2.0 full-speed compliant peripheral and interfaces to the on-chip USBFS transceiver. It implements keep-alive feature to avoid re-enumerating when exiting from low power modes and enables HIRC48M to allow crystal-less USB operation.

The USBFS has the following features:

- USB 1.1 and 2.0 compliant full-speed device controller
- 16 bidirectional end points
- DMA or FIFO data stream interfaces
- Low-power consumption
- HIRC48 with clock-recovery is supported to eliminate the 48 MHz crystal. It is used for USB device-only implementation.
- USB keeps alive in low power mode down to VLPS and is able to wake MCU from low power mode

2.2.16 FlexIO

The FlexIO is a highly configurable module providing a wide range of protocols including, but not limited to UART, I2C, SPI, I2S, Camera IF, LCD RGB, PWM/ Waveform generation. The module supports programmable baud rates independent of bus clock frequency, with automatic start/stop bit generation.

The FlexIO module has the following features:

- Functional in VLPR/VLPW/Stop/VLPS mode provided the clock it is using remains enabled
- Four 32-bit double buffered shift registers with transmit, receive, and data match modes, and continuous data transfer
- The timing of the shifter' shift, load and store events are controlled by the highly flexible 16-bit timer assigned to the shifter
- Two or more shifter can be concatenated to support large data transfer sizes
- Each 16-bit timers operates independently, supports for reset, enable and disable on a variety of internal or external trigger conditions with programmable trigger polarity
- Flexible pin configuration supporting output disabled, open drain, bidirectional output data and output mode
- Supports interrupt, DMA or polled transmit/receive operation

Properties	Abbreviation	Descriptions
	Y	Enabled ²
Pin interrupt	Y	Yes

1. When I2C module is enabled and a pin is functional for I2C, this pin is (pseudo-) open drain enabled. When UART or LPUART module is enabled and a pin is functional for UART or LPUART, this pin is (pseudo-) open drain configurable.

2. PTA20 is a true open drain pin that must never be pulled above VDD.

4.3 Module Signal Description Tables

The following sections correlate the chip-level signal name with the signal name used in the module's chapter. They also briefly describe the signal function and direction.

4.3.1 Core modules

Chip signal name	Module signal name	Description	I/O
SWD_DIO	SWD_DIO	Serial Wire Debug Data Input/Output	Input /
		The SWD_DIO pin is used by an external debug tool for communication and device control. This pin is pulled up internally.	Output
SWD_CLK	SWD_CLK	Serial Wire Clock	Input
		This pin is the clock for debug logic when in the Serial Wire Debug mode. This pin is pulled down internally.	

Table 9. SWD signal descriptions

4.3.2 System modules

Table 10. System signal descriptions

Chip signal name	Module signal name	Description	I/O
NMI		Non-maskable interrupt NOTE: Driving the MMI signal low forces a non-maskable interrupt, if the MMI function is selected on the corresponding pin.	Ι
RESET	—	Reset bidirectional signal	I/O
VDD	—	MCU power	I
VSS	_	MCU ground	I

Pinouts

Chip signal name	Module signal name	Description	I/O
LPTMR0_ALT[3:1]	LPTMR0_ALTn	Pulse Counter Input pin	I

Table 19. LPTMR0 signal descriptions

Table 20. RTC signal descriptions

Chip signal name	Module signal name	Description	I/O
RTC_CLKOUT ¹	RTC_CLKOUT	1 Hz square-wave output or OSCERCLK	0

1. RTC_CLKOUT can also be driven with OSCERCLK via SIM control bit SIM_SOPT[RCTCLKOUTSEL]

4.3.6 Communication interfaces Table 21. USB FS OTG Signal Descriptions

Chip signal name	Module signal name	Description	I/O
USB0_DM	usb_dm	USB D- analog data signal on the USB bus.	I/O
USB0_DP	usb_dp	USB D+ analog data signal on the USB bus.	I/O
USB_CLKIN	_	Alternate USB clock input	I

Table 22. SPI0 signal descriptions

Chip signal name	Module signal name	Description	I/O
SPI0_MISO	MISO	Master Data In, Slave Data Out	I/O
SPI0_MOSI	MOSI	Master Data Out, Slave Data In	I/O
SPI0_SCLK	SPSCK	SPI Serial Clock	I/O
SPI0_PCS0	SS	Slave Select	I/O

Table 23. SPI1 signal descriptions

Chip signal name	Module signal name	Description	I/O
SPI1_MISO	MISO	Master Data In, Slave Data Out	I/O
SPI1_MOSI	MOSI	Master Data Out, Slave Data In	I/O
SPI1_SCLK	SPSCK	SPI Serial Clock	I/O
SPI1_PCS0	SS	Slave Select	I/O

Chip signal name	Module signal name	Description	I/O
I2C0_SCL	SCL	Bidirectional serial clock line of the I ² C system.	I/O
I2C0_SDA	SDA	Bidirectional serial data line of the I ² C system.	I/O

Table 24. I²C0 signal descriptions

Table 25. I²C1 signal descriptions

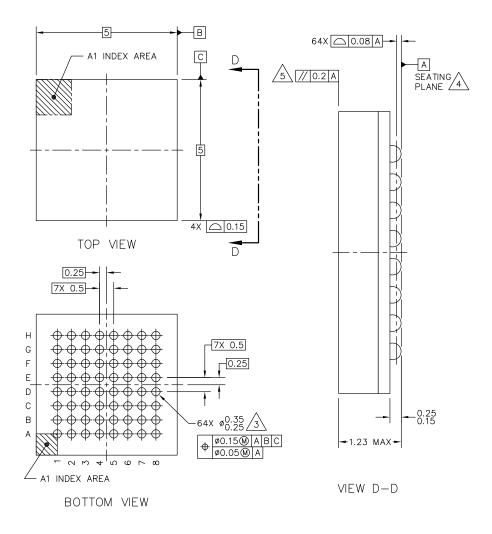
name		Description	I/O
I2C1_SCL SCL		Bidirectional serial clock line of the I ² C system.	I/O
I2C1_SDA	SDA	Bidirectional serial data line of the I ² C system.	I/O

Table 26. LPUART0 signal descriptions

Chip signal name	Module signal name	Description	I/O
LPUART0_TX	TxD	Transmit data	I/O
LPUART0_RX	RxD	Receive data	I

Table 27. LPUART1 signal descriptions

Chip signal name	Module signal name	Description	I/O
LPUART1_TX	TxD	Transmit data	I/O
LPUART1_RX	RxD	Receive data	I


Table 28. UART2 signal descriptions

Chip signal name	Module signal name	Description	I/O
UART2_TX	TxD	Transmit data	0
UART2_RX	RxD	Receive data	I

Table 29. FlexIO signal descriptions

Chip signal name Module signal name FXIO0 Dx FXIO Dn (n=07) B		Description	I/O		
FXIO0_Dx	FXIO_Dn (n=07)	Bidirectional FlexIO Shifter and Timer pin inputs/outputs	I/O		

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

/3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

4. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

Figure 13. 64-pin MAPBGA package dimension

Pinouts

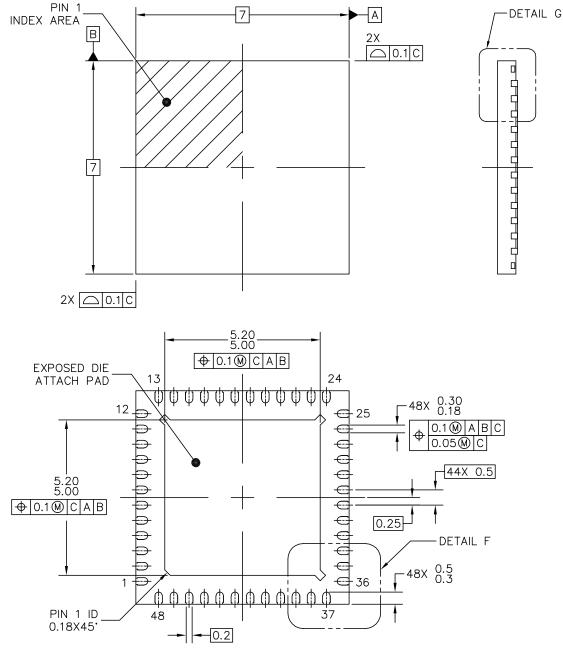
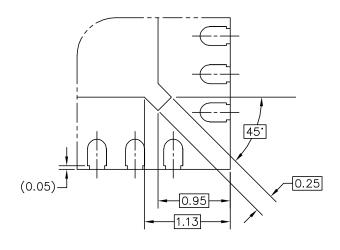
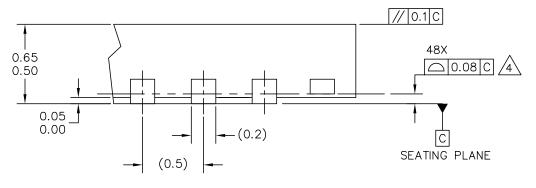
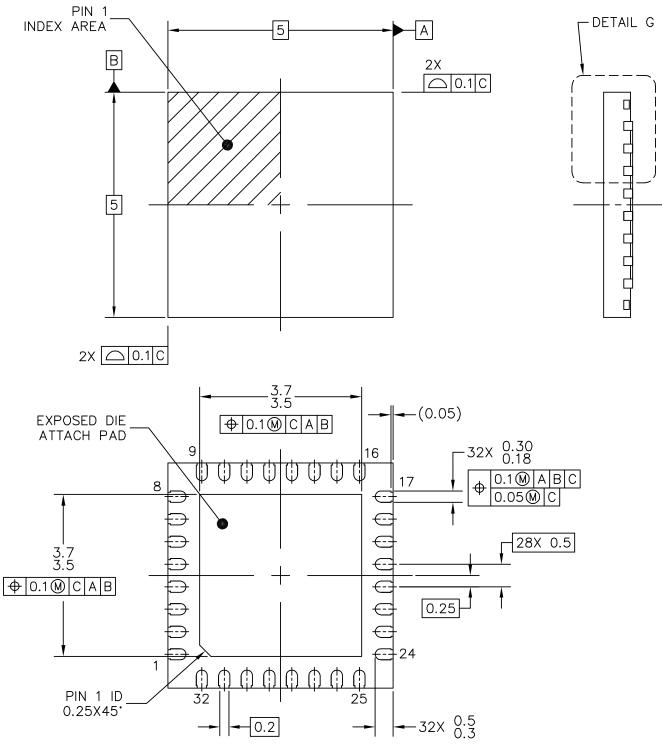




Figure 14. 48-pin QFN package dimension 1

DETAIL F

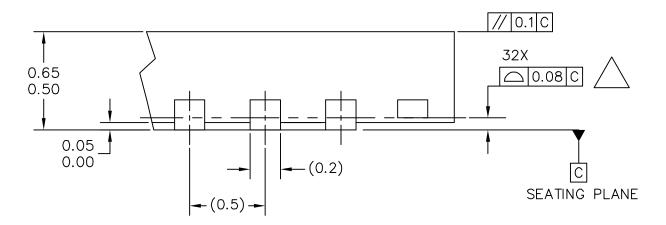
DETAIL G VIEW ROTATED 90°CW

NOTES:


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. THIS IS A NON-JEDEC REGISTERED PACKAGE.

A COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.

5. MIN. METAL GAP SHOULD BE 0.2 MM.


Figure 15. 48-pin QFN package dimension 2

DETAIL G VIEW ROTATED 90°CW

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. THIS IS A NON-JEDEC REGISTERED PACKAGE.

4 COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.

5. MIN. METAL GAP SHOULD BE 0.2 MM.

Figure 18. 32-pin QFN package dimension 2

5 Electrical characteristics

5.1 Ratings

Electrical characteristics

5.1.1 Thermal handling ratings

Table 31. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG} Storage temperature		-55	150	°C	1
T _{SDR}	T October terrene la cel fre c		260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

5.1.2 Moisture handling ratings

Table 32. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

5.1.3 ESD handling ratings

Table 33. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

5.1.4 Voltage and current absolute operating ratings

Table 34. Voltage and current absolute operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA

Description	Min.	Тур.	Max.	Unit	Notes
 VLPS → RUN 	—	7.5	8	μs	
• STOP \rightarrow RUN		7.5	8	US	
-	 VLPS → RUN 	• VLPS → RUN —	• VLPS → RUN — 7.5	• VLPS \rightarrow RUN $-$ 7.5 8 • STOP \rightarrow RUN	• VLPS \rightarrow RUN $-$ 7.5 8 μ s • STOP \rightarrow RUN

 Table 38. Power mode transition operating behaviors (continued)

5.2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent the characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

NOTE

The while(1) test is executed with flash cache enabled.

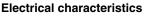
Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V		4.79	4.98		2
	• at 25 °C		_		mA	
	• at 105 °C		4.94	5.14		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	—	2.73	2.87	mA	
	• at 105 °C		2.9	3.05		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, $V_{DD} = 3.0 V$					2
	• at 25 °C	_	5.45	5.67	mA	
	• at 105 °C	_	5.6	5.82		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C					
	• at 105 °C	—	3.41	3.55	mA	
			3.56	3.70	mA	
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, $V_{DD} = 3.0 \text{ V}$					2
		_	2.37	2.49	mA	

 Table 39.
 Power consumption operating behaviors

Symbol	Description	Temperature (°C)				Unit		
		-40	25	50	70	85	105	
IEREFSTEN4MHz	[C:] External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	224	230	238	245	253	μA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN							
	and EREFSTEN] bits. Measured by entering all modes with the crystal	440	490	540	560	570	580	
	enabled. • VLLS1	440	490	540	560	570	580	
	• VLLS3	490	490	540	560	570	680	
	LLS VLPS	510	560	560	560	610	680	
	• STOP	510	560	560	560	610	680	nA
I _{LPTMR}	LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO.	30	30	30	85	100	200	
								nA
I _{USBKPALV}	IDD adder measured by placing the device in VLPS mode with USB connection kept alive.	_	1.353	_	_	_	_	
								m/
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	16	16	16	16	16	16	μA
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	430	500	500	530	530	760	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							
		96	96	96	96	96	96	μA

Table 40	Low power mod	o poriphoral add	ore — typical value	(continued)
Table 40.	Low power mou	e periprierai aud	ers — typical value	(continued)

Board type	Symbol	Description	32 QFN	36 XFBGA	64 LQFP	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	101	81.5	71	°C/W	1, 2, 3
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	33	54.7	53	°C/W	1, 2, 3,4
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	84	71.3	60	°C/W	1, 4, 5
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	28	50.0	47	°C/W	1, 4, 5
_	R _{θJB}	Thermal resistance, junction to board	13	58.0	35	°C/W	6
—	R _{θJC}	Thermal resistance, junction to case	1.7	45.3	21	°C/W	7
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	3	1.2	5	°C/W	8
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom (natural convection)	-	44.5	-	°C/W	9


Table 45. Thermal attributes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 4. Per JEDEC JESD51-6 with the board horizontal.
- 5. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 6. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 7. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 8. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 9. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

5.3 Peripheral operating requirements and behaviors

5.3.1 Core modules

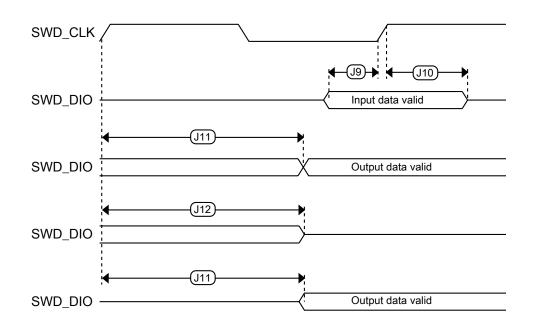


Figure 23. Serial wire data timing

5.3.2 System modules

There are no specifications necessary for the device's system modules.

5.3.3 Clock modules

5.3.3.1 MCG-Lite specifications Table 47. IRC48M specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD48M}	Supply current	—	400	500	μA	
f _{irc48m}	Internal reference frequency	—	48	_	MHz	
Δf _{irc48m_ol_lv}	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature	_	± 0.5	± 1.5	%f _{irc48m}	
$\Delta f_{irc48m_ol_hv}$	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature	_	± 0.5	± 1.0	%f _{irc48m}	1
∆f _{irc48m_cl}	Closed loop total deviation of IRC48M frequency over voltage and temperature	_	_	± 0.1	%f _{host}	2

Electrical characteristics

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		• Avg = 32					
SFDR	Spurious free dynamic range	16-bit differential modeAvg = 32	82	95		dB	7
		16-bit single-ended modeAvg = 32	78	90	—	dB	
EIL	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 56. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}
- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

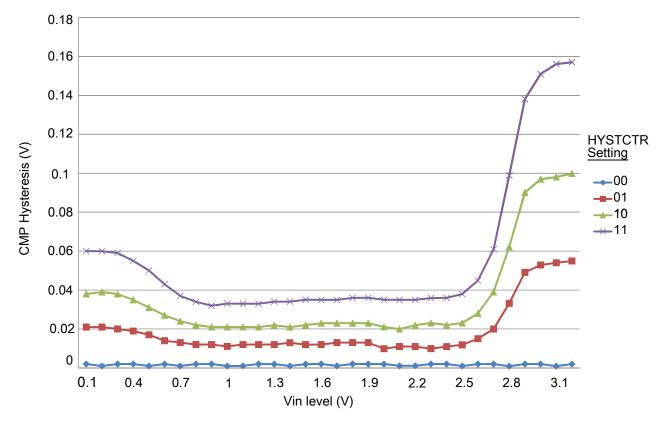


Figure 28. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

5.4 Timers

See General switching specifications.

5.5 Communication interfaces

5.5.1 USB electrical specifications

The USB electricals for the USB device module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org .

NOTE

The IRC48M meets the USB jitter specifications for certification in Device mode when the USB clock recovery mode is enabled.

This device cannot support Host mode operation.

5.5.2 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

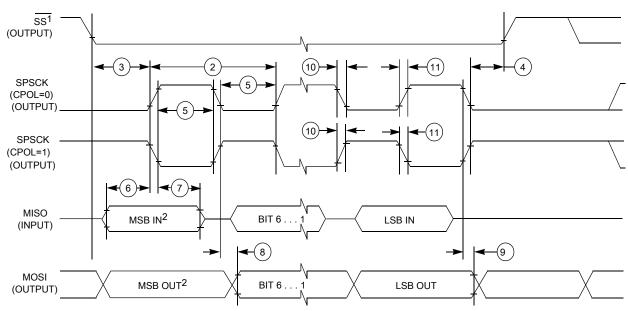
All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x	ns	2
				t _{periph}		
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2		t _{SPSCK}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x	ns	—
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	18	—	ns	<u> </u>
7	t _{HI}	Data hold time (inputs)	0	—	ns	
8	t _v	Data valid (after SPSCK edge)	_	15	ns	
9	t _{HO}	Data hold time (outputs)	0	—	ns	
10	t _{RI}	Rise time input	_	t _{periph} - 25	ns	
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	-	25	ns	—
	t _{FO}	Fall time output				

 Table 61. SPI master mode timing on slew rate disabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$


Table 62. SPI master mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2		t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2		t _{SPSCK}	_

Num.	Symbol	Description	Min.	Max.	Unit	Note
5	twspsck	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	_	ns	—
7	t _{HI}	Data hold time (inputs)	0	_	ns	—
8	t _v	Data valid (after SPSCK edge)	—	52	ns	—
9	t _{HO}	Data hold time (outputs)	0	_	ns	—
10	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	36	ns	—
	t _{FO}	Fall time output				

Table 62. SPI master mode timing on slew rate enabled pads (continued)

- 1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).
- 2. $t_{periph} = 1/f_{periph}$

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 29. SPI master mode timing (CPHA = 0)