E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, FlexIO, SPI, UART/USART, USB
Peripherals	DMA, I ² S, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 17x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl27z64vlh4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering information

The following chips are available for ordering.

Pro	Memory		Package		IO and ADC channel			
Part number	Marking (Line1/Line2)	Flash (KB)	SRAM (KB)	Pin count	Package	GPIOs	GPIOs (INT/HD) ¹	ADC channels (SE/DP)
MKL27Z64VLH4	MKL27Z64 / VLH4	64	16	64	LQFP	51	51/6	17/2
MKL27Z32VLH4	MKL27Z32 / VLH4	32	8	64	LQFP	51	51/6	17/2
MKL27Z64VDA4	M27M6	64	16	36	XFBGA	30	30/6	14/3
MKL27Z32VDA4	M27M5	32	8	36	XFBGA	30	30/6	14/3
MKL27Z64VFM4	M27M6V	64	16	32	QFN	24	24/6	8/0
MKL27Z32VFM4	M27M5V	32	8	32	QFN	24	24/6	8/0
MKL27Z64VMP4	TBD	64	16	64	MAPBGA	51	51/6	17/2
MKL27Z32VMP4	TBD	32	8	64	MAPBGA	51	51/6	17/2
MKL27Z64VFT4	TBD	64	16	48	QFN	37	37/6	15/1
MKL27Z32VFT4	TBD	32	8	48	QFN	37	37/6	15/1

Table 1. Ordering information

1. INT: interrupt pin numbers; HD: high drive pin numbers

NOTE

The 48 QFN and 64 MAPBGA packages supporting MKLx7ZxxVFT4 and MKLx7ZxxVMP4 part numbers for this product are not yet available. However, these packages are included in Package Your Way program for Kinetis MCUs. Visit Freescale.com/KPYW for more details.

2 Overview

The following figure shows the system diagram of this device

Module	Bus interface clock	Internal clocks	I/O interface clocks						
ARM Cortex-M0+ core	Platform clock	Core clock	_						
NVIC	Platform clock	_	_						
DAP	Platform clock	_	SWD_CLK						
System modules									
DMA	System clock	_	_						
DMA Mux	Bus clock	_	_						
Port control	Bus clock	_	_						
Crossbar Switch	Platform clock	<u> </u>	_						
Peripheral bridges	System clock	Bus clock	_						
LLWU, PMC, SIM, RCM	Bus clock	LPO	_						
Mode controller	Bus clock	_	—						
MCM	Platform clock	-	—						
COP watchdog	Bus clock	LPO, Bus Clock, MCGIRCLK, OSCERCLK	—						
CRC	Bus clock	_	_						
	Clo	ocks							
MCG_Lite	Bus clock	MCGOUTCLK, MCGPCLK, MCGIRCLK, OSCERCLK, ERCLK32K	_						
OSC	Bus clock	OSCERCLK	_						
	Memory and m	emory interfaces							
Flash Controller	Platform clock	Flash clock	_						
Flash memory	Flash clock	—	—						
·	An	alog							
ADC	Bus clock	OSCERCLK	—						
CMP	Bus clock	—	—						
Internal Voltage Reference (VREF)	Bus clock	_	_						
· ·	Tir	ners							
ТРМ	Bus clock	TPM clock	TPM_CLKIN0, TPM_CLKIN1						
PIT	Bus clock	—	—						
LPTMR	Bus clock	LPO, OSCERCLK, MCGPCLK, ERCLK32K	—						
RTC	Bus clock	ERCLK32K	RTC_CLKOUT, RTC_CLKIN						
	Communicat	tion interfaces	·						
USB FS (Device Only)	System clock	USB FS clock	—						
SPI0	Bus clock	—	SPI0_SCK						
SPI1	System clock	—	SPI1_SCK						
I ² C0	System Clock	—	I2C0_SCL						

The PMC provides Run (Run), and Very Low Power Run (VLPR) configurations in ARM's Run operation mode. In these modes, the MCU core is active and can access all peripherals. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption. The configuration that matches the power versus performance requirements of the application can be selected.

The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in ARM's Sleep operation mode. In these modes, even though the MCU core is inactive, all of the peripherals can be enabled and operate as programmed. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption.

The PMC provides Stop (Stop), Very Low Power Stop (VLPS), Low Leakage Stop (LLS), and Very Low Leakage Stop (VLLS) configurations in ARM's Deep Sleep operational mode. In these modes, the MCU core and most of the peripherals are disabled. Depending on the requirements of the application, different portions of the analog, logic, and memory can be retained or disabled to conserve power.

The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are used to wake up the MCU from low power states. The NVIC is used to wake up the MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU core from STOP and VLPS modes. The LLWU is used to wake up the MCU core from LLS and VLLSx modes.

For additional information regarding operational modes, power management, the NVIC, AWIC, or the LLWU, please refer to the Reference Manual.

The following table provides information about the state of the peripherals in the various operational modes and the modules that can wake MCU from low power modes.

Core mode	Device mode	Descriptions
Run mode	Run	In Run mode, all device modules are operational.
	Very Low Power Run	In VLPR mode, all device modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled.
Sleep mode	Wait	In Wait mode, all peripheral modules are operational. The MCU core is placed into Sleep mode.
	Very Low Power Wait	In VLPW mode, all peripheral modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled. The MCU core is placed into Sleep mode.

 Table 6. Peripherals states in different operational modes

- 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm
- Register write protection with register lock mechanism
- 1 Hz square wave or second pulse output with optional interrupt

2.2.8 PIT

The Periodic Interrupt Timer (PIT) is used to generate periodic interrupt to the CPU. It has two independent channels and each channel has a 32-bit counter. Both channels can be chained together to form a 64-bit counter.

Channel 0 can be used to periodically trigger DMA channel 0, and channel 1 can be used to periodically trigger DMA channel 1. Either channel can be programmed as an ADC trigger source, or TPM trigger source. Channel 0 can be programmed to trigger DAC.

The PIT module has the following features:

- Each 32-bit timers is able to generate DMA trigger
- Each 32-bit timers is able to generate timeout interrupts
- Two timers can be cascaded to form a 64-bit timer
- Each timer can be programmed as ADC/TPM trigger source
- Timer 0 is able to trigger DAC

2.2.9 LPTMR

The low-power timer (LPTMR) can be configured to operate as a time counter with optional prescaler, or as a pulse counter with optional glitch filter, across all power modes, including the low-leakage modes. It can also continue operating through most system reset events, allowing it to be used as a time of day counter.

The LPTMR module has the following features:

- 16-bit time counter or pulse counter with compare
 - Optional interrupt can generate asynchronous wakeup from any low-power mode
 - Hardware trigger output
 - Counter supports free-running mode or reset on compare
- Configurable clock source for prescaler/glitch filter
- Configurable input source for pulse counter

- Configurable edge(rising,falling,both) or level sensitive interrupt type
- Support DMA request
- Asynchronous wake-up in low-power modes
- Configurable pullup, pulldown, and pull-disable on select pins
- Configurable high and low drive strength on selected pins
- Configurable fast and slow slew rates on selected pins
- Configurable passive filter on selected pins
- Individual mux control field supporting analog or pin disabled, GPIO, and up to chip-specific digital functions
- Pad configuration fields are functional in all digital pin muxing modes.

The GPIO module has the following features:

- Port Data Input register visible in all digital pin-multiplexing modes
- Port Data Output register with corresponding set/clear/toggle registers
- Port Data Direction register
- GPIO support single-cycle access via fast GPIO.

3 Memory map

This device contains various memories and memory-mapped peripherals which are located in a 4 GB memory space. The following figure shows the system memory and peripheral locations

Pinouts

64 LQFP	36 XFB GA	32 QFN	48 QFN	64 MAP BGA	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
50	A5	26	38	A8	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2			CMP0_OUT	
51	B4	27	39	A7	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN		SPI0_MISO		
52	A4	28	40	B6	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_MISO	audioUSB_ SOF_OUT		SPI0_MOSI		
53	_	-	_	A6	PTC8	CMP0_IN2	CMP0_IN2	PTC8	I2C0_SCL	TPM0_CH4				
54	-	-	_	B5	PTC9	CMP0_IN3	CMP0_IN3	PTC9	I2C0_SDA	TPM0_CH5				
55	Ι	-	-	B4	PTC10	DISABLED		PTC10	I2C1_SCL					
56	-	-	-	A5	PTC11	DISABLED		PTC11	I2C1_SDA					
57	-	-	41	C3	PTD0	DISABLED		PTD0	SPI0_PCS0		TPM0_CH0		FXIO0_D0	
58	Ι	-	42	A4	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1		FXIO0_D1	
59	-	-	43	C2	PTD2	DISABLED		PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO	FXIO0_D2	
60	Ι	-	44	B3	PTD3	DISABLED		PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI	FXIO0_D3	
61	A3	29	45	A3	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4		FXIO0_D4	
62	B3	30	46	C1	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5		FXIO0_D5	
63	B2	31	47	B2	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	LPUART0_ RX	I2C1_SDA	SPI1_MISO	FXIO0_D6	
64	A2	32	48	A2	PTD7	DISABLED		PTD7	SPI1_MISO	LPUART0_ TX	I2C1_SCL	SPI1_MOSI	FXIO0_D7	

4.2 Pin properties

The following table lists the pin properties.

64 LQFP	36 XFBGA	32 QFN	48 QFN	64 MAPBGA	Pin name	Driver strength	Default status after POR	Pullup/ pulldown setting after POR	Slew rate after POR	Passive pin filter after POR	Open drain	Pin interrupt
—	C1	—	—	_	PTE17	ND	HI-Z	—	FS	N	Ν	Y
	D1	—	_		PTE18	ND	Hi-Z	—	FS	N	Ν	Y

Pinouts

Chip signal name	Module signal name	Description	I/O
LPTMR0_ALT[3:1]	LPTMR0_ALTn	Pulse Counter Input pin	I

Table 19. LPTMR0 signal descriptions

Table 20. RTC signal descriptions

Chip signal name	Module signal name	Description	I/O
RTC_CLKOUT ¹	RTC_CLKOUT	1 Hz square-wave output or OSCERCLK	0

1. RTC_CLKOUT can also be driven with OSCERCLK via SIM control bit SIM_SOPT[RCTCLKOUTSEL]

4.3.6 Communication interfaces Table 21. USB FS OTG Signal Descriptions

Chip signal name	Module signal name	Description	I/O
USB0_DM	usb_dm	USB D- analog data signal on the USB bus.	I/O
USB0_DP	usb_dp	USB D+ analog data signal on the USB bus.	I/O
USB_CLKIN	_	Alternate USB clock input	I

Table 22. SPI0 signal descriptions

Chip signal name	Module signal name	Description	I/O
SPI0_MISO	MISO	Master Data In, Slave Data Out	I/O
SPI0_MOSI	MOSI	Master Data Out, Slave Data In	I/O
SPI0_SCLK	SPSCK	SPI Serial Clock	I/O
SPI0_PCS0	SS	Slave Select	I/O

Table 23. SPI1 signal descriptions

Chip signal name	Module signal name	Description	I/O
SPI1_MISO	MISO	Master Data In, Slave Data Out	I/O
SPI1_MOSI	MOSI	Master Data Out, Slave Data In	I/O
SPI1_SCLK	SPSCK	SPI Serial Clock	I/O
SPI1_PCS0	SS	Slave Select	I/O

4.3.7 Human-machine interfaces (HMI) Table 30. GPIO Signal Descriptions

Chip signal name	Module signal name	Description	I/O
PTA[31:0]	PORTA31-PORTA0	General-purpose input/output	I/O
PTB[31:0]	PORTB31-PORTB0	General-purpose input/output	I/O
PTC[11:0]	PORTC11-PORTC0	General-purpose input/output	I/O
PTD[7:0]	PORTD7-PORTD0	General-purpose input/output	I/O
PTE[31:0]	PORTE31-PORTE0	General-purpose input/output	I/O

4.4 KL27 Family Pinouts

The figure below shows the 32 QFN pinouts.

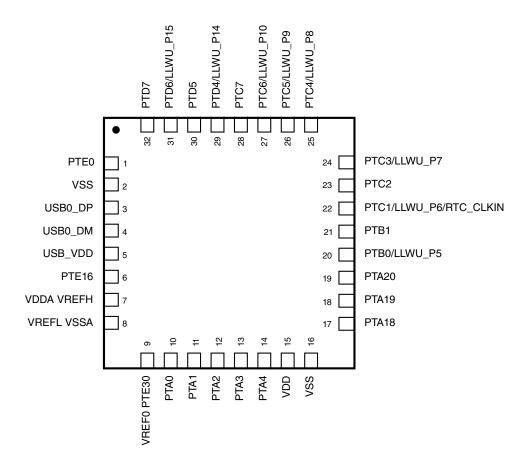
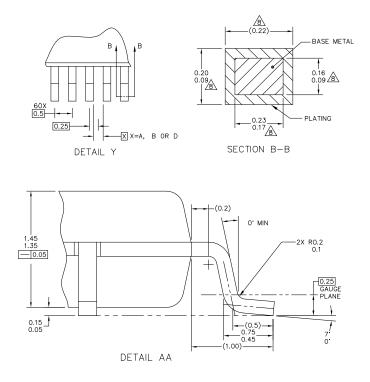



Figure 6. 32 QFN Pinout diagram (transparent top view)

The figure below shows the 48 QFN pinouts.

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- $\underline{\bigtriangleup}$ dimensions to be determined at seating plane c.
- THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 MM AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 MM.
- THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.
- \triangle exact shape of each corner is optional.

Figure 12. 64-pin LQFP package dimensions 2

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW1H}	Level 1 falling (LVWV = 00)	2.62	2.70	2.78	V	
V_{LVW2H}	 Level 2 falling (LVWV = 01) 	2.72	2.80	2.88	V	
V _{LVW3H}	 Level 3 falling (LVWV = 10) 	2.82	2.90	2.98	V	
V_{LVW4H}	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	_
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	_
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	• Level 1 falling (LVWV = 00)	1.74	1.80	1.86	v	
V_{LVW2L}	 Level 2 falling (LVWV = 01) 	1.84	1.90	1.96	v	
V _{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	v	
V_{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	_	mV	_
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	_
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	-

Table 36. V_{DD} supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

5.2.2.3 Voltage and current operating behaviors Table 37. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	—	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -2.5 mA	V _{DD} – 0.5	_	V	
V _{OH}	Output high voltage — high drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -20 mA	V _{DD} – 0.5	—	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -10 mA	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	—	100	mA	
V _{OL}	Output low voltage — normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA		0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 2.5 mA		0.5	V	
V _{OL}	Output low voltage — high drive pad				1
		_	0.5	V	

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C		91	136.5	μΑ	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	34	51	μA	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	212	318	μΑ	
I _{DD_VLPR}	Very-low-power run mode current—8 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	302	392.6	μΑ	
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V • at 25 °C		1.81	2.12	mA	
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V • at 25 °C	_	1.27	1.46	mA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V • at 25 °C	_	156	193.2	μA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V • at 25 °C		63	100.8	μA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V • at 25 °C	_	32	48	μA	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, V _{DD} = 3.0 V • at 25 °C	_	1.68	2.05	mA	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, V _{DD} = 3.0 V • at 25 °C					

Table 39.	Power consum	ption operating	behaviors	(continued)
			,	

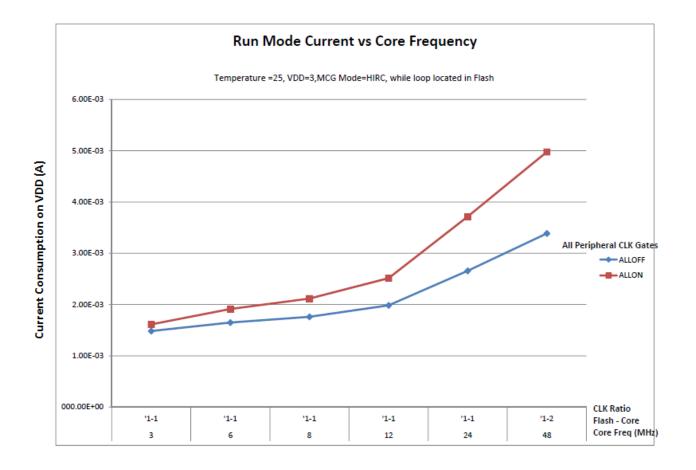
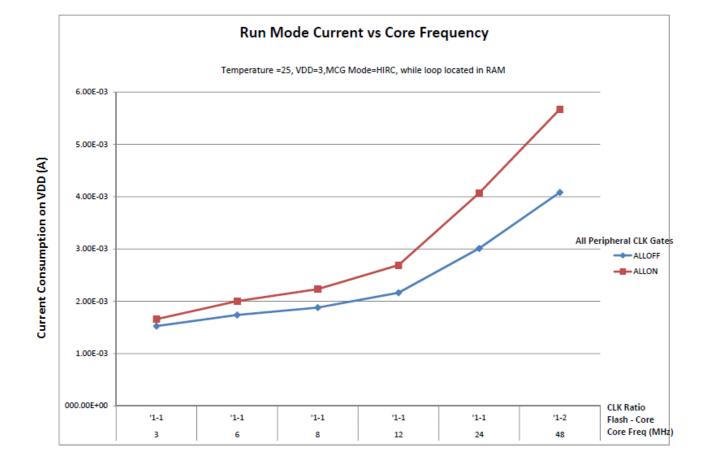



Figure 20. Run mode supply current vs. core frequency

Electrical characteristics

5.3.1.1 SWD electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times		3	ns
J 9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

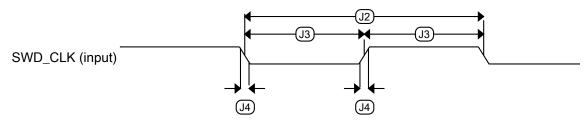


Figure 22. Serial wire clock input timing

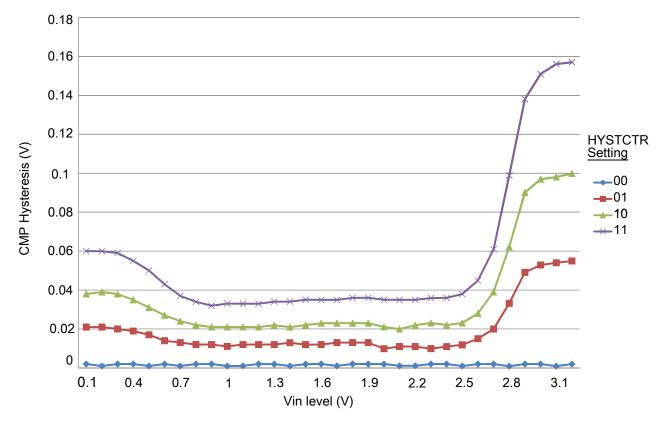


Figure 28. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

5.4 Timers

See General switching specifications.

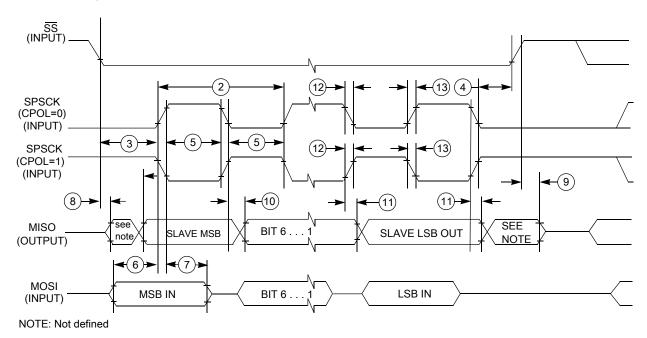
5.5 Communication interfaces

5.5.1 USB electrical specifications

The USB electricals for the USB device module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org .

NOTE

The IRC48M meets the USB jitter specifications for certification in Device mode when the USB clock recovery mode is enabled.



Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}		ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	_
4	t _{Lag}	Enable lag time	1	—	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	—	ns	_
7	t _{HI}	Data hold time (inputs)	7	—	ns	_
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	-
	t _{FO}	Fall time output				

Table 64. SPI slave mode timing on slew rate enabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Electrical characteristics

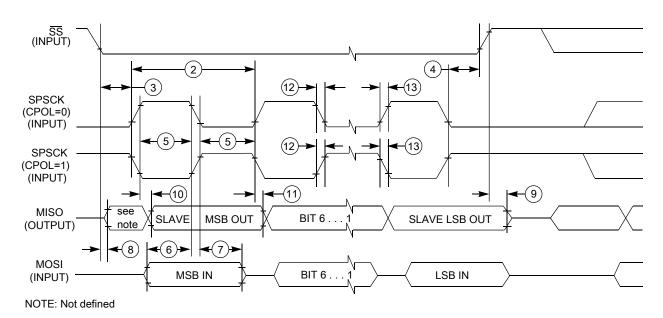


Figure 32. SPI slave mode timing (CPHA = 1)

5.5.3 Inter-Integrated Circuit Interface (I2C) timing Table 65. I2C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Unit	
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	—	1.25	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	—	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	—	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	—	100 ³ , ⁶	—	ns
Rise time of SDA and SCL signals	t _r	—	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	—	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the high drive pins across the full voltage range and when using the normal drive pins and VDD ≥ 2.7 V.

High voltage measurement circuits require voltage division, current limiting, and overvoltage protection as shown the following figure. The voltage divider formed by R1 – R4 must yield a voltage less than or equal to VREFH. The current must be limited to less than the injection current limit. Since the ADC pins do not have diodes to VDD, external clamp diodes must be included to protect against transient over-voltages.

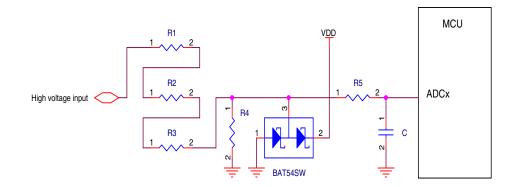
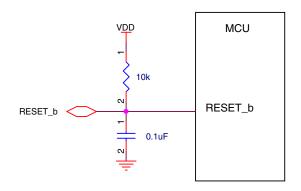


Figure 35. High voltage measurement with an ADC input

6.1.4 Digital design

Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).


CAUTION

Do not provide power to I/O pins prior to VDD, especially the RESET_b pin.

• RESET_b pin

The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An external RC circuit is recommended to filter noise as shown in the following figure. The resistor value must be in the range of 4.7 k Ω to 10 k Ω ; the recommended capacitance value is 0.1 μ F. The RESET_b pin also has a selectable digital filter to reject spurious noise.

Figure 36. Reset circuit

When an external supervisor chip is connected to the RESET_b pin, a series resistor must be used to avoid damaging the supervisor chip or the RESET_b pin, as shown in the following figure. The series resistor value (RS below) must be in the range of 100Ω to $1 \text{ k}\Omega$ depending on the external reset chip drive strength. The supervisor chip must have an active high, open-drain output.

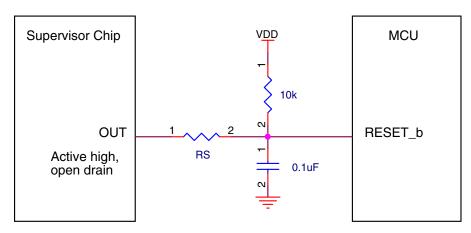
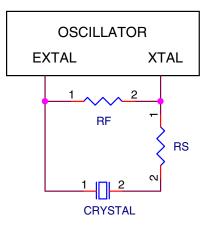
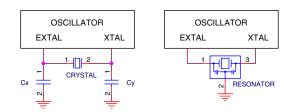


Figure 37. Reset signal connection to external reset chip


• NMI pin

Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low level on this pin will trigger non-maskable interrupt. When this pin is enabled as the NMI function, an external pull-up resistor (10 k Ω) as shown in the following figure is recommended for robustness.


If the NMI_b pin is used as an I/O pin, the non-maskable interrupt handler is required to disable the NMI function by remapping to another function. The NMI function is disabled by programming the FOPT[NMI_DIS] bit to zero.

Design considerations

Figure 41. Crystal connection – Diagram 2

Figure 42. Crystal connection – Diagram 3

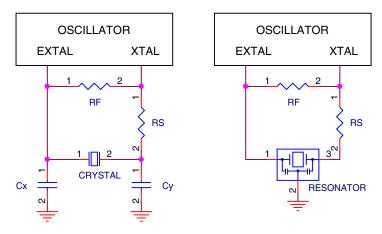


Figure 43. Crystal connection – Diagram 4

6.2 Software considerations

All Kinetis MCUs are supported by comprehensive Freescale and third-party hardware and software enablement solutions, which can reduce development costs and time to market. Featured software and tools are listed below. Visit http://www.freescale.com/kinetis/sw for more information and supporting collateral.

Evaluation and Prototyping Hardware

98