

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	7925
Number of Logic Elements/Cells	101440
Total RAM Bits	4976640
Number of I/O	300
Number of Gates	-
Voltage - Supply	0.95V ~ 1.05V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7a100t-1fg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2: Recommended Operating Conditions(1)(2) (Cont'd)

Symbol	Description	Min	Тур	Max	Units
Temperature					
	Junction temperature operating range for commercial (C) temperature devices	0	_	85	°C
T _j	Junction temperature operating range for extended (E) temperature devices	0	_	100	°C
	Junction temperature operating range for industrial (I) temperature devices	-40	-	100	°C

- 1. All voltages are relative to ground.
- 2. For the design of the power distribution system consult <u>UG483</u>, 7 Series FPGAs PCB Design and Pin Planning Guide.
- 3. Configuration data is retained even if V_{CCO} drops to 0V.
- 4. Includes V_{CCO} of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- 5. The lower absolute voltage specification always applies.
- 6. A total of 200 mA per bank should not be exceeded.
- 7. V_{CCBATT} is required only when using bitstream encryption. If battery is not used, connect V_{CCBATT} to either ground or V_{CCAUX}.
- 8. Each voltage listed requires the filter circuit described in UG482: 7 Series FPGAs GTP Transceiver User Guide.
- 9. Voltages are specified for the temperature range of $T_i = 0^{\circ}C$ to $+85^{\circ}C$.

Table 3: DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Typ ⁽¹⁾	Max	Units
V _{DRINT}	Data retention V _{CCINT} voltage (below which configuration data might be lost)	0.75	_	-	V
V _{DRI}	Data retention V _{CCAUX} voltage (below which configuration data might be lost)	1.5	_	_	V
I _{REF}	V _{REF} leakage current per pin	_	_	15	μΑ
IL	Input or output leakage current per pin (sample-tested)	_	_	15	μΑ
C _{IN} ⁽²⁾	Die input capacitance at the pad	_	_	8	pF
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 3.3V	90	_	330	μΑ
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 2.5V	68	_	250	μΑ
I _{RPU}	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.8V	34	_	220	μΑ
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.5V	23	_	150	μΑ
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.2V	12	_	120	μΑ
	Pad pull-down (when selected) @ V _{IN} = 3.3V	68	_	330	μΑ
I _{RPD}	Pad pull-down (when selected) @ V _{IN} = 1.8V	45	_	180	μΑ
I _{CCADC}	Analog supply current, analog circuits in powered up state	_	_	25	mA
I _{BATT} (3)	Battery supply current	_	_	150	nA
	Thevenin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_40) for commercial (C), and industrial (I), and extended (E) temperature devices	28	40	55	Ω
R _{IN_TERM} ⁽⁴⁾	Thevenin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_50) for commercial (C), and industrial (I), and extended (E) temperature devices	35	50	65	Ω
	Thevenin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_60) for commercial (C), and industrial (I), and extended (E) temperature devices	44	60	83	Ω

Table 3: DC Characteristics Over Recommended Operating Conditions (Cont'd)

Symbol	pol Description		Typ ⁽¹⁾	Max	Units
n	Temperature diode ideality factor		1.010	_	_
r	Temperature diode series resistance	_	2	_	Ω

- 1. Typical values are specified at nominal voltage, 25°C.
- 2. This measurement represents the die capacitance at the pad, not including the package.
- Maximum value specified for worst case process at 25°C.
- Termination resistance to a V_{CCO}/2 level.

Table 4: V_{IN} Maximum Allowed AC Voltage Overshoot and Undershoot for 3.3V HR I/O Banks⁽¹⁾

AC Voltage Overshoot	% of UI @-40°C to 100°C	AC Voltage Undershoot	% of UI @-40°C to 100°C
V _{CCO} + 0.40	100	-0.40	100
V _{CCO} + 0.45	100	-0.45	61.7
V _{CCO} + 0.50	100	-0.50	25.8
V _{CCO} + 0.55	100	-0.55	11.0
V _{CCO} + 0.60	46.6	-0.60	4.77
V _{CCO} + 0.65	21.2	-0.65	2.10
V _{CCO} + 0.70	9.75	-0.70	0.94
V _{CCO} + 0.75	4.55	-0.75	0.43
V _{CCO} + 0.80	2.15	-0.80	0.20
V _{CCO} + 0.85	1.02	-0.85	0.09
V _{CCO} + 0.90	0.49	-0.90	0.04
V _{CCO} + 0.95	0.24	-0.95	0.02

Notes:

1. A total of 200 mA per bank should not be exceeded.

Table 5: Typical Quiescent Supply Current

		Device					
Symbol	Description			1.0V		0.9V	Units
			-3	-2/-2L	-1	-2L	
I _{CCINTQ} Quiescent V _{CCINT}	Quiescent V _{CCINT} supply current	XC7A100T	155	155	155	108	mA
		XC7A200T	328	328	328	232	mA
I _{CCOQ} Quiescent V _{CCO} supply curr	Quiescent V _{CCO} supply current	XC7A100T	4	4	4	4	mA
		XC7A200T	5	5	5	5	mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XC7A100T	36	36	36	36	mA
		XC7A200T	73	73	73	73	mA
I _{CCBRAMQ} Quiescent V _{CCBRAM} s	Quiescent V _{CCBRAM} supply current	XC7A100T	4	4	4	4	mA
		XC7A200T	11	11	11	11	mA

- 1. Typical values are specified at nominal voltage, 85°C junction temperature (T_i) with single-ended SelectIO resources.
- 2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
- Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power consumption for conditions other than those specified.

Power-On/Off Power Supply Sequencing

The recommended power-on sequence is V_{CCINT} , V_{CCBRAM} , V_{CCAUX} , and V_{CCO} to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCINT} and V_{CCBRAM} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If V_{CCAUX} and V_{CCO} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously.

For V_{CCO} voltages of 3.3V in HR I/O banks and configuration bank 0:

- The voltage difference between V_{CCO} and V_{CCAUX} must not exceed 2.625V for longer than T_{VCCO2VCCAUX} for each power-on/off cycle to maintain device reliability levels.
- The T_{VCCO2VCCAUX} time can be allocated in any percentage between the power-on and power-off ramps.

The recommended power-on sequence to achieve minimum current draw for the GTP transceivers is V_{CCINT} , $V_{MGTAVCC}$, $V_{MGTAVCC}$, $V_{MGTAVCC}$, $V_{MGTAVCC}$, $V_{MGTAVCC}$. There is no recommended sequencing for $V_{MGTAVCCAUX}$. Both $V_{MGTAVCC}$ and V_{CCINT} can be ramped simultaneously. The recommended power-off sequence is the reverse of the power-on sequence to achieve minimum current draw.

If these recommended sequences are not met, current drawn from V_{MGTAVTT} can be higher than specifications during power-up and power-down.

- When V_{MGTAVTT} is powered before V_{MGTAVCC} and V_{MGTAVCC} > 150 mV and V_{MGTAVCC} < 0.7V, the V_{MGTAVTT} current draw can increase by 460 mA per transceiver during V_{MGTAVCC} ramp up. The duration of the current draw can be up to 0.3 x T_{MGTAVCC} (ramp time from GND to 90% of V_{MGTAVCC}). The reverse is true for power-down.
- When V_{MGTAVTT} is powered before V_{CCINT} and V_{MGTAVTT} V_{CCINT} > 150 mV and V_{CCINT} < 0.7V, the V_{MGTAVTT} current draw can increase by 50 mA per transceiver during V_{CCINT} ramp up. The duration of the current draw can be up to 0.3 x T_{VCCINT} (ramp time from GND to 90% of V_{CCINT}). The reverse is true for power-down.

Table 9: Differential SelectIO DC Input and Output Levels

I/O Standard		V _{ICM} (1	1)		V _{ID} (2)			V _{OCM} (3)			V _{OD} (4)	
70 Standard	V, Min	V, Typ	V, Max	V, Min	V, Typ	V, Max	V, Min	V, Typ	V, Max	V, Min	V, Typ	V, Max
BLVDS_25	0.300	1.200	1.425	0.100	_	_	-	1.250	_		Note 5	
MINI_LVDS_25	0.300	1.200	V _{CCAUX}	0.200	0.400	0.600	1.000	1.200	1.400	0.300	0.450	0.600
PPDS_25	0.200	0.900	V _{CCAUX}	0.100	0.250	0.400	0.500	0.950	1.400	0.100	0.250	0.400
RSDS_25	0.300	0.900	1.500	0.100	0.350	0.600	1.000	1.200	1.400	0.100	0.350	0.600
TMDS_33	2.700	2.965	3.230	0.150	0.675	1.200	V _{CCO} -0.405	V _{CCO} -0.300	V _{CCO} -0.190	0.400	0.600	0.800

- 1. V_{ICM} is the input common mode voltage.
- 2. V_{ID} is the input differential voltage $(Q \overline{Q})$.
- 3. V_{OCM} is the output common mode voltage.
- 4. V_{OD} is the output differential voltage $(Q \overline{Q})$.
- 5. V_{OD} for BLVDS will vary significantly depending on topology and loading.

Table 10: Complementary Differential SelectIO DC Input and Output Levels

I/O Standard		V _{ICM} (1)		V _{II}	o ⁽²⁾	V _{OL} (3)	V _{OH} ⁽⁴⁾	l _{OL}	I _{OH}
I/O Standard	V, Min	V,Typ	V, Max	V,Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
DIFF_HSTL_I	0.300	0.750	1.125	0.100	_	0.400	V _{CCO} -0.400	8.00	-8.00
DIFF_HSTL_I_18	0.300	0.900	1.425	0.100	_	0.400	V _{CCO} -0.400	8.00	-8.00
DIFF_HSTL_II	0.300	0.750	1.125	0.100	_	0.400	V _{CCO} -0.400	16.00	-16.00
DIFF_HSTL_II_18	0.300	0.900	1.425	0.100	_	0.400	V _{CCO} -0.400	16.00	-16.00
DIFF_HSUL_12	0.300	0.600	0.850	0.100	_	20% V _{CCO}	80% V _{CCO}	0.100	-0.100
DIFF_MOBILE_DDR	0.300	0.900	1.425	0.100	_	10% V _{CCO}	90% V _{CCO}	0.100	-0.100
DIFF_SSTL135	0.300	0.675	1.000	0.100	_	(V _{CCO} /2) - 0.150	$(V_{CCO}/2) + 0.150$	13.0	-13.0
DIFF_SSTL135_R	0.300	0.675	1.000	0.100	_	$(V_{CCO}/2) - 0.150$	$(V_{CCO}/2) + 0.150$	8.9	-8.9
DIFF_SSTL15	0.300	0.750	1.125	0.100	_	(V _{CCO} /2) - 0.175	$(V_{CCO}/2) + 0.175$	13.0	-13.0
DIFF_SSTL15_R	0.300	0.750	1.125	0.100	_	(V _{CCO} /2) - 0.175	$(V_{CCO}/2) + 0.175$	8.9	-8.9
DIFF_SSTL18_I	0.300	0.900	1.425	0.100	-	(V _{CCO} /2) - 0.470	$(V_{CCO}/2) + 0.470$	8.00	-8.00
DIFF_SSTL18_II	0.300	0.900	1.425	0.100	_	(V _{CCO} /2) - 0.600	$(V_{CCO}/2) + 0.600$	13.4	-13.4

- 1. V_{ICM} is the input common mode voltage.
- 2. V_{ID} is the input differential voltage $(Q \overline{Q})$.
- 3. V_{OL} is the single-ended low-output voltage.
- 4. V_{OH} is the single-ended high-output voltage.

LVDS DC Specifications (LVDS_25)

See <u>UG471</u>: 7 Series FPGAs SelectIO Resources User Guide for more information on the LVDS_25 standard in the HR I/O banks.

Table 11: LVDS 25 DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply Voltage		2.375	2.500	2.625	V
V _{OH}	Output High Voltage for Q and Q	$R_T = 100 \Omega$ across Q and \overline{Q} signals	_	_	1.675	V
V _{OL}	Output Low Voltage for Q and Q	$R_T = 100 \Omega$ across Q and \overline{Q} signals	0.700	_	_	V
V _{ODIFF}	Differential Output Voltage $(Q - \overline{Q})$, $Q = \text{High}$	$R_T = 100 \Omega$ across Q and \overline{Q} signals	247	350	600	mV
V _{OCM}	Output Common-Mode Voltage	$R_T = 100 \Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
V _{IDIFF}	Differential Input Voltage $(Q - \overline{Q})$, $Q = \text{High } (\overline{Q} - Q)$, $\overline{Q} = \text{High}$		100	350	600	mV
V _{ICM}	Input Common-Mode Voltage		0.300	1.200	1.425	V

AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications in v1.07 from the 14.4/2012.4 device pack for ISE® Design Suite14.4 and Vivado® Design Suite 2012.4 for the -3, -2, -2L (1.0V), and -1 speed grades and v1.05 from the 14.4/2012.4 device pack for the -2L (0.9V) speed grade.

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some underreporting might still occur.

Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production Product Specification

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Testing of AC Switching Characteristics

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Artix-7 FPGAs.

Speed Grade Designations

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 12 correlates the current status of each Artix-7 device on a per speed grade basis.

Table 12: Artix-7 Device Speed Grade Designations

Device	Speed Grade Designations							
Device	Advance	Preliminary	Production					
XC7A100T	-2L (0.9V)		-3, -2, -2L (1.0V), -1					
XC7A200T	-2L (0.9V)		-3, -2, -2L (1.0V), -1					

Production Silicon and ISE Software Status

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases.

Table 13 lists the production released Artix-7 device, speed grade, and the minimum corresponding supported speed specification version and ISE software revisions. The ISE software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Table 13: Artix-7 Device Production Software and Speed Specification Release

	Speed Grade						
Device		1.0V					
	-3	-2/-2L	-1	-2L			
XC7A100T	ISE 14.4 and Vivad	ISE 14.4 and Vivado 2012.4 with the 14.4/2012.4 device pack v1.07					
XC7A200T	ISE 14.4 and Vivad	lo 2012.4 with the 14.4/2012.	4 device pack v1.07				

Notes:

1. Blank entries indicate a device and/or speed grade in advance or preliminary status.

Table 27: Block RAM and FIFO Switching Characteristics (Cont'd)

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
T _{RCCK_RSTRAM} /T _{RCKC_RSTRAM}	Synchronous RSTRAM input	0.32/0.42	0.34/0.43	0.36/0.46	0.40/0.47	ns, Min
T _{RCCK_WEA} /T _{RCKC_WEA}	Write enable (WE) input (block RAM only)	0.44/0.18	0.48/0.19	0.54/0.20	0.64/0.23	ns, Min
T _{RCCK_WREN} /T _{RCKC_WREN}	WREN FIFO inputs	0.46/0.30	0.46/0.35	0.47/0.43	0.77/0.44	ns, Min
T _{RCCK_RDEN} /T _{RCKC_RDEN}	RDEN FIFO inputs	0.42/0.30	0.43/0.35	0.43/0.43	0.71/0.44	ns, Min
Reset Delays				•	•	
T _{RCO_FLAGS}	Reset RST to FIFO flags/pointers ⁽¹⁰⁾	0.90	0.98	1.10	1.25	ns, Max
T _{RREC_RST} /T _{RREM_RST}	FIFO reset recovery and removal timing ⁽¹¹⁾	1.87/–0.81	2.07/–0.81	2.37/–0.81	2.44/-0.71	ns, Max
Maximum Frequency						
F _{MAX_BRAM_WF_NC}	Block RAM (write first and no change modes) when not in SDP RF mode	509.68	460.83	388.20	315.66	MHz
F _{MAX_BRAM_RF_PERFORMANCE}	Block RAM (read first, performance mode) when in SDP RF mode but no address overlap between port A and port B	509.68	460.83	388.20	315.66	MHz
F _{MAX_BRAM_RF_DELAYED_WRITE}	Block RAM (read first, delayed write mode) when in SDP RF mode and there is possibility of overlap between port A and port B addresses	447.63	404.53	339.67	268.96	MHz
F _{MAX_CAS_WF_NC}	Block RAM cascade (write first, no change mode) when cascade but not in RF mode	467.07	418.59	345.78	273.30	MHz
F _{MAX_CAS_RF_PERFORMANCE}	Block RAM cascade (read first, performance mode) when in cascade with RF mode and no possibility of address overlap/one port is disabled	467.07	418.59	345.78	273.30	MHz
F _{MAX_CAS_RF_DELAYED_WRITE}	When in cascade RF mode and there is a possibility of address overlap between port A and port B	405.35	362.19	297.35	226.60	MHz
F _{MAX_FIFO}	FIFO in all modes without ECC	509.68	460.83	388.20	315.66	MHz
F _{MAX_ECC}	Block RAM and FIFO in ECC configuration	410.34	365.10	297.53	215.38	MHz

- 1. TRACE will report all of these parameters as $T_{\mbox{RCKO_DO}}$.
- 2. T_{RCKO_DOR} includes T_{RCKO_DOW}, T_{RCKO_DOPR}, and T_{RCKO_DOPW} as well as the B port equivalent timing parameters.
- 3. These parameters also apply to synchronous FIFO with DO_REG = 0.
- 4. T_{RCKO_DO} includes T_{RCKO_DOP} as well as the B port equivalent timing parameters.
- 5. These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO_REG = 1.
- $\textbf{6.} \quad \mathsf{T}_{\mathsf{RCKO}} \; \mathsf{FLAGS} \; \mathsf{includes} \; \mathsf{the} \; \mathsf{following} \; \mathsf{parameters:} \; \mathsf{T}_{\mathsf{RCKO}_\mathsf{AEMPTY}}, \; \mathsf{T}_{\mathsf{RCKO}_\mathsf{AFULL}}, \; \mathsf{T}_{\mathsf{RCKO}_\mathsf{EMPTY}}, \; \mathsf{T}_{\mathsf{RCKO}_\mathsf{FULL}}, \; \mathsf{T}_{\mathsf{RCKO}_\mathsf{FULL}}, \; \mathsf{T}_{\mathsf{RCKO}_\mathsf{EMPTY}}, \; \mathsf{T}_{\mathsf{RCKO}_\mathsf{EMPTY}}, \; \mathsf{T}_{\mathsf{RC$
- 7. T_{RCKO POINTERS} includes both T_{RCKO RDCOUNT} and T_{RCKO WRCOUNT}.
- 8. The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible.
- 9. These parameters include both A and B inputs as well as the parity inputs of A and B.
- 10. T_{RCO FLAGS} includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT.
- 11. RDEN and WREN must be held Low prior to and during reset. The FIFO reset must be asserted for at least five positive clock edges of the slowest clock (WRCLK or RDCLK).

Clock Buffers and Networks

Table 29: Global Clock Switching Characteristics (Including BUFGCTRL)

	Description		Speed Grade					
Symbol			1.0V	0.9V	Units			
		-3	-2/-2L	-1	-2L			
T _{BCCCK_CE} /T _{BCCKC_CE} (1)	CE pins setup/hold	0.12/0.39	0.13/0.40	0.16/0.41	0.31/0.17	ns		
T _{BCCCK_S} /T _{BCCKC_S} ⁽¹⁾	S pins setup/hold	0.12/0.39	0.13/0.40	0.16/0.41	0.31/0.17	ns		
T _{BCCKO_O} (2)	BUFGCTRL delay from I0/I1 to O	0.08	0.09	0.10	0.14	ns		
Maximum Frequency		· · ·				•		
F _{MAX_BUFG}	Global clock tree (BUFG)	628.00	628.00	464.00	394.00	MHz		

Notes:

Table 30: Input/Output Clock Switching Characteristics (BUFIO)

	Description					
Symbol			1.0V	0.9V	Units	
		-3	-2/-2L	-1	-2L	Ì
T _{BIOCKO_O}	Clock to out delay from I to O	1.11	1.26	1.54	1.56	ns
Maximum Frequency						
F _{MAX_BUFIO}	I/O clock tree (BUFIO)	680.00	680.00	600.00	600.00	MHz

Table 31: Regional Clock Buffer Switching Characteristics (BUFR)

Symbol	Description		1.0V	0.9V	Units	
		-3	-2/-2L	-1	-2L	
T _{BRCKO_O}	Clock to out delay from I to O	0.64	0.76	0.99	1.24	ns
T _{BRCKO_O_BYP}	Clock to out delay from I to O with Divide Bypass attribute set	0.34	0.39	0.52	0.72	ns
T _{BRDO_O}	Propagation delay from CLR to O	0.81	0.85	1.09	0.96	ns
Maximum Frequency	·					
F _{MAX_BUFR} ⁽¹⁾	Regional clock tree (BUFR)	420.00	375.00	315.00	315.00	MHz

Notes:

1. The maximum input frequency to the BUFR and BUFMR is the BUFIO F_{MAX} frequency.

T_{BCCCK_CE} and T_{BCCKC_CE} must be satisfied to assure glitch-free operation of the global clock when switching between clocks. These
parameters do not apply to the BUFGMUX primitive that assures glitch-free operation. The other global clock setup and hold times are
optional; only needing to be satisfied if device operation requires simulation matches on a cycle-for-cycle basis when switching between
clocks.

^{2.} $T_{BGCKO\ O}$ (BUFG delay from I0 to O) values are the same as $T_{BCCKO\ O}$ values.

Device Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 36: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)

	Description	Device	Speed Grade					
Symbol				1.0V	0.9V	Units		
			-3	-2/-2L	-1	-2L		
SSTL15 Clock-Capa	able Clock Input to Output Delay using Out	out Flip-Flop, Fast \$	Slew Rate,	without MM	CM/PLL.			
T _{ICKOF} Clock-capable clock input and OUTFF without MMCM/PLL (near clock region)	XC7A100T	5.14	5.74	6.72	7.64	ns		
	XC7A200T	5.47	6.11	7.16	8.10	ns		

Notes:

Table 37: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)

	Description	Device	Speed Grade					
Symbol				1.0V	0.9V	Units		
			-3	-2/-2L	-1	-2L		
SSTL15 Clock-Capa	ble Clock Input to Output Delay using Outp	out Flip-Flop, Fast S	Slew Rate,	without MM	CM/PLL.			
T _{ICKOFFAR} Clock-capable clock input and OUTFF	XC7A100T	5.38	6.01	7.02	7.96	ns		
	without MMCM/PLL (far clock region)		6.17	6.89	8.05	9.05	ns	

Notes:

Table 38: Clock-Capable Clock Input to Output Delay With MMCM

	Description	Device					
Symbol				1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	
SSTL15 Clock-Capa	able Clock Input to Output Delay using Outp	out Flip-Flop, Fast	Slew Rate, ı	with MMCM			
TICKOFMMCMCC Clock-capable clock input and OUTFF with MMCM	i i	XC7A100T	0.89	0.94	0.96	1.81	ns
	XC7A200T	0.90	0.97	1.01	1.86	ns	

- Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
- 2. MMCM output jitter is already included in the timing calculation.

^{1.} Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

^{1.} Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 39: Clock-Capable Clock Input to Output Delay With PLL

Symbol	Description	Device	Speed Grade					
				1.0V	0.9V	Units		
			-3	-2/-2L	-1	-2L		
SSTL15 Clock-Capa	able Clock Input to Output Delay using Outp	out Flip-Flop, Fast S	Slew Rate, ı	with PLL.				
T _{ICKOFPLLCC}	T _{ICKOFPLLCC} Clock-capable clock input and OUTFF with PLL	XC7A100T	0.70	0.70	0.70	1.41	ns	
		XC7A200T	0.69	0.69	0.69	1.47	ns	

Notes:

- Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
- 2. PLL output jitter is already included in the timing calculation.

Table 40: Pin-to-Pin, Clock-to-Out using BUFIO

Symbol	Description		1.0V	0.9V	Units				
		-3	-2/-2L	-1	-2L				
SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, with BUFIO.									
T _{ICKOFCS}	Clock to out of I/O clock	5.01	5.61	6.64	7.34	ns			

Device Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 41: Global Clock Input Setup and Hold Without MMCM/PLL with ZHOLD DELAY on HR I/O Banks

	Description	Device					
Symbol				1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	
Input Setup and Hold	d Time Relative to Global Clock Input Sigr	nal for SSTL15	Standard.(1))			
T _{PSFD} / T _{PHFD}	Full delay (legacy delay or default delay)	XC7A100T	2.69/-0.46	2.89/-0.46	3.34/-0.46	5.66/-0.52	ns
global clock input and IFF ⁽²⁾ without MMCM/PLL with ZHOLD_DELAY on HR I/O banks		XC7A200T	3.03/-0.50	3.27/-0.50	3.79/–0.50	6.66/-0.53	ns

Notes:

- Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. IFF = Input flip-flop or latch
- 3. A zero "0" hold time listing indicates no hold time or a negative hold time.

Table 42: Clock-Capable Clock Input Setup and Hold With MMCM

	Description						
Symbol		Device		1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	İ
Input Setup and Hol	d Time Relative to Global Clock Input Sigr	nal for SSTL15	Standard.(1))			
T _{PSMMCMCC} / T _{PHMMCMCC} No delay clock-capable clock input and IFF ⁽²⁾ with MMCM	XC7A100T	2.44/-0.62	2.80/-0.62	3.36/-0.62	2.15/-0.49	ns	
	IFF ⁽²⁾ with MMCM	XC7A200T	2.57/-0.63	2.94/-0.63	3.52/-0.63	2.32/-0.53	ns

Notes:

- Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. IFF = Input flip-flop or latch
- 3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 43: Clock-Capable Clock Input Setup and Hold With PLL

	Description	ion Device					
Symbol				1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	
Input Setup and Hole	d Time Relative to Clock-Capable Clock Ir	put Signal for	SSTL15 Sta	ndard. ⁽¹⁾			
T _{PSPLLCC} /	No delay clock-capable clock input and	XC7A100T	2.78/-0.32	3.15/-0.32	3.78/-0.32	2.47/-0.60	ns
T _{PHPLLCC} IFF ⁽²⁾ with PLL	XC7A200T	2.91/-0.33	3.29/-0.33	3.94/-0.33	2.64/-0.63	ns	

- Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. IFF = Input flip-flop or latch
- 3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 44: Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO

Symbol	Description		1.0V	0.9V	Units			
		-3	-2/-2L	-1	-2L			
Input Setup and Hold Time Relative to a Forwarded Clock Input Pin Using BUFIO for SSTL15 Standard.								
T _{PSCS} /T _{PHCS}	Setup and hold of I/O clock	-0.38/1.31	-0.38/1.46	-0.38/1.76	-0.16/1.89	ns		

Table 45: Sample Window

		Speed Grade				
Symbol	Description	1.0V			0.9V	Units
		-3	-2/-2L	-1	-2L	
T _{SAMP}	Sampling error at receiver pins ⁽¹⁾	0.59	0.64	0.70	0.70	ns
T _{SAMP_BUFIO}	Sampling error at receiver pins using BUFIO(2)	0.35 0.40 0.46 0.46		0.46	ns	

- 1. This parameter indicates the total sampling error of the Artix-7 FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers' edges of operation. These measurements include:
 - CLK0 MMCM jitter
 - MMCM accuracy (phase offset)
 - MMCM phase shift resolution

These measurements do not include package or clock tree skew.

This parameter indicates the total sampling error of the Artix-7 FPGAs DDR input registers, measured across voltage, temperature, and
process. The characterization methodology uses the BUFIO clock network and IDELAY to capture the DDR input registers' edges of
operation. These measurements do not include package or clock tree skew.

Additional Package Parameter Guidelines

The parameters in this section provide the necessary values for calculating timing budgets for Artix-7 FPGA clock transmitter and receiver data-valid windows.

Table 46: Package Skew

Symbol	Description	Device	Package	Value	Units
T _{PKGSKEW}	Package skew ⁽¹⁾	XC7A100T	CSG324	113	ps
			FTG256	120	ps
			FGG484	144	ps
			FGG676	153	ps
		XC7A200T	SBG484	111	ps
			FBG484	109	ps
			FBG676	121	ps
			FFG1156	151	ps

- 1. These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest delay from die pad to ball.
- 2. Package delay information is available for these device/package combinations. This information can be used to deskew the package.

Table 54: GTP Transceiver Transmitter Switching Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units
F _{GTPTX}	Serial data rate range		0.500	_	F _{GTPMAX}	Gb/s
T _{RTX}	TX rise time	TX rise time 20%–80%		50	_	ps
T _{FTX}	TX fall time	20%-80%	_	50	_	ps
T _{LLSKEW}	TX lane-to-lane skew ⁽¹⁾	1	_	-	500	ps
V _{TXOOBVDPP}	Electrical idle amplitude		_	-	20	mV
T _{TXOOBTRANSITION}	Electrical idle transition time		_	-	140	ns
TJ _{6.6}	Total Jitter ⁽²⁾⁽³⁾	6.6 Gb/s	_	-	0.30	UI
DJ _{6.6}	Deterministic Jitter ⁽²⁾⁽³⁾	0.6 Gb/S	_	-	0.15	UI
TJ _{5.0}	Total Jitter ⁽²⁾⁽³⁾	5.0 Gb/s	_	-	0.30	UI
DJ _{5.0}	Deterministic Jitter ⁽²⁾⁽³⁾	5.0 Gb/S	-	-	0.15	UI
TJ _{4.25}	Total Jitter ⁽²⁾⁽³⁾	4.25 Gb/s	_	-	0.30	UI
DJ _{4.25}	Deterministic Jitter ⁽²⁾⁽³⁾	4.25 Gb/S	-	-	0.15	UI
TJ _{3.75}	Total Jitter ⁽²⁾⁽³⁾	2.75 Ch/a	-	-	0.30	UI
DJ _{3.75}	Deterministic Jitter ⁽²⁾⁽³⁾	3.75 Gb/s	_	-	0.15	UI
TJ _{3.2}	Total Jitter ⁽²⁾⁽³⁾	3.20 Gb/s ⁽⁴⁾	-	-	0.2	UI
DJ _{3.2}	Deterministic Jitter ⁽²⁾⁽³⁾	3.20 Gb/S(1)	-	-	0.1	UI
TJ _{3.2L}	Total Jitter ⁽²⁾⁽³⁾	3.20 Gb/s ⁽⁵⁾	-	-	0.32	UI
DJ _{3.2L}	Deterministic Jitter ⁽²⁾⁽³⁾	3.20 Gb/S(°)	-	-	0.16	UI
TJ _{2.5}	Total Jitter ⁽²⁾⁽³⁾	2.5 Gb/s ⁽⁶⁾	-	-	0.20	UI
DJ _{2.5}	Deterministic Jitter ⁽²⁾⁽³⁾	2.5 Gb/S(°)	-	-	0.08	UI
TJ _{1.25}	Total Jitter ⁽²⁾⁽³⁾	1.25 Gb/s ⁽⁷⁾	-	-	0.15	UI
DJ _{1.25}	Deterministic Jitter ⁽²⁾⁽³⁾	1.25 GD/S(*)	_	-	0.06	UI
TJ ₅₀₀	Total Jitter ⁽²⁾⁽³⁾	500 Mb/s	_	-	0.1	UI
DJ ₅₀₀	Deterministic Jitter ⁽²⁾⁽³⁾	SUU IVID/S	-	_	0.03	UI

- 1. Using same REFCLK input with TX phase alignment enabled for up to four consecutive transmitters (one fully populated GTP Quad).
- 2. Using PLL[0/1]_FBDIV = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
- 3. All jitter values are based on a bit-error ratio of 1e⁻¹².
- 4. PLL frequency at 3.2 GHz and TXOUT_DIV = 2.
- 5. PLL frequency at 1.6 GHz and TXOUT_DIV = 1.
- 6. PLL frequency at 2.5 GHz and TXOUT_DIV = 2.
- 7. PLL frequency at 2.5 GHz and TXOUT_DIV = 4.

Table 55: GTP Transceiver Receiver Switching Characteristics

Symbol	Desc	Description		Тур	Max	Units
F _{GTPRX}	Serial data rate	RX oversampler not enabled	0.500	_	F _{GTPMAX}	Gb/s
T _{RXELECIDLE}	Time for RXELECIDLE to respor	nd to loss or restoration of data	_	10	_	ns
RX _{OOBVDPP}	OOB detect threshold peak-to-pe	eak	60	_	150	mV
RX _{SST}	Receiver spread-spectrum tracking ⁽¹⁾	Modulated @ 33 KHz	-5000	-	5000	ppm
RX _{RL}	Run length (CID)		_	_	512	UI
RX _{PPMTOL}	Data/REFCLK PPM offset tolera	nce	-1250	_	1250	ppm
SJ Jitter Tolerance ⁽²⁾						
JT_SJ _{6.6}	Sinusoidal Jitter(3)	6.6 Gb/s	0.44	_	_	UI
JT_SJ _{5.0}	Sinusoidal Jitter ⁽³⁾	5.0 Gb/s	0.44	_	_	UI
JT_SJ _{4.25}	Sinusoidal Jitter ⁽³⁾	4.25 Gb/s	0.44	_	_	UI
JT_SJ _{3.75}	Sinusoidal Jitter(3)	3.75 Gb/s	0.44	_	_	UI
JT_SJ _{3.2}	Sinusoidal Jitter(3)	3.2 Gb/s ⁽⁴⁾	0.45	_	_	UI
JT_SJ _{3.2L}	Sinusoidal Jitter ⁽³⁾	3.2 Gb/s ⁽⁵⁾	0.45	_	_	UI
JT_SJ _{2.5}	Sinusoidal Jitter ⁽³⁾	2.5 Gb/s ⁽⁶⁾	0.5	_	_	UI
JT_SJ _{1.25}	Sinusoidal Jitter(3)	1.25 Gb/s ⁽⁷⁾	0.5	_	_	UI
JT_SJ ₅₀₀	Sinusoidal Jitter ⁽³⁾	500 Mb/s	0.4	_	_	UI
SJ Jitter Tolerance w	rith Stressed Eye ⁽²⁾					
JT_TJSE _{3.2}	Total litter with Ctropped Fig.(8)	3.2 Gb/s	0.70	_	_	UI
JT_TJSE _{6.6}	Total Jitter with Stressed Eye ⁽⁸⁾	6.6 Gb/s	0.70	-	_	UI
JT_SJSE _{3.2}	Sinusoidal Jitter with Stressed	3.2 Gb/s	0.1	-	_	UI
JT_SJSE _{6.6}	Eye ⁽⁸⁾	6.6 Gb/s	0.1	-	_	UI

- 1. Using RXOUT_DIV = 1, 2, and 4.
- 2. All jitter values are based on a bit error ratio of $1e^{-12}$.
- 3. The frequency of the injected sinusoidal jitter is 10 MHz.
- 4. PLL frequency at 3.2 GHz and RXOUT_DIV = 2.
- 5. PLL frequency at 1.6 GHz and RXOUT_DIV = 1.
- 6. PLL frequency at 2.5 GHz and RXOUT_DIV = 2.
- 7. PLL frequency at 2.5 GHz and RXOUT_DIV = 4.
- 8. Composite jitter.

GTP Transceiver Protocol Jitter Characteristics

For Table 56 through Table 60, the <u>UG482</u>: 7 Series FPGAs GTP Transceiver User Guide contains recommended settings for optimal usage of protocol specific characteristics.

Table 56: Gigabit Ethernet Protocol Characteristics

Description Line Rate (Mb/s)		Min	Max	Units		
Gigabit Ethernet Transmitter Jitter Generation						
Total transmitter jitter (T_TJ)	1250	-	0.24	UI		
Gigabit Ethernet Receiver High Frequency Jitter Tolerance						
Total receiver jitter tolerance	1250	0.749	_	UI		

Table 57: XAUI Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units		
XAUI Transmitter Jitter Generation						
Total transmitter jitter (T_TJ)	3125	_	0.35	UI		
XAUI Receiver High Frequency Jitter Tolerance						
Total receiver jitter tolerance	3125	0.65	_	UI		

Table 58: PCI Express Protocol Characteristics(1)

Standard	Description	Min	Max	Units			
PCI Express Transmitter Jitter Generation							
PCI Express Gen 1	Total transmitter jitter	2500	_	0.25	UI		
PCI Express Gen 2	Total transmitter jitter	_	0.25	UI			
PCI Express Receiver High	Frequency Jitter Tolerance						
PCI Express Gen 1	Total receiver jitter tolerance	2500	0.65	_	UI		
PCI Express Gen 2 ⁽²⁾	Receiver inherent timing error	5000	0.40	_	UI		
FOI Expless Gell 2(E)	Receiver inherent deterministic timing error	3000	0.30	_	UI		

Notes:

- 1. Tested per card electromechanical (CEM) methodology.
- 2. Using common REFCLK.

Table 59: CEI-6G Protocol Characteristics

Description	Line Rate (Mb/s) Interface		Min	Max	Units
CEI-6G Transmitter Jitter Generation					
Total transmitter jitter ⁽¹⁾	4976–6375	CEI-6G-SR	-	0.3	UI
CEI-6G Receiver High Frequency Jitter Tolerance					
Total receiver jitter tolerance ⁽¹⁾	4976–6375	CEI-6G-SR	0.6	-	UI

Notes:

1. Tested at most commonly used line rate of 6250 Mb/s using 390.625 MHz reference clock.

XADC Specifications

Table 62: XADC Specifications

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
$V_{CCADC} = 1.8V \pm 5\%, V_{REFP} = 1$.25V, V _{REFN}	= 0V, ADCCLK = 26 MHz, $T_j = -40$ °C to 100°C,	Typical va	lues at 7	_j =+40°C	
ADC Accuracy ⁽¹⁾						
Resolution			12	_	_	Bits
Integral Nonlinearity ⁽²⁾	INL		_	-	±2	LSBs
Differential Nonlinearity	DNL	No missing codes, guaranteed monotonic	_	_	±1	LSBs
Offset Error	1	Unipolar operation	_	_	±8	LSBs
		Bipolar operation	_	_	±4	LSBs
Gain Error			_	_	±0.5	%
Offset Matching			_	_	4	LSBs
Gain Matching			_	_	0.3	%
Sample Rate			0.1	_	1	MS/s
Signal to Noise Ratio(2)	SNR	F _{SAMPLE} = 500KS/s, F _{IN} = 20KHz	60	_	_	dB
RMS Code Noise		External 1.25V reference	_	_	2	LSBs
		On-chip reference	_	3	_	LSBs
Total Harmonic Distortion(2)	THD	F _{SAMPLE} = 500KS/s, F _{IN} = 20KHz	70	-	_	dB
ADC Accuracy at Extended To	emperatures	s (-55°C to 125°C)			1	
Resolution			10	_	_	Bits
Integral Nonlinearity ⁽²⁾	INL		_	_	±1	LSB
Differential Nonlinearity	DNL	No missing codes, guaranteed monotonic	_	_	±1	(at 10 bits)
Analog Inputs ⁽³⁾						
ADC Input Ranges		Unipolar operation	0	_	1	V
		Bipolar operation	-0.5	_	+0.5	V
		Unipolar common mode range (FS input)	0	_	+0.5	V
		Bipolar common mode range (FS input)	+0.5	_	+0.6	V
Maximum External Channel Inpu	ut Ranges	Adjacent analog channels set within these ranges should not corrupt measurements on adjacent channels	-0.1	_	V _{CCADC}	V
Auxiliary Channel Full Resolution Bandwidth	FRBW		250	-	_	KHz
On-Chip Sensors	1				1	
Temperature Sensor Error		$T_j = -40$ °C to 100°C	_	_	±4	°C
		$T_j = -55^{\circ}\text{C to } +125^{\circ}\text{C}$	_	-	±6	°C
Supply Sensor Error		Measurement range of V_{CCAUX} 1.8V ±5% $T_j = -40^{\circ}\text{C}$ to +100°C	_	-	±1	%
		Measurement range of V_{CCAUX} 1.8V ±5% $T_j = -55^{\circ}C$ to +125°C	-	-	±2	%
Conversion Rate ⁽⁴⁾			ıt		ч	
Conversion Time - Continuous	t _{CONV}	Number of ADCCLK cycles	26	_	32	Cycles
Conversion Time - Event	t _{CONV}	Number of CLK cycles	_	_	21	Cycles
DRP Clock Frequency	DCLK	DRP clock frequency	8	_	250	MHz
ADC Clock Frequency	ADCCLK	Derived from DCLK	1	_	26	MHz

Table 62: XADC Specifications (Cont'd)

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
DCLK Duty Cycle			40	_	60	%
XADC Reference ⁽⁵⁾						
External Reference	V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V
On-Chip Reference		Ground V_{REFP} pin to AGND, $T_j = -40^{\circ}\text{C}$ to 100°C	1.2375	1.25	1.2625	V

Notes:

- Offset and gain errors are removed by enabling the XADC automatic gain calibration feature. The values are specified for when this feature is enabled.
- 2. Only specified for BitGen option XADCEnhancedLinearity = ON.
- 3. See the ADC chapter in UG480: 7 Series FPGAs XADC User Guide for a detailed description.
- 4. See the Timing chapter in UG480: 7 Series FPGAs XADC User Guide for a detailed description.
- 5. Any variation in the reference voltage from the nominal V_{REFP} = 1.25V and V_{REFN} = 0V will result in a deviation from the ideal transfer function. This also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external ratiometric type applications allowing reference to vary by ±4% is permitted. On-chip reference variation is ±1%.

Configuration Switching Characteristics

Table 63: Configuration Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Power-up Timing Cha	aracteristics					
T _{PL} ⁽¹⁾	Program latency	5.00	5.00	5.00	5.00	ms, Max
T _{POR} ⁽¹⁾	Power-on reset (50 ms ramp rate time)	10/50	10/50	10/50	10/50	ms, Min/Max
	Power-on reset (1 ms ramp rate time)	10/35	10/35	10/35	10/35	ms, Min/Max
T _{PROGRAM}	Program pulse width	250.00	250.00	250.00	250.00	ns, Min
CCLK Output (Maste	r Mode)					
T _{ICCK}	Master CCLK output delay	150.00	150.00	150.00	150.00	ns, Min
T _{MCCKL}	Master CCLK clock Low time duty cycle	40/60	40/60	40/60	40/60	%, Min/Max
T _{MCCKH}	Master CCLK clock High time duty cycle	40/60	40/60	40/60	40/60	%, Min/Max
F _{MCCK}	Master CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max
	Master CCLK frequency for AES encrypted x16	50.00	50.00	50.00	35.00	MHz, Max
F _{MCCK_START}	Master CCLK frequency at start of configuration	3.00	3.00	3.00	3.00	MHz, Typ
F _{MCCKTOL}	Frequency tolerance, master mode with respect to nominal CCLK	±50	±50	±50	±50	%, Max
CCLK Input (Slave M	odes)		l	1	1	
T _{SCCKL}	Slave CCLK clock minimum Low time	2.50	2.50	2.50	2.50	ns, Min
T _{SCCKH}	Slave CCLK clock minimum High time	2.50	2.50	2.50	2.50	ns, Min
F _{SCCK}	Slave CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max
EMCCLK Input (Mast	er Mode)		1	1	1	1
T _{EMCCKL}	External master CCLK Low time	2.50	2.50	2.50	2.50	ns, Min
T _{EMCCKH}	External master CCLK High time	2.50	2.50	2.50	2.50	ns, Min
F _{EMCCK}	External master CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max

Revision History

The following table shows the revision history for this document:

Date	Version	Description
09/26/11	1.0	Initial Xilinx release.
11/07/11	1.1	Revised the V _{OCM} specification in Table 11. Updated the AC Switching Characteristics based upon the ISE 13.3 software v1.02 speed specification throughout document including Table 12 and Table 13. Added MMCM_T _{FBDELAY} while adding MMCM_ to the symbol names of a few specifications in Table 34 and PLL to the symbol names in Table 35. In Table 36 through Table 43, updated the pin-to-pin description with the SSTL15 standard. Updated units in Table 46.
02/13/12	1.2	Updated the Artix-7 family of devices listed throughout the entire data sheet. Updated the AC Switching Characteristics based upon the ISE 13.4 software v1.03 for the -3, -2, and -1 speed grades and v1.00 for the -2L speed grade. Updated summary description on page 1. In Table 2, revised V _{CCO} for the 3.3V HR I/O banks and updated T _j . Updated the notes in Table 5. Added MGTAVCC and MGTAVTT power supply ramp times to Table 7. Rearranged Table 8, added Mobile_DDR, HSTL_I_18, HSTL_II_18, HSUL_12, SSTL135_R, SSTL15_R, and SSTL12 and removed DIFF_SSTL135, DIFF_SSTL18_I, DIFF_SSTL18_II, DIFF_HSTL_I, and DIFF_HSTL_II. Added Table 9 and Table 10. Revised the specifications in Table 11. Revised V _{IN} in Table 47. Updated the eFUSE Programming Conditions section and removed the endurance table. Added the table. Revised F _{TXIN} and F _{RXIN} in Table 53. Revised I _{CCADC} and updated Note 1 in Table 62. Revised DDR LVDS transmitter data width in Table 63. Updated Note 1 in Table 33.
06/01/12	1.3	Reorganized entire data sheet including adding Table 40 and Table 44. Updated T_{SOL} in Table 1. Updated T_{BATT} and added T_{IN_TERM} to Table 3. Updated Power-On/Off Power Supply Sequencing section with regards to GTP transceivers. In Table 8, updated many parameters including SSTL135 and SSTL135_R. Removed V_{OX} column and added DIFF_HSUL_12 to Table 10. Updated V_{OL} in Table 11. Updated Table 14 and removed notes 2 and 3. Updated Table 15. Updated the AC Switching Characteristics based upon the ISE 14.1 software v1.03 for the -3, -2, -2L (1.0V), -1, and v1.01 for the -2L (0.9V) speed specifications throughout the document. In Table 27, updated Reset Delays section including Note 10 and Note 11. In Table 53, replaced V_{TXOUT} with V_{GLK} . Updated many of the XADC specifications in Table 62 and added Note 2. Updated and moved V_{YMM} and Table 35.

Date	Version	Description
09/20/12	1.4	In Table 1, updated the descriptions, changed V _{IN} and Note 2, and added Note 4. In Table 2, changed descriptions and notes. Updated parameters in Table 3. Added Table 4. Revised the Power-On/Off Power Supply Sequencing section. Updated standards and specifications in Table 8, Table 9, and Table 10. Removed the XC7A350T device from data sheet.
		Updated the AC Switching Characteristics section to the ISE 14.2 speed specifications throughout the document. Updated the IOB Pad Input/Output/3-State discussion and changed Table 17 by adding T _{IOIBUFDISABLE} . Removed many of the combinatorial delay specifications and T _{CINCK} /T _{CKCIN} from Table 24.Changed F _{PFDMAX} conditions in Table 34 and Table 35. Updated the GTP Transceiver Specifications section, moved the GTP Transceiver DC characteristics section to the overall DC Characteristics section, and added the GTP Transceiver Protocol Jitter Characteristics section. In Table 62, updated Note 1. In Table 63, updated T _{POR} .
02/01/13	1.5	Updated the AC Switching Characteristics based upon the 14.4/2012.4 device pack for ISE 14.4 and Vivado 2012.4, both at v1.07 for the -3, -2, -2L (1.0V), -1 speed specifications, and v1.05 for the -2L (0.9V) speed specifications throughout the document. Production changes to Table 12 and Table 13 for -3, -2, -2L (1.0V), -1 speed specifications.
		Revised I _{DCIN} and I _{DCOUT} and added Note 5 in Table 1. Added Note 2 to Table 2. Updated Table 5. Added minimum current specifications to Table 6. Removed SSTL12 and HSTL_I_12 from Table 8. Removed DIFF_SSTL12 from Table 10. Updated Table 12. Added a 2:1 memory controller section to Table 15. Updated Note 1 in Table 31. Revised Table 33. Updated Note 1 and Note 2 in Table 46.
		Updated D _{VPPIN} in Table 47. Updated V _{IDIFF} in Table 48. Removed T _{LOCK} and T _{PHASE} and revised F _{GCLK} in Table 51. Updated T _{DLOCK} in Table 52. Updated Table 53. In Table 54, updated T _{RTX} , T _{FTX} , V _{TXOOBVDPP} , and revised Note 1 through Note 7. In Table 55, updated RX _{SST} and RX _{PPMTOL} and revised Note 4 through Note 7. In Table 60, revised and added Note 1.
		Revised the maximum external channel input ranges in Table 62. In Table 63, revised F_{MCCK} and added the Internal Configuration Access Port section.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.