
E·XFL

AMD Xilinx - XC7A100T-1FGG676C Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	7925
Number of Logic Elements/Cells	101440
Total RAM Bits	4976640
Number of I/O	300
Number of Gates	
Voltage - Supply	0.95V ~ 1.05V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7a100t-1fgg676c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1: Absolute Maximum Ratings⁽¹⁾ (Cont'd)

Symbol	Description	Min	Max	Units
Temperature				
T _{STG}	Storage temperature (ambient)	-65	150	°C
т	Maximum soldering temperature for Pb/Sn component bodies (6)	-	+220	°C
I SOL	Maximum soldering temperature for Pb-free component bodies (6)	-	+260	°C
Tj	Maximum junction temperature ⁽⁶⁾	1	+125	°C

Notes:

- 2. The lower absolute voltage specification always applies.
- 3. For I/O operation, refer to UG471: 7 Series FPGAs SelectIO Resources User Guide.
- 4. The maximum limit applied to DC signals.
- 5. For maximum undershoot and overshoot AC specifications, see Table 4.
- 6. For soldering guidelines and thermal considerations, see UG475: 7 Series FPGA Packaging and Pinout Specification.

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾

Symbol	Description		Тур	Max	Units
FPGA Logic	· · · · · ·				<u>.</u>
M	Internal supply voltage	0.95	1.00	1.05	V
V _{CCINT}	For -2L (0.9V) devices: internal supply voltage	0.87	0.90	0.93	V
V _{CCAUX}	Auxiliary supply voltage	1.71	1.80	1.89	V
V _{CCBRAM}	Block RAM supply voltage	0.95	1.00	1.05	V
V _{CCO} ⁽³⁾⁽⁴⁾	Supply voltage for 3.3V HR I/O banks	1.14	-	3.465	V
V (5)	I/O input voltage	-0.20	-	V _{CCO} + 0.20	V
V _{IN} ⁽⁵⁾	I/O input voltage for V _{REF} and differential I/O standards		-	2.625	V
I _{IN} ⁽⁶⁾	Maximum current through any pin in a powered or unpowered bank when forward biasing the clamp diode.		-	10	mA
V _{CCBATT} ⁽⁷⁾	Battery voltage	1.0	-	1.89	V
GTP Transceiv	ver				1
V _{MGTAVCC} ⁽⁸⁾⁽⁹⁾	Analog supply voltage for the GTP transmitter and receiver circuits	0.97	1.0	1.03	V
V _{MGTAVTT} ⁽⁸⁾⁽⁹⁾	Analog supply voltage for the CTD transmitter and receiver termination		1.2	1.23	V
XADC					
V _{CCADC}	XADC supply relative to GNDADC	1.71	1.80	1.89	V
V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V

^{1.} Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

Table 3: DC Characteristics Over Recommended Operating Conditions (Cont'd)

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
n	Temperature diode ideality factor	-	1.010	-	-
r	Temperature diode series resistance	_	2	_	Ω

Notes:

1. Typical values are specified at nominal voltage, 25°C.

2. This measurement represents the die capacitance at the pad, not including the package.

3. Maximum value specified for worst case process at 25°C.

4. Termination resistance to a $V_{CCO}/2$ level.

Table 4: VIN Maximum Allowed AC Voltage Overshoot and Undershoot for 3.3V HR I/O Banks⁽¹⁾

AC Voltage Overshoot	% of UI @-40°C to 100°C	AC Voltage Undershoot	% of UI @-40°C to 100°C
V _{CCO} + 0.40	100	-0.40	100
V _{CCO} + 0.45	100	-0.45	61.7
V _{CCO} + 0.50	100	-0.50	25.8
V _{CCO} + 0.55	100	-0.55	11.0
V _{CCO} + 0.60	46.6	-0.60	4.77
V _{CCO} + 0.65	21.2	-0.65	2.10
V _{CCO} + 0.70	9.75	-0.70	0.94
V _{CCO} + 0.75	4.55	-0.75	0.43
V _{CCO} + 0.80	2.15	-0.80	0.20
V _{CCO} + 0.85	1.02	-0.85	0.09
V _{CCO} + 0.90	0.49	-0.90	0.04
V _{CCO} + 0.95	0.24	-0.95	0.02

Notes:

1. A total of 200 mA per bank should not be exceeded.

Table 5: Typical Quiescent Supply Current

Symbol	Description	Device	1.0V			0.9V	Units
			-3	-2/-2L	-1	-2L	
ICCINTQ	Quiescent V _{CCINT} supply current	XC7A100T	155	155	155	108	mA
		XC7A200T	328	328	328	232	mA
I _{CCOQ} Quiescent V _{CCO} supply curren	Quiescent V _{CCO} supply current	XC7A100T	4	4	4	4	mA
		XC7A200T	5	5	5	5	mA
ICCAUXQ	Quiescent V _{CCAUX} supply current	XC7A100T	36	36	36	36	mA
		XC7A200T	73	73	73	73	mA
ICCBRAMQ	Quiescent V _{CCBRAM} supply current	XC7A100T	4	4	4	4	mA
		XC7A200T	11	11	11	11	mA

Notes:

1. Typical values are specified at nominal voltage, 85°C junction temperature (T_j) with single-ended SelectIO resources.

2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.

3. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power consumption for conditions other than those specified.

Power-On/Off Power Supply Sequencing

The recommended power-on sequence is V_{CCINT}, V_{CCBRAM}, V_{CCAUX}, and V_{CCO} to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCINT} and V_{CCBRAM} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If V_{CCAUX} and V_{CCO} have the same recommended voltage levels then both can be powered by the same powered by the same supply and ramped simultaneously.

For V_{CCO} voltages of 3.3V in HR I/O banks and configuration bank 0:

- The voltage difference between V_{CCO} and V_{CCAUX} must not exceed 2.625V for longer than T_{VCCO2VCCAUX} for each power-on/off cycle to maintain device reliability levels.
- The T_{VCCO2VCCAUX} time can be allocated in any percentage between the power-on and power-off ramps.

The recommended power-on sequence to achieve minimum current draw for the GTP transceivers is V_{CCINT} , $V_{MGTAVCC}$, $V_{MGTAVCC}$, V_{CCINT} , $V_{MGTAVCT}$. There is no recommended sequencing for $V_{MGTVCCAUX}$. Both $V_{MGTAVCC}$ and V_{CCINT} can be ramped simultaneously. The recommended power-off sequence is the reverse of the power-on sequence to achieve minimum current draw.

If these recommended sequences are not met, current drawn from V_{MGTAVTT} can be higher than specifications during power-up and power-down.

- When V_{MGTAVTT} is powered before V_{MGTAVCC} and V_{MGTAVTT} V_{MGTAVCC} > 150 mV and V_{MGTAVCC} < 0.7V, the V_{MGTAVTT} current draw can increase by 460 mA per transceiver during V_{MGTAVCC} ramp up. The duration of the current draw can be up to 0.3 x T_{MGTAVCC} (ramp time from GND to 90% of V_{MGTAVCC}). The reverse is true for power-down.
- When V_{MGTAVTT} is powered before V_{CCINT} and V_{MGTAVTT} V_{CCINT} > 150 mV and V_{CCINT} < 0.7V, the V_{MGTAVTT} current draw can increase by 50 mA per transceiver during V_{CCINT} ramp up. The duration of the current draw can be up to 0.3 x T_{VCCINT} (ramp time from GND to 90% of V_{CCINT}). The reverse is true for power-down.

DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum V_{CCO} with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

I/O Standard	V _{IL}		V _I	V _{IH}		V _{OH}	I _{OL}	I _{OH}
i/O Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
HSTL_I	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	8.00	-8.00
HSTL_I_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	8.00	-8.00
HSTL_II	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	16.00	-16.00
HSTL_II_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	16.00	-16.00
HSUL_12	-0.300	V _{REF} – 0.130	V _{REF} + 0.130	V _{CCO} + 0.300	20% V _{CCO}	80% V _{CCO}	0.10	-0.10
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	Note 3	Note 3
LVCMOS15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	Note 4	Note 4
LVCMOS18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} – 0.450	Note 5	Note 5
LVCMOS25	-0.300	0.7	1.700	V _{CCO} + 0.300	0.400	$V_{CCO} - 0.400$	Note 4	Note 4
LVCMOS33	-0.300	0.8	2.000	3.450	0.400	$V_{CCO} - 0.400$	Note 4	Note 4
LVTTL	-0.300	0.8	2.000	3.450	0.400	2.400	Note 5	Note 5
MOBILE_DDR	-0.300	20% V _{CCO}	80% V _{CCO}	V _{CCO} + 0.300	10% V _{CCO}	90% V _{CCO}	0.10	-0.10
PCI33_3	-0.500	30% V _{CCO}	50% V _{CCO}	V _{CCO} + 0.500	10% V _{CCO}	90% V _{CCO}	1.50	-0.50
SSTL135	-0.300	V _{REF} – 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2-0.150	V _{CCO} /2 + 0.150	13.00	-13.00
SSTL135_R	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	8.90	-8.90
SSTL15	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	13.00	-13.00
SSTL15_R	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2-0.175	V _{CCO} /2 + 0.175	8.90	-8.90
SSTL18_I	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	V _{CCO} /2-0.470	$V_{CCO}/2 + 0.470$	8.00	-8.00
SSTL18_II	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	$V_{CCO}/2 - 0.600$	$V_{CCO}/2 + 0.600$	13.40	-13.40

Table 8 [.]	SelectIO D	C Input and	Output	Levels ⁽¹⁾⁽²⁾
		ο πιραι απα	Juipui	

Notes:

1. Tested according to relevant specifications.

- 2. 3.3V and 2.5V standards are only supported in 3.3V I/O banks.
- 3. Supported drive strengths of 4, 8, or 12 mA in HR I/O banks.
- 4. Supported drive strengths of 4, 8, 12, or 16 mA in HR I/O banks.

5. Supported drive strengths of 4, 8, 12, 16, or 24 mA in HR I/O banks.

6. For detailed interface specific DC voltage levels, see UG471: 7 Series FPGAs SelectIO Resources User Guide.

LVDS DC Specifications (LVDS_25)

See <u>UG471</u>: 7 Series FPGAs SelectIO Resources User Guide for more information on the LVDS_25 standard in the HR I/O banks.

Table	11:	LVDS_	_25	DC	Specifications
-------	-----	-------	-----	----	----------------

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply Voltage		2.375	2.500	2.625	V
V _{OH}	Output High Voltage for Q and \overline{Q}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	-	-	1.675	V
V _{OL}	Output Low Voltage for Q and \overline{Q}	$R_T = 100 \Omega$ across Q and \overline{Q} signals	0.700	-	-	V
V _{ODIFF}	Differential Output Voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	247	350	600	mV
V _{OCM}	Output Common-Mode Voltage $R_T = 100 \Omega$ across Q and \overline{Q} signals		1.000	1.250	1.425	V
V _{IDIFF}	Differential Input Voltage $(Q - \overline{Q}), Q = High (\overline{Q} - Q), \overline{Q} = High$			350	600	mV
V _{ICM}	Input Common-Mode Voltage			1.200	1.425	V

AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications in v1.07 from the 14.4/2012.4 device pack for ISE® Design Suite14.4 and Vivado® Design Suite 2012.4 for the -3, -2, -2L (1.0V), and -1 speed grades and v1.05 from the 14.4/2012.4 device pack for the -2L (0.9V) speed grade.

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production Product Specification

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Testing of AC Switching Characteristics

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Artix-7 FPGAs.

Speed Grade Designations

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 12 correlates the current status of each Artix-7 device on a per speed grade basis.

Table 12: Artix-7 Device Speed Grade Designations

Device	Speed Grade Designations						
Device	Advance	Preliminary	Production				
XC7A100T	-2L (0.9V)		-3, -2, -2L (1.0V), -1				
XC7A200T	-2L (0.9V)		-3, -2, -2L (1.0V), -1				

Production Silicon and ISE Software Status

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases.

Table 13 lists the production released Artix-7 device, speed grade, and the minimum corresponding supported speed specification version and ISE software revisions. The ISE software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Table 13: Artix-7 Device Production Software and Speed Specification Release

	Speed Grade					
Device		0.9V				
	-3	-2/-2L	-1	-2L		
XC7A100T	ISE 14.4 and Vivad	ISE 14.4 and Vivado 2012.4 with the 14.4/2012.4 device pack v1.07				
XC7A200T	ISE 14.4 and Vivad	ISE 14.4 and Vivado 2012.4 with the 14.4/2012.4 device pack v1.07				

Notes:

1. Blank entries indicate a device and/or speed grade in advance or preliminary status.

www.xilinx.com

Performance Characteristics

This section provides the performance characteristics of some common functions and designs implemented in Artix-7 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the AC Switching Characteristics, page 9.

Table 14: Networking Applications Interface Performances

Description		1.0V	0.9V	Units	
	-3	-2/-2L	-1	-2L	
SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8)	680	680	600	600	Mb/s
DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 14)	1250	1250	950	950	Mb/s
SDR LVDS receiver (SFI-4.1) ⁽¹⁾	680	680	600	600	Mb/s
DDR LVDS receiver (SPI-4.2) ⁽¹⁾	1250	1250	950	950	Mb/s

Notes:

1. LVDS receivers are typically bounded with certain applications where specific dynamic phase-alignment (DPA) algorithms dominate deterministic performance.

Table 15: Maximum Physical Interface (PHY) Rate for Memory Interfaces⁽¹⁾⁽²⁾

		Speed Grade					
Memory Standard		1.0V					
	-3	-2/-2L	-1	-2L			
4:1 Memory Controllers							
DDR3	1066	800	800	800	Mb/s		
DDR3L	800	800	667	667	Mb/s		
DDR2	800	800	667	667	Mb/s		
LPDDR2	667	667	533	533	Mb/s		
2:1 Memory Controllers		•	<u>.</u>	<u>.</u>			
DDR3	800	700	620	620	Mb/s		
DDR3L	800	700	620	620	Mb/s		
DDR2	800	700	620	620	Mb/s		

Notes:

1. V_{REF} tracking is required. For more information, see UG586, 7 Series FPGAs Memory Interface Solutions User Guide.

2. When using the internal V_{REF} the maximum data rate is 800 Mb/s (400 MHz).

Input/Output Logic Switching Characteristics

Table 18: ILOGIC Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Setup/Hold				·		
T _{ICE1CK} /T _{ICKCE1}	CE1 pin setup/hold with respect to CLK	0.48/0.02	0.54/0.02	0.76/0.02	0.40/0.07	ns
T _{ISRCK} /T _{ICKSR}	SR pin setup/hold with respect to CLK	0.60/0.01	0.70/0.01	1.13/0.01	0.88/-0.35	ns
T _{IDOCK} /T _{IOCKD}	D pin setup/hold with respect to CLK without Delay	0.01/0.27	0.01/0.29	0.01/0.33	0.01/0.33	ns
TIDOCKD/TIOCKDD	DDLY pin setup/hold with respect to CLK (using IDELAY)	0.02/0.27	0.02/0.29	0.02/0.33	0.01/0.33	ns
Combinatorial	-	1	1			I
T _{IDI}	D pin to O pin propagation delay, no Delay	0.11	0.11	0.13	0.14	ns
T _{IDID}	DDLY pin to O pin propagation delay (using IDELAY)	0.11	0.12	0.14	0.15	ns
Sequential Delays	S		ľ			
T _{IDLO}	D pin to Q1 pin using flip-flop as a latch without Delay	0.41	0.44	0.51	0.54	ns
T _{IDLOD}	DDLY pin to Q1 pin using flip-flop as a latch (using IDELAY)	0.41	0.44	0.51	0.55	ns
T _{ICKQ}	CLK to Q outputs	0.53	0.57	0.66	0.71	ns
T _{RQ_ILOGIC}	SR pin to OQ/TQ out	0.96	1.08	1.32	1.32	ns
T _{GSRQ_ILOGIC}	Global set/reset to Q outputs	7.60	7.60	10.51	11.39	ns
Set/Reset						
T _{RPW_ILOGIC}	Minimum pulse width, SR inputs	0.61	0.72	0.72	0.68	ns, Min

Table 19: OLOGIC Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Setup/Hold	·					
T _{ODCK} /T _{OCKD}	D1/D2 pins setup/hold with respect to CLK	0.67/-0.11	0.71/-0.11	0.84/0.11	0.60/0.18	ns
T _{OOCECK} /T _{OCKOCE}	OCE pin setup/hold with respect to CLK	0.32/0.58	0.34/0.58	0.51/0.58	0.21/-0.10	ns
T _{OSRCK} /T _{OCKSR}	SR pin setup/hold with respect to CLK	0.37/0.21	0.44/0.21	0.80/0.21	0.62/-0.25	ns
Т _{отск} /Т _{оскт}	T1/T2 pins setup/hold with respect to CLK	0.69/0.14	0.73/-0.14	0.89/-0.14	0.60/-0.18	ns
T _{OTCECK} /T _{OCKTCE}	TCE pin setup/hold with respect to CLK	0.32/0.01	0.34/0.01	0.51/0.01	0.22/-0.10	ns
Combinatorial						
T _{ODQ}	D1 to OQ out or T1 to TQ out	0.83	0.96	1.16	1.36	ns
Sequential Delays		•	•	•	•	•
Т _{ОСКQ}	CLK to OQ/TQ out	0.47	0.49	0.56	0.63	ns
T _{RQ_OLOGIC}	SR pin to OQ/TQ out	0.72	0.80	0.95	1.12	ns
T _{GSRQ_OLOGIC}	Global set/reset to Q outputs	7.60	7.60	10.51	11.39	ns
Set/Reset						
T _{RPW_OLOGIC}	Minimum pulse width, SR inputs	0.64	0.74	0.74	0.68	ns, Min

www.xilinx.com

Input Serializer/Deserializer Switching Characteristics

Table 20: ISERDES Switching Characteristics

		Speed Grade				
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Setup/Hold for Control Lines						
TISCCK_BITSLIP/ TISCKC_BITSLIP	BITSLIP pin setup/hold with respect to CLKDIV	0.01/0.14	0.02/0.15	0.02/0.17	0.02/0.21	ns
T _{ISCCK_CE} / T _{ISCKC_CE} ⁽²⁾	CE pin setup/hold with respect to CLK (for CE1)	0.45/-0.01	0.50/-0.01	0.72/-0.01	0.35/-0.11	ns
T _{ISCCK_CE2} / T _{ISCKC_CE2} ⁽²⁾	CE pin setup/hold with respect to CLKDIV (for CE2)	-0.10/0.33	-0.10/0.36	-0.10/0.40	-0.17/0.40	ns
Setup/Hold for Data Lines						
T _{ISDCK_D} /T _{ISCKD_D}	D pin setup/hold with respect to CLK	-0.02/0.12	-0.02/0.14	-0.02/0.17	-0.04/0.19	ns
TISDCK_DDLY /TISCKD_DDLY	DDLY pin setup/hold with respect to CLK (using IDELAY) ⁽¹⁾	-0.02/0.12	-0.02/0.14	-0.02/0.17	-0.03/0.19	ns
TISDCK_D_DDR /TISCKD_D_DDR	D pin setup/hold with respect to CLK at DDR mode	-0.02/0.12	-0.02/0.14	-0.02/0.17	-0.04/0.19	ns
TISDCK_DDLY_DDR/ TISCKD_DDLY_DDR	D pin setup/hold with respect to CLK at DDR mode (using IDELAY) ⁽¹⁾	0.12/0.12	0.14/0.14	0.17/0.17	0.19/0.19	ns
Sequential Delays	•	- <u>!</u>				•
T _{ISCKO_Q}	CLKDIV to out at Q pin	0.53	0.54	0.66	0.67	ns
Propagation Delays	·					
T _{ISDO_DO}	D input to DO output pin	0.11	0.11	0.13	0.14	ns

Notes:

1. Recorded at 0 tap value.

2. T_{ISCCK_CE2} and T_{ISCKC_CE2} are reported as T_{ISCCK_CE}/T_{ISCKC_CE} in TRACE report.

Output Serializer/Deserializer Switching Characteristics

Table 21: OSERDES Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
	-	-3	-2/-2L	-1	-2L	
Setup/Hold	·					
T _{OSDCK_D} /T _{OSCKD_D}	D input setup/hold with respect to CLKDIV	0.42/0.03	0.45/0.03	0.63/0.03	0.44/-0.25	ns
T _{OSDCK_T} /T _{OSCKD_T} ⁽¹⁾	T input setup/hold with respect to CLK	0.69/0.13	0.73/-0.13	0.88/-0.13	0.60/-0.25	ns
T _{OSDCK_T2} /T _{OSCKD_T2} ⁽¹⁾	T input setup/hold with respect to CLKDIV	0.31/-0.13	0.34/-0.13	0.39/-0.13	0.46/-0.25	ns
T _{OSCCK_OCE} /T _{OSCKC_OCE}	OCE input setup/hold with respect to CLK	0.32/0.58	0.34/0.58	0.51/0.58	0.21/-0.15	ns
T _{OSCCK_S}	SR (reset) input setup with respect to CLKDIV	0.47	0.52	0.85	0.70	ns
T _{OSCCK_TCE} /T _{OSCKC_TCE}	TCE input setup/hold with respect to CLK	0.32/0.01	0.34/0.01	0.51/0.01	0.22/-0.15	ns
Sequential Delays						
T _{OSCKO_OQ}	Clock to out from CLK to OQ	0.40	0.42	0.48	0.54	ns
Т _{ОSCKO_TQ}	Clock to out from CLK to TQ	0.47	0.49	0.56	0.63	ns
Combinatorial			1			
T _{OSDO_TTQ}	T input to TQ Out	0.83	0.92	1.11	1.18	ns

Notes:

1. $T_{OSDCK_{T2}}$ and $T_{OSCKD_{T2}}$ are reported as $T_{OSDCK_{T}}/T_{OSCKD_{T}}$ in TRACE report.

Input/Output Delay Switching Characteristics

Table 22: Input/Output Delay Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
IDELAYCTRL						
T _{DLYCCO_RDY}	Reset to ready for IDELAYCTRL	3.67	3.67	3.67	3.22	μs
F _{IDELAYCTRL_REF}	Attribute REFCLK frequency = 200.00 ⁽¹⁾	200.00	200.00	200.00	200.00	MHz
	Attribute REFCLK frequency = 300.00 ⁽¹⁾	300.00	300.00	N/A	N/A	MHz
IDELAYCTRL_REF_PRECISION	REFCLK precision	±10	±10	±10	±10	MHz
T _{IDELAYCTRL_RPW}	Minimum Reset pulse width	59.28	59.28	59.28	52.00	ns
IDELAY	1	1	I		I	
TIDELAYRESOLUTION	IDELAY chain delay resolution		1/(32 x 2	2 x F _{REF})		ps
	Pattern dependent period jitter in delay chain for clock pattern. ⁽²⁾	0	0	0	0	ps per tap
T _{IDELAYPAT_JIT}	Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) ⁽³⁾	±5	±5	±5	±5	ps per tap
	Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) ⁽⁴⁾	±9	±9	±9	±9	ps per tap
T _{IDELAY_CLK_MAX}	Maximum frequency of CLK input to IDELAY	680.00	680.00	600.00	520.00	MHz
TIDCCK_CE / TIDCKC_CE	CE pin setup/hold with respect to C for IDELAY	0.12/0.11	0.16/0.13	0.21/0.16	0.14/0.16	ns
TIDCCK_INC/ TIDCKC_INC	INC pin setup/hold with respect to C for IDELAY	0.12/0.16	0.14/0.18	0.16/0.22	0.10/0.23	ns
TIDCCK_RST / TIDCKC_RST	RST pin setup/hold with respect to C for IDELAY	0.15/0.09	0.16/0.11	0.18/0.14	0.22/0.19	ns
T _{IDDO_IDATAIN}	Propagation delay through IDELAY	Note 5	Note 5	Note 5	Note 5	ps

Notes:

- 1. Average Tap Delay at 200 MHz = 78 ps, at 300 MHz = 52 ps.
- 2. When HIGH_PERFORMANCE mode is set to TRUE or FALSE.
- 3. When HIGH_PERFORMANCE mode is set to TRUE.
- 4. When HIGH_PERFORMANCE mode is set to FALSE.
- 5. Delay depends on IDELAY tap setting. See TRACE report for actual values.

CLB Distributed RAM Switching Characteristics (SLICEM Only)

Table 25: CLB Distributed RAM Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Sequential Delays						
Т _{SHCKO}	Clock to A – B outputs	0.98	1.09	1.32	1.54	ns, Max
T _{SHCKO_1}	Clock to AMUX – BMUX outputs	1.37	1.53	1.86	2.18	ns, Max
Setup and Hold Time	s Before/After Clock CLK					
T _{DS_LRAM} /T _{DH_LRAM}	A – D inputs to CLK	0.54/0.28	0.60/0.30	0.72/0.35	0.96/0.40	ns, Min
T _{AS_LRAM} /T _{AH_LRAM}	Address An inputs to clock	0.27/0.55	0.30/0.60	0.37/0.70	0.43/0.71	ns, Min
	Address An inputs through MUXs and/or carry logic to clock	0.69/0.18	0.77/0.21	0.94/0.26	1.11/0.29	ns, Min
T _{WS_LRAM} /T _{WH_LRAM}	WE input to clock	0.38/0.10	0.43/0.12	0.53/0.17	0.62/0.13	ns, Min
T _{CECK_LRAM} / T _{CKCE_LRAM}	CE input to CLK	0.39/0.10	0.44/0.11	0.53/0.17	0.63/0.12	ns, Min
Clock CLK	·					
T _{MPW_LRAM}	Minimum pulse width	1.05	1.13	1.25	0.82	ns, Min
T _{MCP}	Minimum clock period	2.10	2.26	2.50	1.64	ns, Min

Notes:

- 1. A Zero "0" Hold Time listing indicates no hold time or a negative hold time.
- 2. T_{SHCKO} also represents the CLK to XMUX output. Refer to TRACE report for the CLK to XMUX path.

CLB Shift Register Switching Characteristics (SLICEM Only)

Table 26: CLB Shift Register Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V			Units
		-3	-2/-2L	-1	-2L	
Sequential Delays						
T _{REG}	Clock to A – D outputs	1.19	1.33	1.61	1.89	ns, Max
T _{REG_MUX}	Clock to AMUX – DMUX output	1.58	1.77	2.15	2.53	ns, Max
T _{REG_M31}	Clock to DMUX output via M31 output	1.12	1.23	1.46	1.68	ns, Max
Setup and Hold Tir	nes Before/After Clock CLK			1	LL	
T _{WS_SHFREG} / T _{WH_SHFREG}	WE input	0.37/0.10	0.41/0.12	0.51/0.17	0.59/0.13	ns, Min
T _{CECK_SHFREG} / T _{CKCE_SHFREG}	CE input to CLK	0.37/0.10	0.42/0.11	0.52/0.17	0.60/0.12	ns, Min
T _{DS_SHFREG} / T _{DH_SHFREG}	A – D inputs to CLK	0.33/0.34	0.37/0.37	0.44/0.43	0.54/0.47	ns, Min
Clock CLK		L	1	1		
T _{MPW_SHFREG}	Minimum pulse width	0.77	0.86	0.98	1.04	ns, Min

Notes:

1. A Zero "0" Hold Time listing indicates no hold time or a negative hold time.

Table 27: Block RAM and FIFO Switching Characteristics (Cont'd)

		Speed Grade				
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
T _{RCCK_RSTRAM} /T _{RCKC_RSTRAM}	Synchronous RSTRAM input	0.32/0.42	0.34/0.43	0.36/0.46	0.40/0.47	ns, Min
T _{RCCK_WEA} /T _{RCKC_WEA}	Write enable (WE) input (block RAM only)	0.44/0.18	0.48/0.19	0.54/0.20	0.64/0.23	ns, Min
T _{RCCK_WREN} /T _{RCKC_WREN}	WREN FIFO inputs	0.46/0.30	0.46/0.35	0.47/0.43	0.77/0.44	ns, Min
T _{RCCK_RDEN} /T _{RCKC_RDEN}	RDEN FIFO inputs	0.42/0.30	0.43/0.35	0.43/0.43	0.71/0.44	ns, Min
Reset Delays						
T _{RCO_FLAGS}	Reset RST to FIFO flags/pointers ⁽¹⁰⁾	0.90	0.98	1.10	1.25	ns, Max
T _{RREC_RST} /T _{RREM_RST}	FIFO reset recovery and removal timing ⁽¹¹⁾	1.87/-0.81	2.07/-0.81	2.37/-0.81	2.44/-0.71	ns, Max
Maximum Frequency				P	Г	
F _{MAX_BRAM_WF_NC}	Block RAM (write first and no change modes) when not in SDP RF mode	509.68	460.83	388.20	315.66	MHz
F _{MAX_BRAM_RF_PERFORMANCE}	Block RAM (read first, performance mode) when in SDP RF mode but no address overlap between port A and port B	509.68	460.83	388.20	315.66	MHz
F _{MAX_BRAM_RF_DELAYED_WRITE}	Block RAM (read first, delayed write mode) when in SDP RF mode and there is possibility of overlap between port A and port B addresses	447.63	404.53	339.67	268.96	MHz
F _{MAX_CAS_WF_NC}	Block RAM cascade (write first, no change mode) when cascade but not in RF mode	467.07	418.59	345.78	273.30	MHz
F _{MAX_CAS_RF_PERFORMANCE}	Block RAM cascade (read first, performance mode) when in cascade with RF mode and no possibility of address overlap/one port is disabled	467.07	418.59	345.78	273.30	MHz
F _{MAX_CAS_RF_DELAYED_WRITE}	When in cascade RF mode and there is a possibility of address overlap between port A and port B	405.35	362.19	297.35	226.60	MHz
F _{MAX_FIFO}	FIFO in all modes without ECC	509.68	460.83	388.20	315.66	MHz
F _{MAX_ECC}	Block RAM and FIFO in ECC configuration	410.34	365.10	297.53	215.38	MHz

Notes:

- 1. TRACE will report all of these parameters as T_{RCKO DO}.
- 2. T_{RCKO_DOR} includes T_{RCKO_DOW}, T_{RCKO_DOPR}, and T_{RCKO_DOPW} as well as the B port equivalent timing parameters.
- 3. These parameters also apply to synchronous FIFO with DO_REG = 0.
- 4. $T_{RCKO_{DO}}$ includes $T_{RCKO_{DOP}}$ as well as the B port equivalent timing parameters.
- 5. These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO_REG = 1.
- 6. T_{RCKO_FLAGS} includes the following parameters: T_{RCKO_AEMPTY}, T_{RCKO_AFULL}, T_{RCKO_EMPTY}, T_{RCKO_FULL}, T_{RCKO_RDERR}, T_{RCKO_WRERR}.
- 7. T_{RCKO_POINTERS} includes both T_{RCKO_RDCOUNT} and T_{RCKO_WRCOUNT}.
- 8. The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible.
- 9. These parameters include both A and B inputs as well as the parity inputs of A and B.
- 10. T_{RCO FLAGS} includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT.
- 11. RDEN and WREN must be held Low prior to and during reset. The FIFO reset must be asserted for at least five positive clock edges of the slowest clock (WRCLK or RDCLK).

PLL Switching Characteristics

Table 35: PLL Specification

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	+
PLL_F _{INMAX}	Maximum input clock frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{INMIN}	Minimum input clock frequency	19.00	19.00	19.00	19.00	MHz
PLL_F _{INJITTER}	Maximum input clock period jitter	< 2	20% of clock	c input perio	od or 1 ns N	lax
PLL_FINDUTY	Allowable input duty cycle: 19-49 MHz	25	25	25	25	%
	Allowable input duty cycle: 50—199 MHz	30	30	30	30	%
	Allowable input duty cycle: 200-399 MHz	35	35	35	35	%
	Allowable input duty cycle: 400-499 MHz	40	40	40	40	%
	Allowable input duty cycle: >500 MHz	45	45	45	45	%
PLL_F _{VCOMIN}	Minimum PLL VCO frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{VCOMAX}	Maximum PLL VCO frequency	2133.00	1866.00	1600.00	1600.00	MHz
PLL_FBANDWIDTH	Low PLL bandwidth at typical ⁽¹⁾	1.00	1.00	1.00	1.00	MHz
	High PLL bandwidth at typical ⁽¹⁾	4.00	4.00	4.00	4.00	MHz
PLL_T _{STATPHAOFFSET}	Static phase offset of the PLL outputs ⁽²⁾	0.12	0.12	0.12	0.12	ns
PLL_T _{OUTJITTER}	PLL output jitter		1	Note 3	1	1
PLL_T _{OUTDUTY}	PLL output clock duty-cycle precision ⁽⁴⁾	0.20	0.20	0.20	0.25	ns
PLL_T _{LOCKMAX}	PLL maximum lock time	100.00	100.00	100.00	100.00	μs
PLL_F _{OUTMAX}	PLL maximum output frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{OUTMIN}	PLL minimum output frequency ⁽⁵⁾	6.25	6.25	6.25	6.25	MHz
PLL_T _{EXTFDVAR}	External clock feedback variation	< 2	20% of clock	k input perio	od or 1 ns N	lax
PLL_RST _{MINPULSE}	Minimum reset pulse width	5.00	5.00	5.00	5.00	ns
PLL_F _{PFDMAX}	Maximum frequency at the phase frequency detector	550.00	500.00	450.00	450.00	MHz
PLL_F _{PFDMIN}	Minimum frequency at the phase frequency detector	19.00	19.00	19.00	19.00	MHz
PLL_T _{FBDELAY}	Maximum delay in the feedback path		3 ns Max	or one CLI	KIN cycle	I
Dynamic Reconfigura	tion Port (DRP) for PLL Before and After DCLK	L				
T _{PLLDCK_DADDR} / T _{PLLCKD_DADDR}	Setup and hold of D address	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLDCK_DI} /T _{PLLCKD_DI}	Setup and hold of D input	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLDCK_DEN} / T _{PLLCKD_DEN}	Setup and hold of D enable	1.76/0.00	1.97/0.00	2.29/0.00	2.40/0.00	ns, Min
T _{PLLDCK_DWE} / T _{PLLCKD_DWE}	Setup and hold of D write enable	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLCKO_DRDY}	CLK to out of DRDY	0.65	0.72	0.99	0.99	ns, Max
F _{DCK}	DCLK frequency	200.00	200.00	200.00	100.00	MHz, Max

Notes:

1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.

2. The static offset is measured between any PLL outputs with identical phase.

3. Values for this parameter are available in the Clocking Wizard. See http://www.xilinx.com/products/intellectual-property/clocking_wizard.htm.

4. Includes global clock buffer.

5. Calculated as $F_{VCO}/128$ assuming output duty cycle is 50%.

Device Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 36: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)

		Device					
Symbol	Description			1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	1
SSTL15 Clock-Capa	able Clock Input to Output Delay using Out	out Flip-Flop, Fast §	Slew Rate,	without MM	CM/PLL.		
T _{ICKOF} Clock-capable clock input and OUTFF	XC7A100T	5.14	5.74	6.72	7.64	ns	
	without MMCM/PLL (near clock region)	XC7A200T	5.47	6.11	7.16	8.10	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 37: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)

Symbol	Description	Device	Speed Grade					
				1.0V	0.9V	Units		
			-3	-2/-2L	-1	-2L		
SSTL15 Clock-Capa	ble Clock Input to Output Delay using Outp	out Flip-Flop, Fast S	Slew Rate,	without MM	CM/PLL.			
T _{ICKOFFAR}	Clock-capable clock input and OUTFF without MMCM/PLL (far clock region)	XC7A100T	5.38	6.01	7.02	7.96	ns	
		XC7A200T	6.17	6.89	8.05	9.05	ns	

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 38: Clock-Capable Clock Input to Output Delay With MMCM

Symbol	Description	Device					
				1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	
SSTL15 Clock-Capa	able Clock Input to Output Delay using Out	put Flip-Flop, Fast	Slew Rate,	with MMCM		·	
T _{ICKOFMMCMCC}	Clock-capable clock input and OUTFF with MMCM	XC7A100T	0.89	0.94	0.96	1.81	ns
		XC7A200T	0.90	0.97	1.01	1.86	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

2. MMCM output jitter is already included in the timing calculation.

www.xilinx.com

Table 44: Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO

Symbol	Description		1.0V	0.9V	Units	
		-3	-2/-2L	-1	-2L	
Input Setup and Hold Time	Relative to a Forwarded Clock Input Pin Using Bl	UFIO for SST	L15 Standar	d.		
T _{PSCS} /T _{PHCS}	Setup and hold of I/O clock	-0.38/1.31	-0.38/1.46	-0.38/1.76	-0.16/1.89	ns

Table 45: Sample Window

Symbol	Description		1.0V	0.9V	Units	
		-3	-2/-2L	-1	-2L	*
T _{SAMP}	Sampling error at receiver pins ⁽¹⁾	0.59	0.64	0.70	0.70	ns
T _{SAMP_BUFIO}	BUFIO Sampling error at receiver pins using BUFIO ⁽²⁾		0.40	0.46	0.46	ns

Notes:

- 1. This parameter indicates the total sampling error of the Artix-7 FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers' edges of operation. These measurements include:
 - CLK0 MMCM jitter
 - MMCM accuracy (phase offset)
 - MMCM phase shift resolution
 - These measurements do not include package or clock tree skew.
- This parameter indicates the total sampling error of the Artix-7 FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO clock network and IDELAY to capture the DDR input registers' edges of operation. These measurements do not include package or clock tree skew.

Additional Package Parameter Guidelines

The parameters in this section provide the necessary values for calculating timing budgets for Artix-7 FPGA clock transmitter and receiver data-valid windows.

Table 46: Package Skew

Symbol	Description	Device	Package	Value	Units
T _{PKGSKEW}	Package skew ⁽¹⁾	XC7A100T	CSG324	113	ps
			FTG256	120	ps
			FGG484	144	ps
			FGG676	153	ps
		XC7A200T	SBG484	111	ps
			FBG484	109	ps
			FBG676	121	ps
			FFG1156	151	ps

Notes:

- 1. These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest delay from die pad to ball.
- 2. Package delay information is available for these device/package combinations. This information can be used to deskew the package.

GTP Transceiver Specifications

GTP Transceiver DC Input and Output Levels

 Table 47 summarizes the DC output specifications of the GTP transceivers in Artix-7 FPGAs. Consult UG482: 7 Series

 FPGAs GTP Transceiver User Guide for further details.

Table 47: GTP Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
DV _{PPOUT}	Differential peak-to-peak output voltage ⁽¹⁾	Transmitter output swing is set to maximum setting	_	_	1000	mV
V _{CMOUTDC}	DC common mode output voltage	Equation based	Ņ	V _{MGTAVTT} – DV _{PPO}	UT/4	mV
R _{OUT}	Differential output resistance		-	100	-	Ω
V _{CMOUTAC}	Common mode output voltage: /	Common mode output voltage: AC coupled				mV
Transmitter output pair (TXP and TXN (FFG, FBG, SBG packages)		d TXN) intra-pair skew	-	_	10	ps
T _{OSKEW}	Transmitter output pair (TXP and (FGG, FTG, CSG packages)	Transmitter output pair (TXP and TXN) intra-pair skew (FGG, FTG, CSG packages)			12	ps
DV _{PPIN}	Differential peak-to-peak input voltage	External AC coupled	150	_	2000	mV
V _{IN}	Absolute input voltage	DC coupled V _{MGTAVTT} = 1.2V	-200	-	V _{MGTAVTT}	mV
V _{CMIN}	Common mode input voltage	t voltage DC coupled V _{MGTAVTT} = 1.2V		2/3 V _{MGTAVTT}	-	mV
R _{IN}	Differential input resistance	istance		100	-	Ω
C _{EXT}	Recommended external AC coupling capacitor ⁽²⁾			100	-	nF

Notes:

1. The output swing and preemphasis levels are programmable using the attributes discussed in UG482: 7 Series FPGAs GTP Transceiver User Guide and can result in values lower than reported in this table.

2. Other values can be used as appropriate to conform to specific protocols and standards.

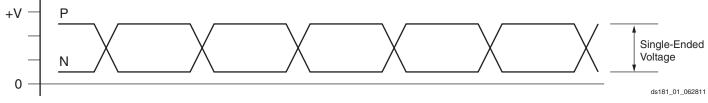


Figure 1: Single-Ended Peak-to-Peak Voltage

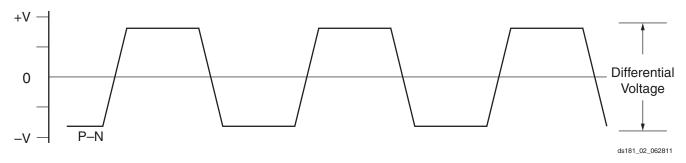


 Table 48 summarizes the DC specifications of the clock input of the GTP transceiver. Consult UG482: 7 Series FPGAs GTP

 Transceiver User Guide for further details.

Symbol	DC Parameter		Тур	Max	Units
V _{IDIFF}	Differential peak-to-peak input voltage	350	—	2000	mV
R _{IN}	Differential input resistance	-	100	_	Ω
C _{EXT}	Required external AC coupling capacitor	_	100	-	nF

Table 48: GTP Transceiver Clock DC Input Level Specification

GTP Transceiver Switching Characteristics

Consult UG482: 7 Series FPGAs GTP Transceiver User Guide for further information.

Table 49: GTP Transceiver Performance

						Speed	Grade				
					1.0	0V			0.9V		
_	Description	Output	-	3	-2/-	-2L	-	1	-2	2L	
Symbol		Divider				Packag	је Туре				Units
			FFG FBG SBG	FGG FTG CSG	FFG FBG SBG	FGG FTG CSG	FFG FBG SBG	FGG FTG CSG	FFG FBG SBG	FGG FTG CSG	-
F _{GTPMAX}	Maximum GTP transceiver of	lata rate	6.6	5.4	6.6	5.4	3.75	3.75	3.75	3.75	Gb/s
F _{GTPMIN}	Minimum GTP transceiver d	ata rate	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	Gb/s
		1	3.2-	-6.6	3.2–6.6		3.2–3.75		3.2–3.75		Gb/s
-	PLL line rate range	2	1.6-	-3.3	1.6-	6–3.3 1.6–3.2		1.6–3.2		Gb/s	
F _{GTPRANGE}	PLL line rate range	4	0.8-	1.65	0.8–1.65		0.8–1.6		0.8-	-1.6	Gb/s
		8	0.5–0	0.825	0.5–0	0.825	0.5–0.8		0.5-	-0.8	Gb/s
F _{GTPPLLRANGE}	GTP transceiver PLL freque range	TP transceiver PLL frequency		-3.3	1.6-	-3.3	1.6-	-3.3	1.6–3.3		GHz

Table 50: GTP Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

Symbol						
	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
FGTPDRPCLK	GTPDRPCLK maximum frequency	175	175	156	125	MHz

Table 51: GTP Transceiver Reference Clock Switching Characteristics

Symbol	Description	Conditions	All	Units		
		Conditions	Min	Тур	Max	Units
F _{GCLK}	Reference clock frequency range		60	—	660	MHz
T _{RCLK}	Reference clock rise time	20% - 80%	-	200	-	ps
T _{FCLK}	Reference clock fall time	20% - 80%	-	200	-	ps
T _{DCREF}	Reference clock duty cycle	Transceiver PLL only	40	l	60	%



Figure 3: Reference Clock Timing Parameters

Table 52: GTP Transceiver PLL/Lock Time Adaptation

Cumhal	Description	Conditions	Α	Units		
Symbol		Conditions	Min	Тур	Max	Units
T _{LOCK}	Initial PLL lock		-	-	1	ms
T _{DLOCK}	Clock recovery phase acquisition and adaptation time.	After the PLL is locked to the reference clock, this is the time it takes to lock the clock data recovery (CDR) to the data present at the input.	_	50,000	2.3 x10 ⁶	UI

Table 53: GTP Transceiver User Clock Switching Characteristics⁽¹⁾

	Description						
Symbol		Conditions		1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	
F _{TXOUT}	TXOUTCLK maximum frequency		412.500	412.500	234.375	234.375	MHz
F _{RXOUT}	RXOUTCLK maximum frequency		412.500	412.500	234.375	234.375	MHz
F _{TXIN}	TXUSRCLK maximum frequency	16-bit data path	412.500	412.500	234.375	234.375	MHz
F _{RXIN}	RXUSRCLK maximum frequency	16-bit data path	412.500	412.500	234.375	234.375	MHz
F _{TXIN2}	TXUSRCLK2 maximum frequency	16-bit data path	412.500	412.500	234.375	234.375	MHz
F _{RXIN2}	RXUSRCLK2 maximum frequency	16-bit data path	412.500	412.500	234.375	234.375	MHz

Notes:

1. Clocking must be implemented as described in <u>UG482</u>: 7 Series FPGAs GTP Transceiver User Guide.

Symbol	Description	Condition	Min	Тур	Max	Units
F _{GTPTX}	Serial data rate range		0.500	_	F GTPMAX	Gb/s
T _{RTX}	TX rise time	20%-80%	-	50	-	ps
T _{FTX}	TX fall time	20%-80%	-	50	-	ps
T _{LLSKEW}	TX lane-to-lane skew ⁽¹⁾		-	-	500	ps
V _{TXOOBVDPP}	Electrical idle amplitude		-	_	20	mV
T _{TXOOBTRANSITION}	Electrical idle transition time		-	_	140	ns
TJ _{6.6}	Total Jitter ⁽²⁾⁽³⁾	6.6 Gb/s	-	_	0.30	UI
DJ _{6.6}	Deterministic Jitter ⁽²⁾⁽³⁾	0.0 GD/S	_	-	0.15	UI
TJ _{5.0}	Total Jitter ⁽²⁾⁽³⁾	5.0 Gb/s	_	-	0.30	UI
DJ _{5.0}	Deterministic Jitter ⁽²⁾⁽³⁾	5.0 GD/S	_	-	0.15	UI
TJ _{4.25}	Total Jitter ⁽²⁾⁽³⁾	4.25 Gb/s	_	-	0.30	UI
DJ _{4.25}	Deterministic Jitter ⁽²⁾⁽³⁾	4.25 GD/S	-	-	0.15	UI
TJ _{3.75}	Total Jitter ⁽²⁾⁽³⁾	3.75 Gb/s	-	_	0.30	UI
DJ _{3.75}	Deterministic Jitter ⁽²⁾⁽³⁾	3.75 GD/S	-	_	0.15	UI
TJ _{3.2}	Total Jitter ⁽²⁾⁽³⁾	3.20 Gb/s ⁽⁴⁾	-	_	0.2	UI
DJ _{3.2}	Deterministic Jitter ⁽²⁾⁽³⁾	3.20 GD/S(*)	-	_	0.1	UI
TJ _{3.2L}	Total Jitter ⁽²⁾⁽³⁾	3.20 Gb/s ⁽⁵⁾	_	-	0.32	UI
DJ _{3.2L}	Deterministic Jitter ⁽²⁾⁽³⁾	3.20 GD/S(9/	-	-	0.16	UI
TJ _{2.5}	Total Jitter ⁽²⁾⁽³⁾	2.5 Gb/s ⁽⁶⁾	-	-	0.20	UI
DJ _{2.5}	Deterministic Jitter ⁽²⁾⁽³⁾	2.5 GD/S(0)	_	-	0.08	UI
TJ _{1.25}	Total Jitter ⁽²⁾⁽³⁾	1.25 Gb/s ⁽⁷⁾	-	-	0.15	UI
DJ _{1.25}	Deterministic Jitter ⁽²⁾⁽³⁾	1.23 GD/S(*)	-	-	0.06	UI
TJ ₅₀₀	Total Jitter ⁽²⁾⁽³⁾	500 Mb/a	_	_	0.1	UI
DJ ₅₀₀	Deterministic Jitter ⁽²⁾⁽³⁾	500 Mb/s	_	_	0.03	UI

Table !	54: GTP	Transceiver	Transmitter	Switching	Characteristics
---------	----------------	-------------	-------------	-----------	-----------------

Notes:

1. Using same REFCLK input with TX phase alignment enabled for up to four consecutive transmitters (one fully populated GTP Quad).

2. Using PLL[0/1]_FBDIV = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.

3. All jitter values are based on a bit-error ratio of 1e⁻¹².

- 4. PLL frequency at 3.2 GHz and TXOUT_DIV = 2.
- 5. PLL frequency at 1.6 GHz and TXOUT_DIV = 1.
- 6. PLL frequency at 2.5 GHz and TXOUT_DIV = 2.
- 7. PLL frequency at 2.5 GHz and TXOUT_DIV = 4.