
E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	7925
Number of Logic Elements/Cells	101440
Total RAM Bits	4976640
Number of I/O	285
Number of Gates	-
Voltage - Supply	0.95V ~ 1.05V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7a100t-2fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1: Absolute Maximum Ratings⁽¹⁾ (Cont'd)

Symbol	Description	Min	Max	Units
Temperature				
T _{STG}	Storage temperature (ambient)	-65	150	°C
т	Maximum soldering temperature for Pb/Sn component bodies (6)	-	+220	°C
I SOL	Maximum soldering temperature for Pb-free component bodies (6)	-	+260	°C
Tj	Maximum junction temperature ⁽⁶⁾	l	+125	°C

Notes:

- 2. The lower absolute voltage specification always applies.
- 3. For I/O operation, refer to UG471: 7 Series FPGAs SelectIO Resources User Guide.
- 4. The maximum limit applied to DC signals.
- 5. For maximum undershoot and overshoot AC specifications, see Table 4.
- 6. For soldering guidelines and thermal considerations, see UG475: 7 Series FPGA Packaging and Pinout Specification.

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾

Symbol	Description		Тур	Max	Units
FPGA Logic	· · · · · ·				<u>.</u>
M	Internal supply voltage	0.95	1.00	1.05	V
V _{CCINT}	For -2L (0.9V) devices: internal supply voltage	0.87	0.90	0.93	V
V _{CCAUX}	Auxiliary supply voltage	1.71	1.80	1.89	V
V _{CCBRAM}	Block RAM supply voltage	0.95	1.00	1.05	V
V _{CCO} ⁽³⁾⁽⁴⁾	Supply voltage for 3.3V HR I/O banks	1.14	-	3.465	V
V (5)	I/O input voltage	-0.20	-	V _{CCO} + 0.20	V
V _{IN} ⁽⁵⁾	I/O input voltage for V _{REF} and differential I/O standards	-0.20	-	2.625	V
I _{IN} ⁽⁶⁾	Maximum current through any pin in a powered or unpowered bank when forward biasing the clamp diode.	-	-	10	mA
V _{CCBATT} ⁽⁷⁾	Battery voltage	1.0	-	1.89	V
GTP Transceiv	ver				1
V _{MGTAVCC} ⁽⁸⁾⁽⁹⁾	Analog supply voltage for the GTP transmitter and receiver circuits	0.97	1.0	1.03	V
V _{MGTAVTT} ⁽⁸⁾⁽⁹⁾	Analog supply valtage for the CTD transmitter and respirer termination		1.2	1.23	V
XADC					
V _{CCADC}	XADC supply relative to GNDADC	1.71	1.80	1.89	V
V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V

^{1.} Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾ (Cont'd)

Symbol	Description	Min	Тур	Max	Units
Temperature				·	
	Junction temperature operating range for commercial (C) temperature devices	0	-	85	°C
тј	Junction temperature operating range for extended (E) temperature devices	0	-	100	°C
	Junction temperature operating range for industrial (I) temperature devices	-40	-	100	°C

Notes:

- 1. All voltages are relative to ground.
- 2. For the design of the power distribution system consult UG483, 7 Series FPGAs PCB Design and Pin Planning Guide.
- 3. Configuration data is retained even if V_{CCO} drops to 0V.
- 4. Includes V_{CCO} of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- 5. The lower absolute voltage specification always applies.
- 6. A total of 200 mA per bank should not be exceeded.
- 7. V_{CCBATT} is required only when using bitstream encryption. If battery is not used, connect V_{CCBATT} to either ground or V_{CCAUX}.
- 8. Each voltage listed requires the filter circuit described in UG482: 7 Series FPGAs GTP Transceiver User Guide.
- 9. Voltages are specified for the temperature range of $T_i = 0^{\circ}C$ to +85°C.

Table 3: DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
V _{DRINT}	Data retention V_{CCINT} voltage (below which configuration data might be lost)	0.75	_	_	V
V _{DRI}	Data retention V_{CCAUX} voltage (below which configuration data might be lost)	1.5	-	-	V
I _{REF}	V _{REF} leakage current per pin	-	-	15	μA
ΙL	Input or output leakage current per pin (sample-tested)	_	-	15	μA
C _{IN} ⁽²⁾	Die input capacitance at the pad	_	-	8	pF
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 3.3V$	90	_	330	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 2.5V$	68	_	250	μA
I _{RPU}	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.8V	34	_	220	μA
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.5V	23	_	150	μA
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.2V	12	_	120	μA
	Pad pull-down (when selected) @ V _{IN} = 3.3V	68	_	330	μA
IRPD	Pad pull-down (when selected) @ V _{IN} = 1.8V	45	_	180	μA
I _{CCADC}	Analog supply current, analog circuits in powered up state	_	_	25	mA
I _{BATT} (3)	Battery supply current	_	_	150	nA
	The venin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_40) for commercial (C), and industrial (I), and extended (E) temperature devices	28	40	55	Ω
R _{IN_TERM} ⁽⁴⁾	The venin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_50) for commercial (C), and industrial (I), and extended (E) temperature devices	35	50	65	Ω
	The venin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_60) for commercial (C), and industrial (I), and extended (E) temperature devices	44	60	83	Ω

E XILINX.

Table 6 shows the minimum current, in addition to I_{CCQ} , that is required by Artix-7 devices for proper power-on and configuration. If the current minimums shown in Table 5 and Table 6 are met, the device powers on after all four supplies have passed through their power-on reset threshold voltages. The FPGA must not be configured until after V_{CCINT} is applied.

Once initialized and configured, use the Xilinx Power Estimator (XPE) tools to estimate current drain on these supplies.

Table 6: Power-On Current for Artix-7 Devices⁽¹⁾

Device	I _{CCINTMIN} Typ ⁽²⁾	I _{CCAUXMIN} Typ ⁽²⁾	I _{ссоміл} Тур ⁽²⁾	I _{CCBRAMMIN} Typ ⁽²⁾	Units
XC7A100T	I _{CCINTQ} + 170	I _{CCAUXQ} + 40	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XC7A200T	I _{CCINTQ} + 340	I _{CCAUXQ} + 50	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 80	mA

Notes:

1. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate maximum power-on currents.

2. Typical values are specified at nominal voltage, 25°C.

Table 7: Power Supply Ramp Time

Symbol	Description Conditions		Min	Max	Units
T _{VCCINT}	Ramp time from GND to 90% of V _{CCINT}		0.2	50	ms
T _{VCCO}	Ramp time from GND to 90% of V _{CCO}		0.2	50	ms
T _{VCCAUX}	Ramp time from GND to 90% of V _{CCAUX}	0.2	50	ms	
T _{VCCBRAM}	Ramp time from GND to 90% of V _{CCBRAM}	0.2	50	ms	
т.		$T_{\rm J} = 100^{\circ} {\rm C}^{(1)}$	-	500	
T _{VCCO2} VCCAUX	Allowed time per power cycle for $V_{CCO} - V_{CCAUX} > 2.625V$ $T_J = 85^{\circ}C^{(1)}$		-	800	ms
T _{MGTAVCC}	Ramp time from GND to 90% of V _{MGTAVCC}	0.2	50	ms	
T _{MGTAVTT}	Ramp time from GND to 90% of V _{MGTAVTT}	0.2	50	ms	

Notes:

1. Based on 240,000 power cycles with nominal V_{CCO} of 3.3V or 36,500 power cycles with worst case V_{CCO} of 3.465V.

Performance Characteristics

This section provides the performance characteristics of some common functions and designs implemented in Artix-7 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the AC Switching Characteristics, page 9.

Table 14: Networking Applications Interface Performances

Description		1.0V		0.9V	Units
	-3	-2/-2L	-1	-2L	
SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8)	680	680	600	600	Mb/s
DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 14)	1250	1250	950	950	Mb/s
SDR LVDS receiver (SFI-4.1) ⁽¹⁾	680	680	600	600	Mb/s
DDR LVDS receiver (SPI-4.2) ⁽¹⁾	1250	1250	950	950	Mb/s

Notes:

1. LVDS receivers are typically bounded with certain applications where specific dynamic phase-alignment (DPA) algorithms dominate deterministic performance.

Table 15: Maximum Physical Interface (PHY) Rate for Memory Interfaces⁽¹⁾⁽²⁾

		Speed Grade						
Memory Standard		1.0V						
	-3	-2/-2L	-1	-2L				
4:1 Memory Controllers								
DDR3	1066	800	800	800	Mb/s			
DDR3L	800	800	667	667	Mb/s			
DDR2	800	800	667	667	Mb/s			
LPDDR2	667	667	533	533	Mb/s			
2:1 Memory Controllers		•	<u>.</u>	<u>.</u>				
DDR3	800	700	620	620	Mb/s			
DDR3L	800	700	620	620	Mb/s			
DDR2	800	700	620	620	Mb/s			

Notes:

1. V_{REF} tracking is required. For more information, see UG586, 7 Series FPGAs Memory Interface Solutions User Guide.

2. When using the internal V_{REF} the maximum data rate is 800 Mb/s (400 MHz).

Table 16: 3.3V IOB High Range (HR) Switching Characteristics (Cont'd)

		Τ _{ΙC})PI			т _ю	OP			T _{IC}	TP		
1/O Oten devel		Speed	Grade		Speed Grade			Speed Grade					
I/O Standard		1.0V 0.9V		0.9V		1.0V		0.9V	1.0V 0.9			0.9V	Units
	-3	-2/-2L	-1	-2L	-3	-2/-2L	-1	-2L	-3	-2/-2L	-1	-2L	•
LVCMOS15_F4	0.77	0.86	0.93	0.98	1.85	1.97	2.23	2.27	2.42	2.63	3.06	2.92	ns
LVCMOS15_F8	0.77	0.86	0.93	0.98	1.60	1.72	1.98	2.21	2.17	2.38	2.81	2.86	ns
LVCMOS15_F12	0.77	0.86	0.93	0.98	1.35	1.47	1.73	1.96	1.92	2.13	2.56	2.61	ns
LVCMOS15_F16	0.77	0.86	0.93	0.98	1.34	1.46	1.71	1.94	1.90	2.12	2.54	2.59	ns
LVCMOS12_S4	0.87	0.95	1.02	1.08	2.57	2.69	2.95	3.18	3.14	3.35	3.78	3.83	ns
LVCMOS12_S8	0.87	0.95	1.02	1.08	2.09	2.21	2.46	2.69	2.65	2.87	3.29	3.34	ns
LVCMOS12_S12	0.87	0.95	1.02	1.08	1.79	1.91	2.17	2.40	2.36	2.57	2.99	3.05	ns
LVCMOS12_F4	0.87	0.95	1.02	1.08	1.98	2.10	2.35	2.58	2.54	2.76	3.18	3.23	ns
LVCMOS12_F8	0.87	0.95	1.02	1.08	1.54	1.66	1.92	2.15	2.11	2.32	2.75	2.80	ns
LVCMOS12_F12	0.87	0.95	1.02	1.08	1.38	1.51	1.76	1.97	1.95	2.16	2.59	2.62	ns
SSTL135_S	0.67	0.75	0.82	0.87	1.35	1.47	1.73	1.93	1.92	2.13	2.56	2.58	ns
SSTL15_S	0.60	0.68	0.75	0.80	1.30	1.43	1.68	1.88	1.87	2.09	2.51	2.53	ns
SSTL18_I_S	0.67	0.75	0.82	0.87	1.67	1.79	2.04	2.24	2.23	2.45	2.87	2.89	ns
SSTL18_II_S	0.67	0.75	0.82	0.87	1.31	1.43	1.68	1.91	1.87	2.09	2.51	2.56	ns
DIFF_SSTL135_S	0.68	0.76	0.83	0.87	1.35	1.47	1.73	1.93	1.92	2.13	2.56	2.58	ns
DIFF_SSTL15_S	0.68	0.76	0.83	0.87	1.30	1.43	1.68	1.88	1.87	2.09	2.51	2.53	ns
DIFF_SSTL18_I_S	0.71	0.79	0.86	0.87	1.68	1.80	2.06	2.24	2.25	2.46	2.89	2.89	ns
DIFF_SSTL18_II_S	0.71	0.79	0.86	0.87	1.38	1.51	1.76	1.94	1.95	2.17	2.59	2.59	ns
SSTL135_F	0.67	0.75	0.82	0.87	1.12	1.24	1.49	1.71	1.69	1.90	2.32	2.36	ns
SSTL15_F	0.60	0.68	0.75	0.80	1.07	1.19	1.45	1.68	1.64	1.85	2.28	2.33	ns
SSTL18_I_F	0.67	0.75	0.82	0.87	1.12	1.24	1.49	1.72	1.69	1.90	2.32	2.37	ns
SSTL18_II_F	0.67	0.75	0.82	0.87	1.12	1.24	1.49	1.71	1.69	1.90	2.32	2.36	ns
DIFF_SSTL135_F	0.68	0.76	0.83	0.87	1.12	1.24	1.49	1.71	1.69	1.90	2.32	2.36	ns
DIFF_SSTL15_F	0.68	0.76	0.83	0.87	1.07	1.19	1.45	1.68	1.64	1.85	2.28	2.33	ns
DIFF_SSTL18_I_F	0.71	0.79	0.86	0.87	1.23	1.35	1.60	1.80	1.79	2.01	2.43	2.45	ns
DIFF_SSTL18_II_F	0.71	0.79	0.86	0.87	1.21	1.33	1.59	1.79	1.78	1.99	2.42	2.44	ns

Table 17 specifies the values of T_{IOTPHZ} and $T_{IOIBUFDISABLE}$. T_{IOTPHZ} is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e., a high impedance state). $T_{IOIBUFDISABLE}$ is described as the IOB delay from IBUFDISABLE to O output. In HR I/O banks, the internal IN_TERM termination turn-off time is always faster than T_{IOTPHZ} when the INTERMDISABLE pin is used.

Table 17	7: IOB 3-state	Output Switching	Characteristics
----------	----------------	-------------------------	-----------------

Symbol	Description		1.0V	0.9V	Units	
		-3	-2/-2L	-1	-2L	
T _{IOTPHZ}	T input to pad high-impedance	2.06	2.19	2.37	2.19	ns
TIOIBUFDISABLE	IBUF turn-on time from IBUFDISABLE to O output	2.11	2.30	2.60	2.30	ns

Output Serializer/Deserializer Switching Characteristics

Table 21: OSERDES Switching Characteristics

			Speed	Grade		Units
Symbol	Description		1.0V		0.9V	
		-3	-2/-2L	-1	-2L	
Setup/Hold	·					
T _{OSDCK_D} /T _{OSCKD_D}	D input setup/hold with respect to CLKDIV	0.42/0.03	0.45/0.03	0.63/0.03	0.44/-0.25	ns
T _{OSDCK_T} /T _{OSCKD_T} ⁽¹⁾	T input setup/hold with respect to CLK	0.69/0.13	0.73/-0.13	0.88/-0.13	0.60/-0.25	ns
T _{OSDCK_T2} /T _{OSCKD_T2} ⁽¹⁾	T input setup/hold with respect to CLKDIV	0.31/-0.13	0.34/-0.13	0.39/-0.13	0.46/-0.25	ns
T _{OSCCK_OCE} /T _{OSCKC_OCE}	OCE input setup/hold with respect to CLK	0.32/0.58	0.34/0.58	0.51/0.58	0.21/-0.15	ns
T _{OSCCK_S}	SR (reset) input setup with respect to CLKDIV	0.47	0.52	0.85	0.70	ns
T _{OSCCK_TCE} /T _{OSCKC_TCE}	TCE input setup/hold with respect to CLK	0.32/0.01	0.34/0.01	0.51/0.01	0.22/-0.15	ns
Sequential Delays						
T _{OSCKO_OQ}	Clock to out from CLK to OQ	0.40	0.42	0.48	0.54	ns
Т _{ОSCKO_TQ}	Clock to out from CLK to TQ	0.47	0.49	0.56	0.63	ns
Combinatorial			1			
T _{OSDO_TTQ}	T input to TQ Out	0.83	0.92	1.11	1.18	ns

Notes:

1. $T_{OSDCK_{T2}}$ and $T_{OSCKD_{T2}}$ are reported as $T_{OSDCK_{T}}/T_{OSCKD_{T}}$ in TRACE report.

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
IO_FIFO Clock to Out Delays					·	·
T _{OFFCKO_DO}	RDCLK to Q outputs	0.55	0.60	0.68	0.81	ns
T _{CKO_FLAGS}	Clock to IO_FIFO flags	0.55	0.61	0.77	0.55	ns
Setup/Hold						
T _{CCK_D} /T _{CKC_D}	D inputs to WRCLK	0.47/0.02	0.51/0.02	0.58/0.02	0.76/-0.05	ns
T _{IFFCCK_WREN} /T _{IFFCKC_WREN}	WREN to WRCLK	0.42/-0.01	0.47/-0.01	0.53/-0.01	0.70/-0.05	ns
T _{OFFCCK_RDEN} /T _{OFFCKC_RDEN}	RDEN to RDCLK	0.53/0.02	0.58/0.02	0.66/0.02	0.79/-0.02	ns
Minimum Pulse Width						
T _{PWH_IO_FIFO}	RESET, RDCLK, WRCLK	1.62	2.15	2.15	2.15	ns
T _{PWL_IO_FIFO}	RESET, RDCLK, WRCLK	1.62	2.15	2.15	2.15	ns
Maximum Frequency	·	·	•			
F _{MAX}	RDCLK and WRCLK	266.67	200.00	200.00	200.00	MHz

Table 23: IO_FIFO Switching Characteristics

Clock Buffers and Networks

Table 29: Global Clock Switching Characteristics (Including BUFGCTRL)

Symbol	Description		1.0V				
		-3	-2/-2L	-1	-2L		
T _{BCCCK_CE} /T _{BCCKC_CE} ⁽¹⁾	CE pins setup/hold	0.12/0.39	0.13/0.40	0.16/0.41	0.31/0.17	ns	
T _{BCCCK_S} /T _{BCCKC_S} ⁽¹⁾	S pins setup/hold	0.12/0.39	0.13/0.40	0.16/0.41	0.31/0.17	ns	
T _{BCCKO_O} ⁽²⁾	BUFGCTRL delay from I0/I1 to O	0.08	0.09	0.10	0.14	ns	
Maximum Frequency		•			•		
F _{MAX_BUFG}	Global clock tree (BUFG)	628.00	628.00	464.00	394.00	MHz	

Notes:

T_{BCCCK_CE} and T_{BCCKC_CE} must be satisfied to assure glitch-free operation of the global clock when switching between clocks. These
parameters do not apply to the BUFGMUX primitive that assures glitch-free operation. The other global clock setup and hold times are
optional; only needing to be satisfied if device operation requires simulation matches on a cycle-for-cycle basis when switching between
clocks.

2. T_{BGCKO O} (BUFG delay from I0 to O) values are the same as T_{BCCKO O} values.

Table 30: Input/Output Clock Switching Characteristics (BUFIO)

Symbol	Description		Speed Grade					
			1.0V		0.9V -2L	Units		
		-3	-2/-2L	-1				
Т _{ВЮСКО_О}	Clock to out delay from I to O	1.11	1.26	1.54	1.56	ns		
Maximum Frequency								
F _{MAX_BUFIO}	I/O clock tree (BUFIO)	680.00	680.00	600.00	600.00	MHz		

Table 31: Regional Clock Buffer Switching Characteristics (BUFR)

Symbol	Description		1.0V	0.9V	Units	
		-3	-2/-2L	-1	-2L	
T _{BRCKO_O}	Clock to out delay from I to O	0.64	0.76	0.99	1.24	ns
T _{BRCKO_O_BYP}	Clock to out delay from I to O with Divide Bypass attribute set	0.34	0.39	0.52	0.72	ns
T _{BRDO_O}	Propagation delay from CLR to O	0.81	0.85	1.09	0.96	ns
Maximum Frequency						
F _{MAX_BUFR} ⁽¹⁾	Regional clock tree (BUFR)	420.00	375.00	315.00	315.00	MHz

Notes:

1. The maximum input frequency to the BUFR and BUFMR is the BUFIO $\mathrm{F}_{\mathrm{MAX}}$ frequency.

Table 32: Horizontal Clock Buffer Switching Characteristics (BUFH)

			Speed Grade					
Symbol	Description			1.0V		0.9V	Units	
			-3	-2/-2L	-1	-2L		
Т _{внско_о}	BUFH delay from I to O		0.10	0.11	0.13	0.16	ns	
T _{BHCCK_CE} /T _{BHCKC_CE}	CE pin setup and hold	0.1	19/0.13	0.22/0.15	0.28/0.21	0.35/0.08	ns	
Maximum Frequency		<u>.</u>						
F _{MAX_BUFH}	Horizontal clock buffer (BUFH)	6	28.00	628.00	464.00	394.00	MHz	

Table 33: Duty Cycle Distortion and Clock-Tree Skew

	Description	Device					
Symbol				1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	1
T _{DCD_CLK}	Global clock tree duty-cycle distortion ⁽¹⁾	All	0.20	0.20	0.20	0.25	ns
T _{CKSKEW}	Global clock tree skew ⁽²⁾	XC7A100T	0.27	0.33	0.36	0.48	ns
0.10.12.1		XC7A200T	0.40	0.48	0.54	0.69	ns
T _{DCD_BUFIO}	I/O clock tree duty cycle distortion	All	0.14	0.14	0.14	0.14	ns
T _{BUFIOSKEW}	I/O clock tree skew across one clock region	All	0.03	0.03	0.03	0.03	ns
T _{DCD_BUFR}	Regional clock tree duty cycle distortion	All	0.18	0.18	0.18	0.18	ns

Notes:

1. These parameters represent the worst-case duty cycle distortion observable at the I/O flip flops. For all I/O standards, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times.

 The T_{CKSKEW} value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application.

MMCM Switching Characteristics

Table 34: MMCM Specification

Symbol	Description		1.0V		0.9V	Units	
		-3	-2/-2L	-1	-2L		
MMCM_F _{INMAX}	Maximum input clock frequency	800.00	800.00	800.00	800.00	MHz	
MMCM_F _{INMIN}	Minimum input clock frequency	10.00	10.00	10.00	10.00	MHz	
MMCM_F _{INJITTER}	Maximum input clock period jitter	< 20% of clock input period or 1 ns Max					
MMCM_F _{INDUTY}	Allowable input duty cycle: 10-49 MHz	25	25	25	25	%	
	Allowable input duty cycle: 50-199 MHz	30	30	30	30	%	
	Allowable input duty cycle: 200-399 MHz	35	35	35	35	%	
	Allowable input duty cycle: 400-499 MHz	40	40	40	40	%	
	Allowable input duty cycle: >500 MHz	45	45	45	45	%	
MMCM_F _{MIN_PSCLK}	Minimum dynamic phase-shift clock frequency	0.01	0.01	0.01	0.01	MHz	
MMCM_F _{MAX_PSCLK}	Maximum dynamic phase-shift clock frequency	550.00	500.00	450.00	450.00	MHz	
MMCM_F _{VCOMIN}	Minimum MMCM VCO frequency	600.00	600.00	600.00	600.00	MHz	
MMCM_F _{VCOMAX}	Maximum MMCM VCO frequency	1600.00	1440.00	1200.00	1200.00	MHz	

			Speed	Grade				
Symbol	Description		1.0V		0.9V	Units		
		-3	-2/-2L	-1	-2L			
MMCM_F _{BANDWIDTH}	Low MMCM bandwidth at typical ⁽¹⁾	1.00	1.00	1.00	1.00	MHz		
	High MMCM bandwidth at typical ⁽¹⁾	4.00	4.00	4.00	4.00	MHz		
MMCM_T _{STATPHAOFFSET}	Static phase offset of the MMCM outputs ⁽²⁾	0.12	0.12	0.12	0.12	ns		
MMCM_T _{OUTJITTER}	MMCM output jitter			Note 3				
MMCM_T _{OUTDUTY}	MMCM output clock duty-cycle precision ⁽⁴⁾	0.20	0.20	0.20	0.25	ns		
MMCM_T _{LOCKMAX}	MMCM maximum lock time	100.00	100.00	100.00	100.00	μs		
MMCM_F _{OUTMAX}	MMCM maximum output frequency	800.00	800.00	800.00	800.00	MHz		
MMCM_F _{OUTMIN}	MMCM minimum output frequency ⁽⁵⁾⁽⁶⁾	4.69	4.69	4.69	4.69	MHz		
MMCM_T _{EXTFDVAR}	External clock feedback variation	< 20% of clock input period or 1 ns Max						
MMCM_RST _{MINPULSE}	Minimum reset pulse width	5.00	5.00	5.00	5.00	ns		
MMCM_F _{PFDMAX}	Maximum frequency at the phase frequency detector	550.00	500.00	450.00	450.00	MHz		
MMCM_F _{PFDMIN}	Minimum frequency at the phase frequency detector	10.00	10.00	10.00	10.00	MHz		
MMCM_T _{FBDELAY}	Maximum delay in the feedback path		3 ns Max	or one CLI	KIN cycle	1		
MMCM Switching Chara	acteristics Setup and Hold							
T _{MMCMDCK_PSEN} / T _{MMCMCKD_PSEN}	Setup and hold of phase-shift enable	1.04/0.00	1.04/0.00	1.04/0.00	1.04/0.00	ns		
T _{MMCMDCK_} PSINCDEC [/] T _{MMCMCKD_} PSINCDEC	Setup and hold of phase-shift increment/decrement	1.04/0.00	1.04/0.00	1.04/0.00	1.04/0.00	ns		
T _{MMCMCKO_PSDONE}	Phase shift clock-to-out of PSDONE	0.59	0.68	0.81	0.78	ns		
Dynamic Reconfiguration	on Port (DRP) for MMCM Before and After DCLK			1	1	I		
T _{MMCMDCK_DADDR} / T _{MMCMCKD_DADDR}	DADDR setup/hold	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Mir		
T _{MMCMDCK_DI} / T _{MMCMCKD_DI}	DI setup/hold	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Mir		
T _{MMCMDCK_DEN} / T _{MMCMCKD_DEN}	DEN setup/hold	1.76/0.00	1.97/0.00	2.29/0.00	2.40/0.00	ns, Mir		
T _{MMCMDCK_DWE} / T _{MMCMCKD_DWE}	DWE setup/hold	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Mir		
T _{MMCMCKO_DRDY}	CLK to out of DRDY	0.65	0.72	0.99	0.70	ns, Max		
F _{DCK}	DCLK frequency	200.00	200.00	200.00	100.00	MHz, Ma		

Table 34: MMCM Specification (Cont'd)

Notes:

- 1. The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.
- 2. The static offset is measured between any MMCM outputs with identical phase.
- 3. Values for this parameter are available in the Clocking Wizard. See <u>http://www.xilinx.com/products/intellectual-property/clocking_wizard.htm</u>.
- 4. Includes global clock buffer.
- 5. Calculated as $F_{VCO}\!/128$ assuming output duty cycle is 50%.
- 6. When CLKOUT4_CASCADE = TRUE, MMCM_F_{OUTMIN} is 0.036 MHz.

PLL Switching Characteristics

Table 35: PLL Specification

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	+
PLL_F _{INMAX}	Maximum input clock frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{INMIN}	Minimum input clock frequency	19.00	19.00	19.00	19.00	MHz
PLL_F _{INJITTER}	Maximum input clock period jitter	< 2	20% of clock	c input perio	od or 1 ns N	lax
PLL_FINDUTY	Allowable input duty cycle: 19-49 MHz	25	25	25	25	%
	Allowable input duty cycle: 50—199 MHz	30	30	30	30	%
	Allowable input duty cycle: 200-399 MHz	35	35	35	35	%
	Allowable input duty cycle: 400-499 MHz	40	40	40	40	%
	Allowable input duty cycle: >500 MHz	45	45	45	45	%
PLL_F _{VCOMIN}	Minimum PLL VCO frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{VCOMAX}	Maximum PLL VCO frequency	2133.00	1866.00	1600.00	1600.00	MHz
PLL_FBANDWIDTH	Low PLL bandwidth at typical ⁽¹⁾	1.00	1.00	1.00	1.00	MHz
	High PLL bandwidth at typical ⁽¹⁾	4.00	4.00	4.00	4.00	MHz
PLL_T _{STATPHAOFFSET}	Static phase offset of the PLL outputs ⁽²⁾	0.12	0.12	0.12	0.12	ns
PLL_T _{OUTJITTER}	PLL output jitter		1	Note 3	1	1
PLL_T _{OUTDUTY}	PLL output clock duty-cycle precision ⁽⁴⁾	0.20	0.20	0.20	0.25	ns
PLL_T _{LOCKMAX}	PLL maximum lock time	100.00	100.00	100.00	100.00	μs
PLL_F _{OUTMAX}	PLL maximum output frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{OUTMIN}	PLL minimum output frequency ⁽⁵⁾	6.25	6.25	6.25	6.25	MHz
PLL_T _{EXTFDVAR}	External clock feedback variation	< 2	20% of clock	k input perio	od or 1 ns N	lax
PLL_RST _{MINPULSE}	Minimum reset pulse width	5.00	5.00	5.00	5.00	ns
PLL_F _{PFDMAX}	Maximum frequency at the phase frequency detector	550.00	500.00	450.00	450.00	MHz
PLL_F _{PFDMIN}	Minimum frequency at the phase frequency detector	19.00	19.00	19.00	19.00	MHz
PLL_T _{FBDELAY}	Maximum delay in the feedback path		3 ns Max	or one CLI	KIN cycle	I
Dynamic Reconfigura	tion Port (DRP) for PLL Before and After DCLK	L				
T _{PLLDCK_DADDR} / T _{PLLCKD_DADDR}	Setup and hold of D address	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLDCK_DI} /T _{PLLCKD_DI}	Setup and hold of D input	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLDCK_DEN} / T _{PLLCKD_DEN}	Setup and hold of D enable	1.76/0.00	1.97/0.00	2.29/0.00	2.40/0.00	ns, Min
T _{PLLDCK_DWE} / T _{PLLCKD_DWE}	Setup and hold of D write enable	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLCKO_DRDY}	CLK to out of DRDY	0.65	0.72	0.99	0.99	ns, Max
F _{DCK}	DCLK frequency	200.00	200.00	200.00	100.00	MHz, Max

Notes:

1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.

2. The static offset is measured between any PLL outputs with identical phase.

3. Values for this parameter are available in the Clocking Wizard. See http://www.xilinx.com/products/intellectual-property/clocking_wizard.htm.

4. Includes global clock buffer.

5. Calculated as $F_{VCO}/128$ assuming output duty cycle is 50%.

Device Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 36: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)

Symbol	Description	Device								
				1.0V	0.9V	Units				
			-3	-2/-2L	-1	-2L				
SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, <i>without</i> MMCM/PLL.										
TICKOF Clock-capable clock input and OUTFF without MMCM/PLL (near clock region)		XC7A100T	5.14	5.74	6.72	7.64	ns			
	XC7A200T	5.47	6.11	7.16	8.10	ns				

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 37: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)

Symbol	Description	Device	Speed Grade								
				1.0V	0.9V	Units					
			-3	-2/-2L	-1	-2L					
SSTL15 Clock-Capa	SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, without MMCM/PLL.										
T _{ICKOFFAR}	Clock-capable clock input and OUTFF	XC7A100T	5.38	6.01	7.02	7.96	ns				
	without MMCM/PLL (far clock region)	XC7A200T	6.17	6.89	8.05	9.05	ns				

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 38: Clock-Capable Clock Input to Output Delay With MMCM

				Speed Grade			
Symbol	Description	Device		1.0V		0.9V -2L	Units
			-3	-2/-2L	-1		
SSTL15 Clock-Capa	able Clock Input to Output Delay using Out	put Flip-Flop, Fast	Slew Rate,	with MMCM		·	
T _{ICKOFMMCMCC}	Clock-capable clock input and OUTFF	XC7A100T	0.89	0.94	0.96	1.81	ns
	with MMCM	XC7A200T	0.90	0.97	1.01	1.86	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

2. MMCM output jitter is already included in the timing calculation.

Device Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 41: Global Clock Input Setup and Hold Without MMCM/PLL with ZHOLD_DELAY on HR I/O Banks

				Speed	Speed Grade		
Symbol	Description	Device 1.0V			0.9V	Units	
		-3	-2/-2L	-1	-2L	1	
Input Setup and Hol	d Time Relative to Global Clock Input Sigr	nal for SSTL15	Standard.(1))			
T _{PSFD} / T _{PHFD}	Full delay (legacy delay or default delay)	XC7A100T	2.69/-0.46	2.89/-0.46	3.34/-0.46	5.66/-0.52	ns
	global clock input and IFF ⁽²⁾ without MMCM/PLL with ZHOLD_DELAY on HR I/O banks		3.03/-0.50	3.27/-0.50	3.79/-0.50	6.66/-0.53	ns

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input flip-flop or latch

3. A zero "0" hold time listing indicates no hold time or a negative hold time.

Table 42: Clock-Capable Clock Input Setup and Hold With MMCM

				Speed Grade			
Symbol	Description	Device	1.0V			0.9V	Units
			-3	-2/-2L	-1	-2L	
Input Setup and Hole	d Time Relative to Global Clock Input Sigr	nal for SSTL15	5 Standard.(1))			
T _{PSMMCMCC} /			2.44/-0.62	2.80/-0.62	3.36/-0.62	2.15/-0.49	ns
I PHMMCMCC			2.57/-0.63	2.94/-0.63	3.52/-0.63	2.32/-0.53	ns

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input flip-flop or latch

3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 43: Clock-Capable Clock Input Setup and Hold With PLL

				Speed	Grade		
Symbol	Description	Device	Device 1.0V			0.9V	Units
			-3	-2/-2L	-1	-2L	1
Input Setup and Hole	d Time Relative to Clock-Capable Clock Ir	nput Signal for	SSTL15 Sta	ndard. ⁽¹⁾			
T _{PSPLLCC} /			2.78/-0.32	3.15/-0.32	3.78/-0.32	2.47/-0.60	ns
I PHPLLCC			2.91/-0.33	3.29/-0.33	3.94/-0.33	2.64/-0.63	ns

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input flip-flop or latch

3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

GTP Transceiver Protocol Jitter Characteristics

For Table 56 through Table 60, the <u>UG482</u>: 7 Series FPGAs GTP Transceiver User Guide contains recommended settings for optimal usage of protocol specific characteristics.

Table 56: Gigabit Ethernet Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units				
Gigabit Ethernet Transmitter Jitter Genera	bit Ethernet Transmitter Jitter Generation							
Total transmitter jitter (T_TJ)	1250	-	0.24	UI				
Gigabit Ethernet Receiver High Frequenc	Gigabit Ethernet Receiver High Frequency Jitter Tolerance							
Total receiver jitter tolerance	1250	0.749	-	UI				

Table 57: XAUI Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units
XAUI Transmitter Jitter Generation				
Total transmitter jitter (T_TJ)	3125	-	0.35	UI
XAUI Receiver High Frequency Jitter Tole	rance			
Total receiver jitter tolerance	3125	0.65	_	UI

Table 58: PCI Express Protocol Characteristics⁽¹⁾

Standard	Description Line Rate (M		Min	Max	Units
PCI Express Transmitter	Jitter Generation				
PCI Express Gen 1	Total transmitter jitter	2500	-	0.25	UI
PCI Express Gen 2	Total transmitter jitter	5000	-	0.25	UI
PCI Express Receiver Hi	gh Frequency Jitter Tolerance				
PCI Express Gen 1	Total receiver jitter tolerance	2500	0.65	-	UI
PCI Express Gen 2 ⁽²⁾	Receiver inherent timing error	5000	0.40	-	UI
	Receiver inherent deterministic timing error	5000	0.30	-	UI

Notes:

1. Tested per card electromechanical (CEM) methodology.

2. Using common REFCLK.

Table 59: CEI-6G Protocol Characteristics

Description	Line Rate (Mb/s)	Interface	Min	Max	Units
CEI-6G Transmitter Jitter Gene	eration				
Total transmitter jitter ⁽¹⁾	4976–6375	CEI-6G-SR	-	0.3	UI
CEI-6G Receiver High Frequen	ncy Jitter Tolerance				
Total receiver jitter tolerance ⁽¹⁾	4976–6375	CEI-6G-SR	0.6	-	UI

Notes:

1. Tested at most commonly used line rate of 6250 Mb/s using 390.625 MHz reference clock.

Table 60: CPRI Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units
CPRI Transmitter Jitter Generation				·
	614.4	-	0.35	UI
	1228.8	-	0.35	UI
Total transmitter iitter	2457.6	-	0.35	UI
ōtal transmitter jitter	3072.0	-	0.35	UI
	4915.2	-	0.3	UI
	6144.0	-	0.3	UI
CPRI Receiver Frequency Jitter Tolerance				
	614.4	0.65	-	UI
	1228.8	0.65	-	UI
Total receiver iitter telerence	2457.6	0.65	-	UI
Total receiver jitter tolerance	3072.0	0.65	-	UI
	4915.2 ⁽¹⁾	0.60	_	UI
	6144.0 ⁽¹⁾	0.60	-	UI

Notes:

1. Tested to CEI-6G-SR.

Integrated Interface Block for PCI Express Designs Switching Characteristics

More information and documentation on solutions for PCI Express designs can be found at: http://www.xilinx.com/technology/protocols/pciexpress.htm

Table 61: Maximum Performance for PCI Express Designs

			Speed Grade				
Symbol	Description		1.0V			Units	
		-3	-2/-2L	-1			
F _{PIPECLK}	Pipe clock maximum frequency	250.00	250.00	250.00	250.00	MHz	
FUSERCLK	User clock maximum frequency	250.00	250.00	250.00	250.00	MHz	
F _{USERCLK2}	User clock 2 maximum frequency	250.00	250.00	250.00	250.00	MHz	
F _{DRPCLK}	DRP clock maximum frequency	250.00	250.00	250.00	250.00	MHz	

XADC Specifications

Table 62: XADC Specifications

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
$V_{CCADC} = 1.8V \pm 5\%, V_{REFP} =$	1.25V, V _{REFN}	= 0V, ADCCLK = 26 MHz, $T_j = -40^{\circ}$ C to 100°C,	Typical va	lues at 7	Г _ј =+40°С	
ADC Accuracy ⁽¹⁾						
Resolution			12	-	-	Bits
Integral Nonlinearity ⁽²⁾	INL		-	_	±2	LSBs
Differential Nonlinearity	DNL	No missing codes, guaranteed monotonic	_	_	±1	LSBs
Offset Error	I	Unipolar operation	-	_	±8	LSBs
		Bipolar operation	-	_	±4	LSBs
Gain Error			_	_	±0.5	%
Offset Matching			_	-	4	LSBs
Gain Matching			_	-	0.3	%
Sample Rate			0.1	_	1	MS/s
Signal to Noise Ratio ⁽²⁾	SNR	F _{SAMPLE} = 500KS/s, F _{IN} = 20KHz	60	-	_	dB
RMS Code Noise	I.	External 1.25V reference	_	_	2	LSBs
		On-chip reference	_	3	_	LSBs
Total Harmonic Distortion ⁽²⁾	THD	F _{SAMPLE} = 500KS/s, F _{IN} = 20KHz	70	-	_	dB
ADC Accuracy at Extended	Femperatures	s (-55°C to 125°C)			-1	L
Resolution			10	-	-	Bits
Integral Nonlinearity ⁽²⁾	INL		_	_	±1	LSB
Differential Nonlinearity DNL		No missing codes, guaranteed monotonic	_	_	±1	(at 10 bits)
Analog Inputs ⁽³⁾	I					
ADC Input Ranges		Unipolar operation	0	-	1	V
		Bipolar operation	-0.5	_	+0.5	V
		Unipolar common mode range (FS input)	0	-	+0.5	V
		Bipolar common mode range (FS input)	+0.5	-	+0.6	V
Maximum External Channel Inp	out Ranges	Adjacent analog channels set within these ranges should not corrupt measurements on adjacent channels	-0.1	-	V _{CCADC}	V
Auxiliary Channel Full Resolution Bandwidth	FRBW		250	-	_	KHz
On-Chip Sensors						
Temperature Sensor Error		$T_j = -40^{\circ}C$ to $100^{\circ}C$	-	-	±4	°C
		$T_j = -55^{\circ}C \text{ to } +125^{\circ}C$	-	_	±6	°C
Supply Sensor Error		Measurement range of V _{CCAUX} 1.8V \pm 5% T _j = -40°C to +100°C	_	-	±1	%
		Measurement range of V _{CCAUX} 1.8V \pm 5% T _j = -55°C to +125°C	-	-	±2	%
Conversion Rate ⁽⁴⁾						
Conversion Time - Continuous	t _{CONV}	Number of ADCCLK cycles	26	-	32	Cycles
Conversion Time - Event	t _{CONV}	Number of CLK cycles	_	-	21	Cycles
DRP Clock Frequency	DCLK	DRP clock frequency	8	_	250	MHz
ADC Clock Frequency	ADCCLK	Derived from DCLK	1	_	26	MHz

Table 62: XADC Specifications (Cont'd)

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
DCLK Duty Cycle			40	-	60	%
XADC Reference ⁽⁵⁾						
External Reference	V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V
On-Chip Reference	I	Ground V_{REFP} pin to AGND, T _j = -40°C to 100°C	1.2375	1.25	1.2625	V

Notes:

- 1. Offset and gain errors are removed by enabling the XADC automatic gain calibration feature. The values are specified for when this feature is enabled.
- 2. Only specified for BitGen option XADCEnhancedLinearity = ON.
- 3. See the ADC chapter in UG480: 7 Series FPGAs XADC User Guide for a detailed description.
- 4. See the Timing chapter in UG480: 7 Series FPGAs XADC User Guide for a detailed description.
- 5. Any variation in the reference voltage from the nominal V_{REFP} = 1.25V and V_{REFN} = 0V will result in a deviation from the ideal transfer function. This also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external ratiometric type applications allowing reference to vary by ±4% is permitted. On-chip reference variation is ±1%.

Configuration Switching Characteristics

Table 63: Configuration Switching Characteristics

	Description	Speed Grade					
Symbol		1.0V			0.9V	Units	
		-3	-2/-2L	-1	-2L		
Power-up Timing	Characteristics						
T _{PL} ⁽¹⁾	Program latency	5.00	5.00	5.00	5.00	ms, Max	
T _{POR} ⁽¹⁾	Power-on reset (50 ms ramp rate time)	10/50	10/50	10/50	10/50	ms, Min/Max	
	Power-on reset (1 ms ramp rate time)	10/35	10/35	10/35	10/35	ms, Min/Max	
T _{PROGRAM}	Program pulse width	250.00	250.00	250.00	250.00	ns, Min	
CCLK Output (Ma	aster Mode)	I	1	1	1	L.	
Т _{ICCK}	Master CCLK output delay	150.00	150.00	150.00	150.00	ns, Min	
T _{MCCKL}	Master CCLK clock Low time duty cycle	40/60	40/60	40/60	40/60	%, Min/Max	
Т _{МССКН}	Master CCLK clock High time duty cycle	40/60	40/60	40/60	40/60	%, Min/Max	
F _{MCCK}	Master CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max	
	Master CCLK frequency for AES encrypted x16	50.00	50.00	50.00	35.00	MHz, Max	
F _{MCCK_START}	Master CCLK frequency at start of configuration	3.00	3.00	3.00	3.00	MHz, Typ	
F _{MCCKTOL}	Frequency tolerance, master mode with respect to nominal CCLK	±50	±50	±50	±50	%, Max	
CCLK Input (Slav	e Modes)	I	1	1	1	L.	
T _{SCCKL}	Slave CCLK clock minimum Low time	2.50	2.50	2.50	2.50	ns, Min	
Т _{SCCKH}	Slave CCLK clock minimum High time	2.50	2.50	2.50	2.50	ns, Min	
F _{SCCK}	Slave CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max	
EMCCLK Input (M	Aaster Mode)	1	1	1	1	1	
T _{EMCCKL}	External master CCLK Low time	2.50	2.50	2.50	2.50	ns, Min	
T _{EMCCKH}	External master CCLK High time	2.50	2.50	2.50	2.50	ns, Min	
F _{EMCCK}	External master CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max	

Revision History

The following table shows the revision history for this document:

1.0	
	Initial Xilinx release.
1.1	Revised the V _{OCM} specification in Table 11. Updated the AC Switching Characteristics based upon the ISE 13.3 software v1.02 speed specification throughout document including Table 12 and Table 13. Added MMCM_T _{FBDELAY} while adding MMCM_ to the symbol names of a few specifications in Table 34 and PLL to the symbol names in Table 35. In Table 36 through Table 43, updated the pin-to-pin description with the SSTL15 standard. Updated units in Table 46.
1.2	Updated the Artix-7 family of devices listed throughout the entire data sheet. Updated the AC Switching Characteristics based upon the ISE 13.4 software v1.03 for the -3, -2, and -1 speed grades and v1.00 for the -2L speed grade.
	Updated summary description on page 1. In Table 2, revised V_{CCO} for the 3.3V HR I/O banks and updated T _j . Updated the notes in Table 5. Added MGTAVCC and MGTAVTT power supply ramp times to Table 7. Rearranged Table 8, added Mobile_DDR, HSTL_I_18, HSTL_II_18, HSUL_12, SSTL135_R, SSTL15_R, and SSTL12 and removed DIFF_SSTL135, DIFF_SSTL18_I, DIFF_SSTL18_II, DIFF_HSTL_I, and DIFF_HSTL_II. Added Table 9 and Table 10. Revised the specifications in Table 11. Revised V _{IN} in Table 47. Updated the eFUSE Programming Conditions section and removed the endurance table. Added the table. Revised F _{TXIN} and F _{RXIN} in Table 53. Revised I _{CCADC} and updated Note 1 in Table 62. Revised DDR LVDS transmitter data width in Table 14. Removed notes from Table 24 as they are no longer applicable. Updated specifications in Table 63. Updated Note 1 in Table 33.
1.3	Reorganized entire data sheet including adding Table 40 and Table 44. Updated T_{SOL} in Table 1. Updated I_{BATT} and added R_{IN_TERM} to Table 3. Updated Power-On/Off Power Supply Sequencing section with regards to GTP transceivers. In Table 8, updated many parameters including SSTL135 and SSTL135_R. Removed V_{OX} column and added DIFF_HSUL_12 to Table 10. Updated V_{OL} in Table 11. Updated Table 14 and removed notes 2 and 3. Updated Table 15. Updated the AC Switching Characteristics based upon the ISE 14.1 software v1.03 for the -3, -2, -2L (1.0V), -1, and v1.01 for the -2L (0.9V) speed specifications throughout the document. In Table 27, updated Reset Delays section including Note 10 and Note 11. In Table 53, replaced F_{TXOUT} with F_{GLK} . Updated many of the XADC specifications in Table 62 and added Note 2. Updated and moved <i>Dynamic Reconfiguration Port (DRP) for MMCM Before and After DCLK</i> section from

Date	Version	Description
09/20/12	1.4	In Table 1, updated the descriptions, changed V _{IN} and Note 2, and added Note 4. In Table 2, changed descriptions and notes. Updated parameters in Table 3. Added Table 4. Revised the Power-On/Off Power Supply Sequencing section. Updated standards and specifications in Table 8, Table 9, and Table 10. Removed the XC7A350T device from data sheet.
		Updated the AC Switching Characteristics section to the ISE 14.2 speed specifications throughout the document. Updated the IOB Pad Input/Output/3-State discussion and changed Table 17 by adding $T_{IOIBUFDISABLE}$. Removed many of the combinatorial delay specifications and T_{CINCK}/T_{CKCIN} from Table 24.Changed F _{PFDMAX} conditions in Table 34 and Table 35. Updated the GTP Transceiver Specifications section, moved the GTP Transceiver DC characteristics section to the overall DC Characteristics section, and added the GTP Transceiver Protocol Jitter Characteristics section. In Table 62, updated Note 1. In Table 63, updated T _{POR} .
02/01/13	1.5	Updated the AC Switching Characteristics based upon the 14.4/2012.4 device pack for ISE 14.4 and Vivado 2012.4, both at v1.07 for the -3, -2, -2L (1.0V), -1 speed specifications, and v1.05 for the -2L (0.9V) speed specifications throughout the document. Production changes to Table 12 and Table 13 for -3, -2, -2L (1.0V), -1 speed specifications.
		Revised I _{DCIN} and I _{DCOUT} and added Note 5 in Table 1. Added Note 2 to Table 2. Updated Table 5. Added minimum current specifications to Table 6. Removed SSTL12 and HSTL_I_12 from Table 8. Removed DIFF_SSTL12 from Table 10. Updated Table 12. Added a 2:1 memory controller section to Table 15. Updated Note 1 in Table 31. Revised Table 33. Updated Note 1 and Note 2 in Table 46.
		Updated D _{VPPIN} in Table 47. Updated V _{IDIFF} in Table 48. Removed T _{LOCK} and T _{PHASE} and revised F _{GCLK} in Table 51. Updated T _{DLOCK} in Table 52. Updated Table 53. In Table 54, updated T _{RTX} , T _{FTX} , V _{TXOOBVDPP} , and revised Note 1 through Note 7. In Table 55, updated RX _{SST} and RX _{PPMTOL} and revised Note 4 through Note 7. In Table 60, revised and added Note 1.
		Revised the maximum external channel input ranges in Table 62. In Table 63, revised F_{MCCK} and added the Internal Configuration Access Port section.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.