E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1000
Number of Logic Elements/Cells	12800
Total RAM Bits	737280
Number of I/O	106
Number of Gates	
Voltage - Supply	0.95V ~ 1.05V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 100°C (TJ)
Package / Case	238-LFBGA, CSPBGA
Supplier Device Package	238-CSBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7a12t-l2cpg238e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3: DC Characteristics Over Recommended Operating Conditions (Cont'd)

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
n	Temperature diode ideality factor	-	1.010	-	-
r	Temperature diode series resistance	I	2	_	Ω

Notes:

1. Typical values are specified at nominal voltage, 25°C.

2. This measurement represents the die capacitance at the pad, not including the package.

3. Maximum value specified for worst case process at 25°C.

4. Termination resistance to a $V_{CCO}/2$ level.

Table 4: VIN Maximum Allowed AC Voltage Overshoot and Undershoot for 3.3V HR I/O Banks⁽¹⁾

AC Voltage Overshoot	% of UI @-40°C to 100°C	AC Voltage Undershoot	% of UI @-40°C to 100°C
V _{CCO} + 0.40	100	-0.40	100
V _{CCO} + 0.45	100	-0.45	61.7
V _{CCO} + 0.50	100	-0.50	25.8
V _{CCO} + 0.55	100	-0.55	11.0
V _{CCO} + 0.60	46.6	-0.60	4.77
V _{CCO} + 0.65	21.2	-0.65	2.10
V _{CCO} + 0.70	9.75	-0.70	0.94
V _{CCO} + 0.75	4.55	-0.75	0.43
V _{CCO} + 0.80	2.15	-0.80	0.20
V _{CCO} + 0.85	1.02	-0.85	0.09
V _{CCO} + 0.90	0.49	-0.90	0.04
V _{CCO} + 0.95	0.24	-0.95	0.02

Notes:

1. A total of 200 mA per bank should not be exceeded.

Table 5: Typical Quiescent Supply Current

Symbol	Description	Device		1.0V		0.9V	Units
			-3	-2/-2L	-1	-2L	
ICCINTQ	Quiescent V _{CCINT} supply current	XC7A100T	155	155	155	108	mA
		XC7A200T	328	328	328	232	mA
I _{CCOQ}	Quiescent V _{CCO} supply current	XC7A100T	4	4	4	4	mA
		XC7A200T	5	5	5	5	mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XC7A100T	36	36	36	36	mA
		XC7A200T	73	73	73	73	mA
I _{CCBRAMQ}	Quiescent V _{CCBRAM} supply current	XC7A100T	4	4	4	4	mA
		XC7A200T	11	11	11	11	mA

Notes:

1. Typical values are specified at nominal voltage, 85°C junction temperature (T_j) with single-ended SelectIO resources.

2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.

3. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power consumption for conditions other than those specified.

Power-On/Off Power Supply Sequencing

The recommended power-on sequence is V_{CCINT}, V_{CCBRAM}, V_{CCAUX}, and V_{CCO} to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCINT} and V_{CCBRAM} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If V_{CCAUX} and V_{CCO} have the same recommended voltage levels then both can be powered by the same powered by the same supply and ramped simultaneously.

For V_{CCO} voltages of 3.3V in HR I/O banks and configuration bank 0:

- The voltage difference between V_{CCO} and V_{CCAUX} must not exceed 2.625V for longer than T_{VCCO2VCCAUX} for each power-on/off cycle to maintain device reliability levels.
- The T_{VCCO2VCCAUX} time can be allocated in any percentage between the power-on and power-off ramps.

The recommended power-on sequence to achieve minimum current draw for the GTP transceivers is V_{CCINT} , $V_{MGTAVCC}$, $V_{MGTAVCC}$, V_{CCINT} , $V_{MGTAVCT}$. There is no recommended sequencing for $V_{MGTVCCAUX}$. Both $V_{MGTAVCC}$ and V_{CCINT} can be ramped simultaneously. The recommended power-off sequence is the reverse of the power-on sequence to achieve minimum current draw.

If these recommended sequences are not met, current drawn from V_{MGTAVTT} can be higher than specifications during power-up and power-down.

- When V_{MGTAVTT} is powered before V_{MGTAVCC} and V_{MGTAVTT} V_{MGTAVCC} > 150 mV and V_{MGTAVCC} < 0.7V, the V_{MGTAVTT} current draw can increase by 460 mA per transceiver during V_{MGTAVCC} ramp up. The duration of the current draw can be up to 0.3 x T_{MGTAVCC} (ramp time from GND to 90% of V_{MGTAVCC}). The reverse is true for power-down.
- When V_{MGTAVTT} is powered before V_{CCINT} and V_{MGTAVTT} V_{CCINT} > 150 mV and V_{CCINT} < 0.7V, the V_{MGTAVTT} current draw can increase by 50 mA per transceiver during V_{CCINT} ramp up. The duration of the current draw can be up to 0.3 x T_{VCCINT} (ramp time from GND to 90% of V_{CCINT}). The reverse is true for power-down.

E XILINX.

Table 6 shows the minimum current, in addition to I_{CCQ} , that is required by Artix-7 devices for proper power-on and configuration. If the current minimums shown in Table 5 and Table 6 are met, the device powers on after all four supplies have passed through their power-on reset threshold voltages. The FPGA must not be configured until after V_{CCINT} is applied.

Once initialized and configured, use the Xilinx Power Estimator (XPE) tools to estimate current drain on these supplies.

Table 6: Power-On Current for Artix-7 Devices⁽¹⁾

Device	Device $\frac{I_{CCINTMIN}}{Typ^{(2)}} \frac{I_{CCAUXMIN}}{Typ^{(2)}}$		I _{ссомін} Тур ⁽²⁾	I _{CCBRAMMIN} Typ ⁽²⁾	Units
XC7A100T	I _{CCINTQ} + 170	I _{CCAUXQ} + 40	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 60	mA
XC7A200T	I _{CCINTQ} + 340	I _{CCAUXQ} + 50	I _{CCOQ} + 40 mA per bank	I _{CCBRAMQ} + 80	mA

Notes:

1. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate maximum power-on currents.

2. Typical values are specified at nominal voltage, 25°C.

Table 7: Power Supply Ramp Time

Symbol	Description Conditions		Min	Max	Units
T _{VCCINT}	Ramp time from GND to 90% of V _{CCINT}			50	ms
T _{VCCO}	Ramp time from GND to 90% of V_{CCO}	0.2	50	ms	
T _{VCCAUX}	Ramp time from GND to 90% of V _{CCAUX}	0.2	50	ms	
T _{VCCBRAM}	Ramp time from GND to 90% of V _{CCBRAM}	0.2	50	ms	
T _{VCCO2} VCCAUX	Allowed time per power evels for $V = V = 2.625V$	$T_{\rm J} = 100^{\circ} {\rm C}^{(1)}$	-	500	mo
	Allowed time per power cycle for v _{CCO} – v _{CCAUX} > 2.025v	$T_{\rm J} = 85^{\circ}C^{(1)}$	-	800	ms
T _{MGTAVCC}	Ramp time from GND to 90% of V _{MGTAVCC}			50	ms
T _{MGTAVTT}	Ramp time from GND to 90% of V _{MGTAVTT}		0.2	50	ms

Notes:

1. Based on 240,000 power cycles with nominal V_{CCO} of 3.3V or 36,500 power cycles with worst case V_{CCO} of 3.465V.

LVDS DC Specifications (LVDS_25)

See <u>UG471</u>: 7 Series FPGAs SelectIO Resources User Guide for more information on the LVDS_25 standard in the HR I/O banks.

Table	11:	LVDS	25	DC	Specifications
-------	-----	------	----	----	----------------

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply Voltage		2.375	2.500	2.625	V
V _{OH}	Output High Voltage for Q and \overline{Q}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	-	_	1.675	V
V _{OL}	Output Low Voltage for Q and \overline{Q}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	0.700	_	_	V
V _{ODIFF}	Differential Output Voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	R_T = 100 Ω across Q and \overline{Q} signals	247	350	600	mV
V _{OCM}	Output Common-Mode Voltage	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
VIDIFF	Differential Input Voltage (Q – \overline{Q}), Q = High (\overline{Q} – Q), \overline{Q} = High		100	350	600	mV
V _{ICM}	Input Common-Mode Voltage		0.300	1.200	1.425	V

AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications in v1.07 from the 14.4/2012.4 device pack for ISE® Design Suite14.4 and Vivado® Design Suite 2012.4 for the -3, -2, -2L (1.0V), and -1 speed grades and v1.05 from the 14.4/2012.4 device pack for the -2L (0.9V) speed grade.

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production Product Specification

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Testing of AC Switching Characteristics

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Artix-7 FPGAs.

Speed Grade Designations

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 12 correlates the current status of each Artix-7 device on a per speed grade basis.

Table 12: Artix-7 Device Speed Grade Designations

Daviaa	Speed Grade Designations						
Device	Advance	Preliminary	Production				
XC7A100T	-2L (0.9V)		-3, -2, -2L (1.0V), -1				
XC7A200T	-2L (0.9V)		-3, -2, -2L (1.0V), -1				

Production Silicon and ISE Software Status

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases.

Table 13 lists the production released Artix-7 device, speed grade, and the minimum corresponding supported speed specification version and ISE software revisions. The ISE software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Table 13: Artix-7 Device Production Software and Speed Specification Release

		Speed Grade						
Device		0.9V						
	-3	-2/-2L	-1	-2L				
XC7A100T	ISE 14.4 and Vivac	ISE 14.4 and Vivado 2012.4 with the 14.4/2012.4 device pack v1.07						
XC7A200T	ISE 14.4 and Vivac	ISE 14.4 and Vivado 2012.4 with the 14.4/2012.4 device pack v1.07						

Notes:

1. Blank entries indicate a device and/or speed grade in advance or preliminary status.

Input/Output Logic Switching Characteristics

Table 18: ILOGIC Switching Characteristics

Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Setup/Hold						
T _{ICE1CK} /T _{ICKCE1}	CE1 pin setup/hold with respect to CLK	0.48/0.02	0.54/0.02	0.76/0.02	0.40/-0.07	ns
T _{ISRCK} /T _{ICKSR}	SR pin setup/hold with respect to CLK	0.60/0.01	0.70/0.01	1.13/0.01	0.88/-0.35	ns
T _{IDOCK} /T _{IOCKD}	D pin setup/hold with respect to CLK without Delay	0.01/0.27	0.01/0.29	0.01/0.33	0.01/0.33	ns
TIDOCKD/TIOCKDD	DDLY pin setup/hold with respect to CLK (using IDELAY)	0.02/0.27	0.02/0.29	0.02/0.33	0.01/0.33	ns
Combinatorial						
T _{IDI}	D pin to O pin propagation delay, no Delay	0.11	0.11	0.13	0.14	ns
T _{IDID}	DDLY pin to O pin propagation delay (using IDELAY)	0.11	0.12	0.14	0.15	ns
Sequential Delays	S					
T _{IDLO}	D pin to Q1 pin using flip-flop as a latch without Delay	0.41	0.44	0.51	0.54	ns
T _{IDLOD}	DDLY pin to Q1 pin using flip-flop as a latch (using IDELAY)	0.41	0.44	0.51	0.55	ns
Т _{ІСКQ}	CLK to Q outputs	0.53	0.57	0.66	0.71	ns
T _{RQ_ILOGIC}	SR pin to OQ/TQ out	0.96	1.08	1.32	1.32	ns
T _{GSRQ_ILOGIC}	Global set/reset to Q outputs	7.60	7.60	10.51	11.39	ns
Set/Reset						
T _{RPW_ILOGIC}	Minimum pulse width, SR inputs	0.61	0.72	0.72	0.68	ns, Min

Table 19: OLOGIC Switching Characteristics

Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Setup/Hold						
Т _{ОDCК} /Т _{ОСКD}	D1/D2 pins setup/hold with respect to CLK	0.67/-0.11	0.71/-0.11	0.84/-0.11	0.60/-0.18	ns
T _{OOCECK} /T _{OCKOCE}	OCE pin setup/hold with respect to CLK	0.32/0.58	0.34/0.58	0.51/0.58	0.21/-0.10	ns
T _{OSRCK} /T _{OCKSR}	SR pin setup/hold with respect to CLK	0.37/0.21	0.44/0.21	0.80/0.21	0.62/-0.25	ns
Тотск/Тоскт	T1/T2 pins setup/hold with respect to CLK	0.69/-0.14	0.73/-0.14	0.89/-0.14	0.60/-0.18	ns
T _{OTCECK} /T _{OCKTCE}	TCE pin setup/hold with respect to CLK	0.32/0.01	0.34/0.01	0.51/0.01	0.22/-0.10	ns
Combinatorial						
T _{ODQ}	D1 to OQ out or T1 to TQ out	0.83	0.96	1.16	1.36	ns
Sequential Delays						
Тоско	CLK to OQ/TQ out	0.47	0.49	0.56	0.63	ns
T _{RQ_OLOGIC}	SR pin to OQ/TQ out	0.72	0.80	0.95	1.12	ns
T _{GSRQ_OLOGIC}	Global set/reset to Q outputs	7.60	7.60	10.51	11.39	ns
Set/Reset						
T _{RPW_OLOGIC}	Minimum pulse width, SR inputs	0.64	0.74	0.74	0.68	ns, Min

Output Serializer/Deserializer Switching Characteristics

Table 21: OSERDES Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Setup/Hold						
T _{OSDCK_D} /T _{OSCKD_D}	D input setup/hold with respect to CLKDIV	0.42/0.03	0.45/0.03	0.63/0.03	0.44/-0.25	ns
T _{OSDCK_T} /T _{OSCKD_T} ⁽¹⁾	T input setup/hold with respect to CLK	0.69/-0.13	0.73/-0.13	0.88/-0.13	0.60/-0.25	ns
T _{OSDCK_T2} /T _{OSCKD_T2} ⁽¹⁾	T input setup/hold with respect to CLKDIV	0.31/-0.13	0.34/-0.13	0.39/-0.13	0.46/-0.25	ns
T _{OSCCK_OCE} /T _{OSCKC_OCE}	OCE input setup/hold with respect to CLK	0.32/0.58	0.34/0.58	0.51/0.58	0.21/-0.15	ns
T _{OSCCK_S}	SR (reset) input setup with respect to CLKDIV	0.47	0.52	0.85	0.70	ns
T _{OSCCK_TCE} /T _{OSCKC_TCE}	TCE input setup/hold with respect to CLK	0.32/0.01	0.34/0.01	0.51/0.01	0.22/-0.15	ns
Sequential Delays						
T _{OSCKO_OQ}	Clock to out from CLK to OQ	0.40	0.42	0.48	0.54	ns
T _{OSCKO_TQ}	Clock to out from CLK to TQ	0.47	0.49	0.56	0.63	ns
Combinatorial	·	*	*	*		
T _{OSDO_TTQ}	T input to TQ Out	0.83	0.92	1.11	1.18	ns

Notes:

1. $T_{OSDCK_{T2}}$ and $T_{OSCKD_{T2}}$ are reported as $T_{OSDCK_{T}}/T_{OSCKD_{T}}$ in TRACE report.

Input/Output Delay Switching Characteristics

Table 22: Input/Output Delay Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
IDELAYCTRL						<u> </u>
T _{DLYCCO_RDY}	Reset to ready for IDELAYCTRL	3.67	3.67	3.67	3.22	μs
FIDELAYCTRL_REF	Attribute REFCLK frequency = 200.00 ⁽¹⁾	200.00	200.00	200.00	200.00	MHz
	Attribute REFCLK frequency = 300.00 ⁽¹⁾	300.00	300.00	N/A	N/A	MHz
IDELAYCTRL_REF_PRECISION	REFCLK precision	±10	±10	±10	±10	MHz
T _{IDELAYCTRL_RPW}	Minimum Reset pulse width	59.28	59.28	59.28	52.00	ns
IDELAY		1	1	1	1	
TIDELAYRESOLUTION	IDELAY chain delay resolution		ps			
	Pattern dependent period jitter in delay chain for clock pattern. ⁽²⁾	0	0	0	0	ps per tap
T _{IDELAYPAT_JIT}	Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) ⁽³⁾	±5	±5	±5	±5	ps per tap
	Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) ⁽⁴⁾	±9	±9	±9	±9	ps per tap
T _{IDELAY_CLK_MAX}	Maximum frequency of CLK input to IDELAY	680.00	680.00	600.00	520.00	MHz
TIDCCK_CE / TIDCKC_CE	CE pin setup/hold with respect to C for IDELAY	0.12/0.11	0.16/0.13	0.21/0.16	0.14/0.16	ns
TIDCCK_INC/ TIDCKC_INC	INC pin setup/hold with respect to C for IDELAY	0.12/0.16	0.14/0.18	0.16/0.22	0.10/0.23	ns
TIDCCK_RST/ TIDCKC_RST	RST pin setup/hold with respect to C for IDELAY	0.15/0.09	0.16/0.11	0.18/0.14	0.22/0.19	ns
T _{IDDO_IDATAIN}	Propagation delay through IDELAY	Note 5	Note 5	Note 5	Note 5	ps

Notes:

- 1. Average Tap Delay at 200 MHz = 78 ps, at 300 MHz = 52 ps.
- 2. When HIGH_PERFORMANCE mode is set to TRUE or FALSE.
- 3. When HIGH_PERFORMANCE mode is set to TRUE.
- 4. When HIGH_PERFORMANCE mode is set to FALSE.
- 5. Delay depends on IDELAY tap setting. See TRACE report for actual values.

			Speed	Grade			
Symbol	Description		1.0V		0.9V	Units	
		-3	-2/-2L	-1	-2L		
IO_FIFO Clock to Out Delays		·					
T _{OFFCKO_DO}	RDCLK to Q outputs	0.55	0.60	0.68	0.81	ns	
T _{CKO_FLAGS}	Clock to IO_FIFO flags	0.55	0.61	0.77	0.55	ns	
Setup/Hold							
T _{CCK_D} /T _{CKC_D}	D inputs to WRCLK	0.47/0.02	0.51/0.02	0.58/0.02	0.76/-0.05	ns	
TIFFCCK_WREN /TIFFCKC_WREN	WREN to WRCLK	0.42/-0.01	0.47/-0.01	0.53/-0.01	0.70/-0.05	ns	
T _{OFFCCK_RDEN} /T _{OFFCKC_RDEN}	RDEN to RDCLK	0.53/0.02	0.58/0.02	0.66/0.02	0.79/-0.02	ns	
Minimum Pulse Width							
T _{PWH_IO_FIFO}	RESET, RDCLK, WRCLK	1.62	2.15	2.15	2.15	ns	
T _{PWL_IO_FIFO}	RESET, RDCLK, WRCLK	1.62	2.15	2.15	2.15	ns	
Maximum Frequency							
F _{MAX}	RDCLK and WRCLK	266.67	200.00	200.00	200.00	MHz	

Table 23: IO_FIFO Switching Characteristics

DSP48E1 Switching Characteristics

Table 28: DSP48E1 Switching Characteristics

		Speed Grade				
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Setup and Hold Times of Data/Control Pins to	the Input Register Clock					
T _{DSPDCK_A_AREG} / T _{DSPCKD_A_AREG}	A input to A register CLK	0.26/ 0.12	0.30/ 0.13	0.37/ 0.14	0.45/ 0.14	ns
T _{DSPDCK_B_BREG} /T _{DSPCKD_B_BREG}	B input to B register CLK	0.33/ 0.15	0.38/ 0.16	0.45/ 0.18	0.60/ 0.19	ns
T _{DSPDCK_C_CREG} /T _{DSPCKD_C_CREG}	C input to C register CLK	0.17/ 0.17	0.20/ 0.19	0.24/ 0.21	0.34/ 0.29	ns
T _{DSPDCK_D_DREG} /T _{DSPCKD_D_DREG}	D input to D register CLK	0.25/ 0.25	0.32/ 0.27	0.42/ 0.27	0.54/ 0.23	ns
TDSPDCK_ACIN_AREG ^{/T} DSPCKD_ACIN_AREG	ACIN input to A register CLK	0.23/ 0.12	0.27/ 0.13	0.32/ 0.14	0.36/ 0.14	ns
TDSPDCK_BCIN_BREG ^{/T} DSPCKD_BCIN_BREG	BCIN input to B register CLK	0.25/ 0.15	0.29/ 0.16	0.36/ 0.18	0.41/ 0.19	ns
Setup and Hold Times of Data Pins to the Pipe	line Register Clock	1	1	I	1	l
TDSPDCK_{A, B}_MREG_MULT [/] TDSPCKD_B_MREG_MULT	{A, B} input to M register CLK using multiplier	2.40/ 0.01	2.76/ 0.01	3.29/ 0.01	4.31/ -0.07	ns
T _{DSPDCK_{A, B}_ADREG} / T _{DSPCKD_D_ADREG}	{A, D} input to AD register CLK	1.29/ 0.02	1.48/ -0.02	1.76/ 0.02	2.29/ 0.27	ns
Setup and Hold Times of Data/Control Pins to	the Output Register Clock					•
T _{DSPDCK_{A, B}} PREG_MULT [/] T _{DSPCKD_{A, B}} PREG_MULT	{A, B} input to P register CLK using multiplier	4.02/ 0.28	4.60/ 0.28	5.48/ 0.28	6.95/ 0.48	ns
T _{DSPDCK_D_PREG_MULT} / T _{DSPCKD_D_PREG_MULT}	D input to P register CLK using multiplier	3.93/ 0.73	4.50/ 0.73	5.35/ 0.73	6.73/ –1.68	ns
T _{DSPDCK_{A, B}} _PREG [/] T _{DSPCKD_{A, B}} _PREG	A or B input to P register CLK not using multiplier	1.73/ 0.28	1.98/ 0.28	2.35/ 0.28	2.80/ 0.48	ns
T _{DSPDCK_C_PREG} / T _{DSPCKD_C_PREG}	C input to P register CLK not using multiplier	1.54/ 0.26	1.76/ 0.26	2.10/ 0.26	2.54/ 0.45	ns
TDSPDCK_PCIN_PREG [/] TDSPCKD_PCIN_PREG	PCIN input to P register CLK	1.32/ –0.15	1.51/ -0.15	1.80/ -0.15	2.13/ -0.25	ns
Setup and Hold Times of the CE Pins						
TDSPDCK_{CEA;CEB}_{AREG;BREG}/ TDSPCKD_{CEA;CEB}_{AREG;BREG}	{CEA; CEB} input to {A; B} register CLK	0.35/ 0.06	0.42/ 0.08	0.52/ 0.11	0.64/ 0.11	ns
T _{DSPDCK_CEC_CREG} / T _{DSPCKD_CEC_CREG}	CEC input to C register CLK	0.28/ 0.10	0.34/ 0.11	0.42/ 0.13	0.49/ 0.16	ns
T _{DSPDCK_CED_DREG} / T _{DSPCKD_CED_DREG}	CED input to D register CLK	0.36/ 0.03	0.43/ 0.03	0.52/ 0.03	0.68/ 0.14	ns
T _{DSPDCK_CEM_MREG} / T _{DSPCKD_CEM_MREG}	CEM input to M register CLK	0.17/ 0.18	0.21/ 0.20	0.27/ 0.23	0.45/ 0.29	ns
T _{DSPDCK_CEP_PREG} / T _{DSPCKD_CEP_PREG}	CEP input to P register CLK	0.36/ 0.01	0.43/ 0.01	0.53/ 0.01	0.63/ 0.00	ns

Table 32: Horizontal Clock Buffer Switching Characteristics (BUFH)

Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Т _{внско_о}	BUFH delay from I to O	0.10	0.11	0.13	0.16	ns
T _{BHCCK_CE} /T _{BHCKC_CE}	CE pin setup and hold	0.19/0.13	0.22/0.15	0.28/0.21	0.35/0.08	ns
Maximum Frequency						
F _{MAX_BUFH}	Horizontal clock buffer (BUFH)	628.00	628.00	464.00	394.00	MHz

Table 33: Duty Cycle Distortion and Clock-Tree Skew

	Description						
Symbol		Device		1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	
T _{DCD_CLK}	Global clock tree duty-cycle distortion ⁽¹⁾	All	0.20	0.20	0.20	0.25	ns
T _{CKSKEW}	Global clock tree skew ⁽²⁾	XC7A100T	0.27	0.33	0.36	0.48	ns
		XC7A200T	0.40	0.48	0.54	0.69	ns
T _{DCD_BUFIO}	I/O clock tree duty cycle distortion	All	0.14	0.14	0.14	0.14	ns
T _{BUFIOSKEW}	I/O clock tree skew across one clock region	All	0.03	0.03	0.03	0.03	ns
T _{DCD_BUFR}	Regional clock tree duty cycle distortion	All	0.18	0.18	0.18	0.18	ns

Notes:

1. These parameters represent the worst-case duty cycle distortion observable at the I/O flip flops. For all I/O standards, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times.

 The T_{CKSKEW} value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application.

MMCM Switching Characteristics

Table 34: MMCM Specification

Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
MMCM_F _{INMAX}	Maximum input clock frequency	800.00	800.00	800.00	800.00	MHz
MMCM_F _{INMIN}	Minimum input clock frequency	10.00	10.00	10.00	10.00	MHz
MMCM_F _{INJITTER}	Maximum input clock period jitter	< 2	ax			
MMCM_F _{INDUTY}	Allowable input duty cycle: 10-49 MHz	25	25	25	25	%
	Allowable input duty cycle: 50-199 MHz	30	30	30	30	%
	Allowable input duty cycle: 200-399 MHz	35	35	35	35	%
	Allowable input duty cycle: 400-499 MHz	40	40	40	40	%
	Allowable input duty cycle: >500 MHz	45	45	45	45	%
MMCM_F _{MIN_PSCLK}	Minimum dynamic phase-shift clock frequency	0.01	0.01	0.01	0.01	MHz
MMCM_F _{MAX_PSCLK}	Maximum dynamic phase-shift clock frequency	550.00	500.00	450.00	450.00	MHz
MMCM_F _{VCOMIN}	Minimum MMCM VCO frequency	600.00	600.00	600.00	600.00	MHz
MMCM_F _{VCOMAX}	Maximum MMCM VCO frequency	1600.00	1440.00	1200.00	1200.00	MHz

PLL Switching Characteristics

Table 35: PLL Specification

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	-
PLL_F _{INMAX}	Maximum input clock frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{INMIN}	Minimum input clock frequency	19.00	19.00	19.00	19.00	MHz
PLL_F _{INJITTER}	Maximum input clock period jitter	< 2	20% of clock	input perio	od or 1 ns N	lax
PLL_F _{INDUTY}	Allowable input duty cycle: 19-49 MHz	25	25	25	25	%
	Allowable input duty cycle: 50—199 MHz	30	30	30	30	%
	Allowable input duty cycle: 200-399 MHz	35	35	35	35	%
	Allowable input duty cycle: 400-499 MHz	40	40	40	40	%
	Allowable input duty cycle: >500 MHz	45	45	45	45	%
PLL_F _{VCOMIN}	Minimum PLL VCO frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{VCOMAX}	Maximum PLL VCO frequency	2133.00	1866.00	1600.00	1600.00	MHz
PLL_FBANDWIDTH	Low PLL bandwidth at typical ⁽¹⁾	1.00	1.00	1.00	1.00	MHz
	High PLL bandwidth at typical ⁽¹⁾	4.00	4.00	4.00	4.00	MHz
PLL_T _{STATPHAOFFSET}	Static phase offset of the PLL outputs ⁽²⁾	0.12	0.12	0.12	0.12	ns
PLL_T _{OUTJITTER}	PLL output jitter					
PLL_T _{OUTDUTY}	PLL output clock duty-cycle precision ⁽⁴⁾	0.20	0.20	0.20	0.25	ns
PLL_T _{LOCKMAX}	PLL maximum lock time	100.00	100.00	100.00	100.00	μs
PLL_F _{OUTMAX}	PLL maximum output frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{OUTMIN}	PLL minimum output frequency ⁽⁵⁾	6.25	6.25	6.25	6.25	MHz
PLL_T _{EXTFDVAR}	External clock feedback variation	< 2	20% of clock	input perio	od or 1 ns N	lax
PLL_RST _{MINPULSE}	Minimum reset pulse width	5.00	5.00	5.00	5.00	ns
PLL_F _{PFDMAX}	Maximum frequency at the phase frequency detector	550.00	500.00	450.00	450.00	MHz
PLL_F _{PFDMIN}	Minimum frequency at the phase frequency detector	19.00	19.00	19.00	19.00	MHz
PLL_T _{FBDELAY}	Maximum delay in the feedback path		3 ns Max	or one CL	KIN cycle	
Dynamic Reconfigura	tion Port (DRP) for PLL Before and After DCLK					
T _{PLLDCK_DADDR} / T _{PLLCKD_DADDR}	Setup and hold of D address	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLDCK_DI} /T _{PLLCKD_DI}	Setup and hold of D input	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLDCK_DEN} / T _{PLLCKD_DEN}	Setup and hold of D enable	1.76/0.00	1.97/0.00	2.29/0.00	2.40/0.00	ns, Min
T _{PLLDCK_DWE} / T _{PLLCKD_DWE}	Setup and hold of D write enable	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLCKO_DRDY}	CLK to out of DRDY	0.65	0.72	0.99	0.99	ns, Max
F _{DCK}	DCLK frequency	200.00	200.00	200.00	100.00	MHz, Max

Notes:

1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.

2. The static offset is measured between any PLL outputs with identical phase.

3. Values for this parameter are available in the Clocking Wizard. See http://www.xilinx.com/products/intellectual-property/clocking_wizard.htm.

4. Includes global clock buffer.

5. Calculated as $F_{VCO}/128$ assuming output duty cycle is 50%.

Device Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 36: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)

	Description	Device	Speed Grade					
Symbol				1.0V	0.9V	Units		
			-3	-2/-2L	-1	-2L		
SSTL15 Clock-Capa	able Clock Input to Output Delay using Outp	out Flip-Flop, Fast S	Slew Rate,	without MM	CM/PLL.			
T _{ICKOF}	Clock-capable clock input and OUTFF without MMCM/PLL (near clock region)	XC7A100T	5.14	5.74	6.72	7.64	ns	
		XC7A200T	5.47	6.11	7.16	8.10	ns	

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 37: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)

Symbol	Description	Device	Speed Grade				
				1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	1
SSTL15 Clock-Capa	ble Clock Input to Output Delay using Out	out Flip-Flop, Fast S	Slew Rate,	without MM	CM/PLL.		
T _{ICKOFFAR} C	Clock-capable clock input and OUTFF without MMCM/PLL (far clock region)	XC7A100T	5.38	6.01	7.02	7.96	ns
		XC7A200T	6.17	6.89	8.05	9.05	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 38: Clock-Capable Clock Input to Output Delay With MMCM

Symbol	Description	Device	Speed Grade					
				1.0V	0.9V	Units		
			-3	-2/-2L	-1	-2L		
SSTL15 Clock-Capa	ble Clock Input to Output Delay using Outp	out Flip-Flop, Fast S	Slew Rate, 1	with MMCM				
TICKOFMMCMCC Clock-capable clock input and OUTR with MMCM	Clock-capable clock input and OUTFF	XC7A100T	0.89	0.94	0.96	1.81	ns	
		XC7A200T	0.90	0.97	1.01	1.86	ns	

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

2. MMCM output jitter is already included in the timing calculation.

Table 39: Clock-Capable Clock Input to Output Delay With PLL

	Description	Device	Speed Grade					
Symbol				1.0V	0.9V	Units		
			-3	-2/-2L	-1	-2L		
SSTL15 Clock-Capa	ble Clock Input to Output Delay using Outp	out Flip-Flop, Fast S	Slew Rate, 1	with PLL.				
TICKOFPLLCC	Clock-capable clock input and OUTFF with PLL	XC7A100T	0.70	0.70	0.70	1.41	ns	
		XC7A200T	0.69	0.69	0.69	1.47	ns	

Notes:

- 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
- 2. PLL output jitter is already included in the timing calculation.

Table 40: Pin-to-Pin, Clock-to-Out using BUFIO

	Description								
Symbol			1.0V	0.9V	Units				
		-3	-2/-2L	-1	-2L				
SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, with BUFIO.									
T _{ICKOFCS}	Clock to out of I/O clock	5.01	5.61	6.64	7.34	ns			

Device Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 41: Global Clock Input Setup and Hold Without MMCM/PLL with ZHOLD_DELAY on HR I/O Banks

	Description	Device					
Symbol				1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	
Input Setup and Hole	d Time Relative to Global Clock Input Sigr	nal for SSTL15	Standard.(1))			
T _{PSFD} / T _{PHFD}	Full delay (legacy delay or default delay) global clock input and IFF ⁽²⁾ without MMCM/PLL with ZHOLD_DELAY on HR I/O banks	XC7A100T	2.69/-0.46	2.89/-0.46	3.34/-0.46	5.66/-0.52	ns
		XC7A200T	3.03/-0.50	3.27/-0.50	3.79/-0.50	6.66/-0.53	ns

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input flip-flop or latch

3. A zero "0" hold time listing indicates no hold time or a negative hold time.

Table 42: Clock-Capable Clock Input Setup and Hold With MMCM

Symbol	Description		Speed Grade					
		Device	1.0V			0.9V	Units	
			-3	-2/-2L	-1	-2L		
Input Setup and Hol	d Time Relative to Global Clock Input Sigr	nal for SSTL15	5 Standard.(1))				
T _{PSMMCMCC} / T _{PHMMCMCC}	No delay clock-capable clock input and $IFF^{(2)}$ with MMCM	XC7A100T	2.44/-0.62	2.80/-0.62	3.36/-0.62	2.15/-0.49	ns	
		XC7A200T	2.57/-0.63	2.94/-0.63	3.52/-0.63	2.32/-0.53	ns	

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input flip-flop or latch

3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 43: Clock-Capable Clock Input Setup and Hold With PLL

	Description						
Symbol		Device		1.0V		0.9V	Units
			-3	-2/-2L	-1	-2L	
Input Setup and Hol	d Time Relative to Clock-Capable Clock Ir	nput Signal for	SSTL15 Sta	ndard. <mark>(1)</mark>			
T _{PSPLLCC} / T _{PHPLLCC}	No delay clock-capable clock input and $IFF^{(2)}$ with PLL	XC7A100T	2.78/-0.32	3.15/-0.32	3.78/-0.32	2.47/-0.60	ns
		XC7A200T	2.91/-0.33	3.29/-0.33	3.94/-0.33	2.64/-0.63	ns

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input flip-flop or latch

3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 44: Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO

		Speed Grade							
Symbol	Description		1.0V		0.9V	Units			
		-3	-2/-2L	-1	-2L				
Input Setup and Hold Time Relative to a Forwarded Clock Input Pin Using BUFIO for SSTL15 Standard.									
T _{PSCS} /T _{PHCS}	Setup and hold of I/O clock	-0.38/1.31	-0.38/1.46	-0.38/1.76	-0.16/1.89	ns			

Table 45: Sample Window

Symbol	Description		1.0V	0.9V	Units	
		-3	-2/-2L	-1	-2L	-
T _{SAMP}	Sampling error at receiver pins ⁽¹⁾	0.59	0.64	0.70	0.70	ns
T _{SAMP_BUFIO}	Sampling error at receiver pins using BUFIO ⁽²⁾	0.35	0.40	0.46	0.46	ns

Notes:

- 1. This parameter indicates the total sampling error of the Artix-7 FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers' edges of operation. These measurements include:
 - CLK0 MMCM jitter
 - MMCM accuracy (phase offset)
 - MMCM phase shift resolution
 - These measurements do not include package or clock tree skew.
- This parameter indicates the total sampling error of the Artix-7 FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO clock network and IDELAY to capture the DDR input registers' edges of operation. These measurements do not include package or clock tree skew.

Additional Package Parameter Guidelines

The parameters in this section provide the necessary values for calculating timing budgets for Artix-7 FPGA clock transmitter and receiver data-valid windows.

Table 46: Package Skew

Symbol	Description	Device	Package	Value	Units
T _{PKGSKEW}	Package skew ⁽¹⁾	XC7A100T	CSG324	113	ps
			FTG256	120	ps
			FGG484	144	ps
			FGG676	153	ps
		XC7A200T	SBG484	111	ps
			FBG484	109	ps
			FBG676	121	ps
			FFG1156	151	ps

Notes:

- 1. These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest delay from die pad to ball.
- 2. Package delay information is available for these device/package combinations. This information can be used to deskew the package.

 Table 48 summarizes the DC specifications of the clock input of the GTP transceiver. Consult UG482: 7 Series FPGAs GTP

 Transceiver User Guide for further details.

Symbol	DC Parameter	Min	Тур	Max	Units
V _{IDIFF}	Differential peak-to-peak input voltage	350	-	2000	mV
R _{IN}	Differential input resistance	_	100	—	Ω
C _{EXT}	Required external AC coupling capacitor	_	100	_	nF

Table 48: GTP Transceiver Clock DC Input Level Specification

GTP Transceiver Switching Characteristics

Consult UG482: 7 Series FPGAs GTP Transceiver User Guide for further information.

Table 49: GTP Transceiver Performance

			Speed Grade								
					1.0	٥V			0.9V		
		Output	-	3	-2/-	-2L	-	1	-2	2L	1
Symbol	Description	Divider				Packag	је Туре				Units
			FFG FBG SBG	FGG FTG CSG	FFG FBG SBG	FGG FTG CSG	FFG FBG SBG	FGG FTG CSG	FFG FBG SBG	FGG FTG CSG	
F _{GTPMAX}	Maximum GTP transceiver data rate		6.6	5.4	6.6	5.4	3.75	3.75	3.75	3.75	Gb/s
F _{GTPMIN}	Minimum GTP transceiver da	ata rate	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	Gb/s
		1	3.2–6.6 3		3.2-	3.2–6.6 3.2–3.75		3.2–3.75		Gb/s	
F	PLL line rate range	2	1.6-	-3.3	1.6–3.3		1.6–3.2		1.6–3.2		Gb/s
' GTPRANGE		4	0.8–	1.65	0.8–1.65		0.8–1.6		0.8-	-1.6	Gb/s
		8	0.5–0	0.825	0.5–0	0.825	0.5–0.8		0.5–0.8		Gb/s
F _{GTPPLLRANGE}	GTP transceiver PLL frequer range	L frequency		1.6–3.3		1.6–3.3		1.6–3.3		1.6–3.3	

Table 50: GTP Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

		Speed Grade					
Symbol	Description		1.0V		0.9V	Units	
		-3	-2/-2L	-1	-2L		
F _{GTPDRPCLK}	GTPDRPCLK maximum frequency	175	175	156	125	MHz	

Table 51: GTP Transceiver Reference Clock Switching Characteristics

Symbol	Description	Conditions	AI	Unito		
	Description	Conditions	Min	Тур	Max	Units
F _{GCLK}	Reference clock frequency range		60	-	660	MHz
T _{RCLK}	Reference clock rise time	20% - 80%	Ι	200	-	ps
T _{FCLK}	Reference clock fall time	20% - 80%	-	200	-	ps
T _{DCREF}	Reference clock duty cycle	Transceiver PLL only	40	_	60	%

Symbol	Descr	iption	Min	Тур	Max	Units
F _{GTPRX}	Serial data rate	RX oversampler not enabled	0.500	—	F _{GTPMAX}	Gb/s
T _{RXELECIDLE}	Time for RXELECIDLE to respond	d to loss or restoration of data	-	10	-	ns
RX _{OOBVDPP}	OOB detect threshold peak-to-pea	ak	60	_	150	mV
RX _{SST}	Receiver spread-spectrum tracking ⁽¹⁾	Receiver spread-spectrum Modulated @ 33 KHz		_	5000	ppm
RX _{RL}	Run length (CID)		-	_	512	UI
RX _{PPMTOL}	Data/REFCLK PPM offset tolerance		-1250	-	1250	ppm
SJ Jitter Tolerance ⁽²⁾						
JT_SJ _{6.6}	Sinusoidal Jitter ⁽³⁾	6.6 Gb/s	0.44	_	-	UI
JT_SJ _{5.0}	Sinusoidal Jitter ⁽³⁾	5.0 Gb/s	0.44	_	-	UI
JT_SJ _{4.25}	Sinusoidal Jitter ⁽³⁾	4.25 Gb/s	0.44	_	-	UI
JT_SJ _{3.75}	Sinusoidal Jitter ⁽³⁾	3.75 Gb/s	0.44	_	-	UI
JT_SJ _{3.2}	Sinusoidal Jitter ⁽³⁾	3.2 Gb/s ⁽⁴⁾	0.45	_	-	UI
JT_SJ _{3.2L}	Sinusoidal Jitter ⁽³⁾	3.2 Gb/s ⁽⁵⁾	0.45	_	-	UI
JT_SJ _{2.5}	Sinusoidal Jitter ⁽³⁾	2.5 Gb/s ⁽⁶⁾	0.5	_	-	UI
JT_SJ _{1.25}	Sinusoidal Jitter ⁽³⁾	1.25 Gb/s ⁽⁷⁾	0.5	_	-	UI
JT_SJ ₅₀₀	Sinusoidal Jitter ⁽³⁾	500 Mb/s	0.4	_	-	UI
SJ Jitter Tolerance with	n Stressed Eye ⁽²⁾					
JT_TJSE _{3.2}	Total litter with Stressed Eve(8)	3.2 Gb/s	0.70	_	-	UI
JT_TJSE _{6.6}	I I I I I I I I I I I I I I I I I I I	6.6 Gb/s	0.70	-	-	UI
JT_SJSE _{3.2}	Sinusoidal Jitter with Stressed	3.2 Gb/s	0.1	-	-	UI
JT_SJSE _{6.6}	Eye ⁽⁸⁾	6.6 Gb/s	0.1	-	-	UI

Table 55: GTP Transceiver Receiver Switching Characteristics

Notes:

- 1. Using $RXOUT_DIV = 1, 2, and 4$.
- 2. All jitter values are based on a bit error ratio of $1e^{-12}$.
- 3. The frequency of the injected sinusoidal jitter is 10 MHz.
- 4. PLL frequency at 3.2 GHz and RXOUT_DIV = 2.
- 5. PLL frequency at 1.6 GHz and RXOUT_DIV = 1.
- 6. PLL frequency at 2.5 GHz and RXOUT_DIV = 2.
- 7. PLL frequency at 2.5 GHz and RXOUT_DIV = 4.
- 8. Composite jitter.

Table 60: CPRI Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units			
CPRI Transmitter Jitter Generation							
	614.4	-	0.35	UI			
	1228.8	-	0.35	UI			
Total transmitter jitter	2457.6	-	0.35	UI			
	3072.0	-	0.35	UI			
	4915.2	-	0.3	UI			
	6144.0	-	0.3	UI			
CPRI Receiver Frequency Jitter Tolerance							
	614.4	0.65	-	UI			
	1228.8	0.65	-	UI			
Total rappivar iittar talaranga	2457.6	0.65	-	UI			
	3072.0	0.65	-	UI			
	4915.2 ⁽¹⁾	0.60	-	UI			
	6144.0 ⁽¹⁾	0.60	-	UI			

Notes:

1. Tested to CEI-6G-SR.

Integrated Interface Block for PCI Express Designs Switching Characteristics

More information and documentation on solutions for PCI Express designs can be found at: http://www.xilinx.com/technology/protocols/pciexpress.htm

Table 61: Maximum Performance for PCI Express Designs

Symbol	Description		1.0V	0.9V	Units	
		-3	-2/-2L	-1	-2L	
F _{PIPECLK}	Pipe clock maximum frequency	250.00	250.00	250.00	250.00	MHz
F _{USERCLK}	User clock maximum frequency	250.00	250.00	250.00	250.00	MHz
F _{USERCLK2}	User clock 2 maximum frequency	250.00	250.00	250.00	250.00	MHz
F _{DRPCLK}	DRP clock maximum frequency	250.00	250.00	250.00	250.00	MHz

Table 62: XADC Specifications (Cont'd)

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
DCLK Duty Cycle			40	-	60	%
XADC Reference ⁽⁵⁾						
External Reference	V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V
On-Chip Reference		Ground V _{REFP} pin to AGND, $T_j = -40^{\circ}C$ to 100°C	1.2375	1.25	1.2625	V

Notes:

- 1. Offset and gain errors are removed by enabling the XADC automatic gain calibration feature. The values are specified for when this feature is enabled.
- 2. Only specified for BitGen option XADCEnhancedLinearity = ON.
- 3. See the ADC chapter in UG480: 7 Series FPGAs XADC User Guide for a detailed description.
- 4. See the Timing chapter in UG480: 7 Series FPGAs XADC User Guide for a detailed description.
- 5. Any variation in the reference voltage from the nominal V_{REFP} = 1.25V and V_{REFN} = 0V will result in a deviation from the ideal transfer function. This also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external ratiometric type applications allowing reference to vary by ±4% is permitted. On-chip reference variation is ±1%.

Configuration Switching Characteristics

Table 63: Configuration Switching Characteristics

	Description							
Symbol		1.0V			0.9V	Units		
		-3	-2/-2L	-1	-2L			
Power-up Timing Cha	aracteristics							
T _{PL} ⁽¹⁾	Program latency	5.00	5.00	5.00	5.00	ms, Max		
T _{POR} ⁽¹⁾	Power-on reset (50 ms ramp rate time)	10/50	10/50	10/50	10/50	ms, Min/Max		
	Power-on reset (1 ms ramp rate time)	10/35	10/35	10/35	10/35	ms, Min/Max		
T _{PROGRAM}	Program pulse width	250.00	250.00	250.00	250.00	ns, Min		
CCLK Output (Master Mode)								
T _{ICCK}	Master CCLK output delay	150.00	150.00	150.00	150.00	ns, Min		
T _{MCCKL}	Master CCLK clock Low time duty cycle	40/60	40/60	40/60	40/60	%, Min/Max		
Т _{МССКН}	Master CCLK clock High time duty cycle	40/60	40/60	40/60	40/60	%, Min/Max		
F _{MCCK}	Master CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max		
	Master CCLK frequency for AES encrypted x16	50.00	50.00	50.00	35.00	MHz, Max		
F _{MCCK_START}	Master CCLK frequency at start of configuration	3.00	3.00	3.00	3.00	MHz, Typ		
F _{MCCKTOL}	Frequency tolerance, master mode with respect to nominal CCLK	±50	±50	±50	±50	%, Max		
CCLK Input (Slave M	CCLK Input (Slave Modes)							
T _{SCCKL}	Slave CCLK clock minimum Low time	2.50	2.50	2.50	2.50	ns, Min		
Т _{SCCKH}	Slave CCLK clock minimum High time	2.50	2.50	2.50	2.50	ns, Min		
F _{SCCK}	Slave CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max		
EMCCLK Input (Master Mode)								
T _{EMCCKL}	External master CCLK Low time	2.50	2.50	2.50	2.50	ns, Min		
T _{EMCCKH}	External master CCLK High time	2.50	2.50	2.50	2.50	ns, Min		
F _{EMCCK}	External master CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max		