

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	16825
Number of Logic Elements/Cells	215360
Total RAM Bits	13455360
Number of I/O	285
Number of Gates	-
Voltage - Supply	0.95V ~ 1.05V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-FBGA, FCBGA
Supplier Device Package	484-FCBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7a200t-2sbg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾ (Cont'd)

Symbol	Description	Min	Тур	Max	Units
Temperature					
	Junction temperature operating range for commercial (C) temperature devices	0	-	85	ů
Тj	Junction temperature operating range for extended (E) temperature devices	0	-	100	°C
	Junction temperature operating range for industrial (I) temperature devices	-40	-	100	°C

Notes:

- 1. All voltages are relative to ground.
- 2. For the design of the power distribution system consult UG483, 7 Series FPGAs PCB Design and Pin Planning Guide.
- 3. Configuration data is retained even if $V_{\mbox{\scriptsize CCO}}$ drops to 0V.
- 4. Includes V_{CCO} of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- 5. The lower absolute voltage specification always applies.
- 6. A total of 200 mA per bank should not be exceeded.
- 7. V_{CCBATT} is required only when using bitstream encryption. If battery is not used, connect V_{CCBATT} to either ground or V_{CCAUX}.
- 8. Each voltage listed requires the filter circuit described in UG482: 7 Series FPGAs GTP Transceiver User Guide.
- 9. Voltages are specified for the temperature range of $T_i = 0^{\circ}C$ to +85°C.

Table 3: DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
V _{DRINT}	Data retention V_{CCINT} voltage (below which configuration data might be lost)	0.75	—	—	V
V _{DRI}	Data retention V_{CCAUX} voltage (below which configuration data might be lost)	1.5	-	-	V
I _{REF}	V _{REF} leakage current per pin	-	-	15	μA
١L	Input or output leakage current per pin (sample-tested)	-	-	15	μA
C _{IN} ⁽²⁾	Die input capacitance at the pad	-	-	8	pF
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 3.3V$	90	-	330	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 2.5V$	68	-	250	μA
I _{RPU}	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.8V	34	-	220	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.5V$	23	-	150	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.2V$	12	_	120	μA
	Pad pull-down (when selected) @ V _{IN} = 3.3V	68	-	330	μA
IRPD	Pad pull-down (when selected) @ V _{IN} = 1.8V	45	_	180	μA
I _{CCADC}	Analog supply current, analog circuits in powered up state	-	_	25	mA
I _{BATT} ⁽³⁾	Battery supply current	-	-	150	nA
	The venin equivalent resistance of programmable input termination to V _{CCO} /2 (UNTUNED_SPLIT_40) for commercial (C), and industrial (I), and extended (E) temperature devices	28	40	55	Ω
R _{IN_TERM} ⁽⁴⁾	The venin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_50) for commercial (C), and industrial (I), and extended (E) temperature devices	35	50	65	Ω
	The venin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_60) for commercial (C), and industrial (I), and extended (E) temperature devices	44	60	83	Ω

Table 3: DC Characteristics Over Recommended Operating Conditions (Cont'd)

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
n	Temperature diode ideality factor	-	1.010	-	-
r	Temperature diode series resistance	I	2	_	Ω

Notes:

1. Typical values are specified at nominal voltage, 25°C.

2. This measurement represents the die capacitance at the pad, not including the package.

3. Maximum value specified for worst case process at 25°C.

4. Termination resistance to a $V_{CCO}/2$ level.

Table 4: VIN Maximum Allowed AC Voltage Overshoot and Undershoot for 3.3V HR I/O Banks⁽¹⁾

AC Voltage Overshoot	% of UI @-40°C to 100°C	AC Voltage Undershoot	% of UI @-40°C to 100°C
V _{CCO} + 0.40	100	-0.40	100
V _{CCO} + 0.45	100	-0.45	61.7
V _{CCO} + 0.50	100	-0.50	25.8
V _{CCO} + 0.55	100	-0.55	11.0
V _{CCO} + 0.60	46.6	-0.60	4.77
V _{CCO} + 0.65	21.2	-0.65	2.10
V _{CCO} + 0.70	9.75	-0.70	0.94
V _{CCO} + 0.75	4.55	-0.75	0.43
V _{CCO} + 0.80	2.15	-0.80	0.20
V _{CCO} + 0.85	1.02	-0.85	0.09
V _{CCO} + 0.90	0.49	-0.90	0.04
V _{CCO} + 0.95	0.24	-0.95	0.02

Notes:

1. A total of 200 mA per bank should not be exceeded.

Table 5: Typical Quiescent Supply Current

		Device					
Symbol	Description			1.0V		0.9V	Units
			-3	-2/-2L	-1	-2L	
ICCINTQ	Quiescent V _{CCINT} supply current	XC7A100T	155	155	155	108	mA
		XC7A200T	328	328	328	232	mA
I _{CCOQ}	Quiescent V _{CCO} supply current	XC7A100T	4	4	4	4	mA
		XC7A200T	5	5	5	5	mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XC7A100T	36	36	36	36	mA
		XC7A200T	73	73	73	73	mA
I _{CCBRAMQ}	Quiescent V _{CCBRAM} supply current	XC7A100T	4	4	4	4	mA
		XC7A200T	11	11	11	11	mA

Notes:

1. Typical values are specified at nominal voltage, 85°C junction temperature (T_j) with single-ended SelectIO resources.

2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.

3. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power consumption for conditions other than those specified.

DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum V_{CCO} with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

1/O Standard		V _{IL}	v _i	н	V _{OL}	V _{OH}	I _{OL}	I _{ОН}
1/O Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
HSTL_I	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8.00	-8.00
HSTL_I_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8.00	-8.00
HSTL_II	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16.00	-16.00
HSTL_II_18	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16.00	-16.00
HSUL_12	-0.300	V _{REF} – 0.130	V _{REF} + 0.130	V _{CCO} + 0.300	20% V _{CCO}	80% V _{CCO}	0.10	-0.10
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	Note 3	Note 3
LVCMOS15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	Note 4	Note 4
LVCMOS18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} – 0.450	Note 5	Note 5
LVCMOS25	-0.300	0.7	1.700	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	Note 4	Note 4
LVCMOS33	-0.300	0.8	2.000	3.450	0.400	V _{CCO} - 0.400	Note 4	Note 4
LVTTL	-0.300	0.8	2.000	3.450	0.400	2.400	Note 5	Note 5
MOBILE_DDR	-0.300	20% V _{CCO}	80% V _{CCO}	V _{CCO} + 0.300	10% V _{CCO}	90% V _{CCO}	0.10	-0.10
PCI33_3	-0.500	30% V _{CCO}	50% V _{CCO}	V _{CCO} + 0.500	10% V _{CCO}	90% V _{CCO}	1.50	-0.50
SSTL135	-0.300	V _{REF} – 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	13.00	-13.00
SSTL135_R	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	8.90	-8.90
SSTL15	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	13.00	-13.00
SSTL15_R	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	8.90	-8.90
SSTL18_I	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	V _{CCO} /2 - 0.470	V _{CCO} /2 + 0.470	8.00	-8.00
SSTL18_II	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	$V_{CCO}/2 - 0.600$	$V_{CCO}/2 + 0.600$	13.40	-13.40

Tahle	g.	SelectIO	DC In	nut and	Output	Levels(1)(2)
Iable	ο.	Selectio		put anu	Output	Leveis

Notes:

1. Tested according to relevant specifications.

- 2. 3.3V and 2.5V standards are only supported in 3.3V I/O banks.
- 3. Supported drive strengths of 4, 8, or 12 mA in HR I/O banks.
- 4. Supported drive strengths of 4, 8, 12, or 16 mA in HR I/O banks.

5. Supported drive strengths of 4, 8, 12, 16, or 24 mA in HR I/O banks.

6. For detailed interface specific DC voltage levels, see UG471: 7 Series FPGAs SelectIO Resources User Guide.

I/O Standard	V _{ICM} ⁽¹⁾			V _{ID} ⁽²⁾		V _{осм} ⁽³⁾			V _{OD} ⁽⁴⁾			
VO Standard	V, Min	V, Тур	V, Max	V, Min	V, Тур	V, Max	V, Min	V, Тур	V, Max	V, Min	V, Тур	V, Max
BLVDS_25	0.300	1.200	1.425	0.100	-	-	-	1.250	-		Note 5	
MINI_LVDS_25	0.300	1.200	V _{CCAUX}	0.200	0.400	0.600	1.000	1.200	1.400	0.300	0.450	0.600
PPDS_25	0.200	0.900	V _{CCAUX}	0.100	0.250	0.400	0.500	0.950	1.400	0.100	0.250	0.400
RSDS_25	0.300	0.900	1.500	0.100	0.350	0.600	1.000	1.200	1.400	0.100	0.350	0.600
TMDS_33	2.700	2.965	3.230	0.150	0.675	1.200	V _{CCO} -0.405	V _{CCO} -0.300	V _{CCO} -0.190	0.400	0.600	0.800

Table 9: Differential SelectIO DC Input and Output Levels

Notes:

1. V_{ICM} is the input common mode voltage.

2. V_{ID} is the input differential voltage $(Q - \overline{Q})$.

3. V_{OCM} is the output common mode voltage.

4. V_{OD} is the output differential voltage $(Q - \overline{Q})$.

5. V_{OD} for BLVDS will vary significantly depending on topology and loading.

Table 10: Complementary Differential SelectIO DC Input and Output Levels

I/O Standard	V _{ICM} ⁽¹⁾			V _{ID} ⁽²⁾		V _{OL} (3)	V _{OH} ⁽⁴⁾	I _{OL}	I _{ОН}
1/O Standard	V, Min	V,Тур	V, Max	V,Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
DIFF_HSTL_I	0.300	0.750	1.125	0.100	-	0.400	V _{CCO} -0.400	8.00	-8.00
DIFF_HSTL_I_18	0.300	0.900	1.425	0.100	-	0.400	V _{CCO} -0.400	8.00	-8.00
DIFF_HSTL_II	0.300	0.750	1.125	0.100	-	0.400	V _{CCO} -0.400	16.00	-16.00
DIFF_HSTL_II_18	0.300	0.900	1.425	0.100	-	0.400	V _{CCO} -0.400	16.00	-16.00
DIFF_HSUL_12	0.300	0.600	0.850	0.100	-	20% V _{CCO}	80% V _{CCO}	0.100	-0.100
DIFF_MOBILE_DDR	0.300	0.900	1.425	0.100	-	10% V _{CCO}	90% V _{CCO}	0.100	-0.100
DIFF_SSTL135	0.300	0.675	1.000	0.100	-	(V _{CCO} /2) - 0.150	$(V_{CCO}/2) + 0.150$	13.0	-13.0
DIFF_SSTL135_R	0.300	0.675	1.000	0.100	-	(V _{CCO} /2) - 0.150	(V _{CCO} /2) + 0.150	8.9	-8.9
DIFF_SSTL15	0.300	0.750	1.125	0.100	-	(V _{CCO} /2) – 0.175	$(V_{CCO}/2) + 0.175$	13.0	-13.0
DIFF_SSTL15_R	0.300	0.750	1.125	0.100	-	(V _{CCO} /2) - 0.175	$(V_{CCO}/2) + 0.175$	8.9	-8.9
DIFF_SSTL18_I	0.300	0.900	1.425	0.100	-	$(V_{CCO}/2) - 0.470$	$(V_{CCO}/2) + 0.470$	8.00	-8.00
DIFF_SSTL18_II	0.300	0.900	1.425	0.100	-	$(V_{CCO}/2) - 0.600$	$(V_{CCO}/2) + 0.600$	13.4	-13.4

Notes:

1. V_{ICM} is the input common mode voltage.

2. V_{ID} is the input differential voltage $(Q - \overline{Q})$.

3. V_{OL} is the single-ended low-output voltage.

4. V_{OH} is the single-ended high-output voltage.

LVDS DC Specifications (LVDS_25)

See <u>UG471</u>: 7 Series FPGAs SelectIO Resources User Guide for more information on the LVDS_25 standard in the HR I/O banks.

Table	11:	LVDS	25	DC	Specifications
-------	-----	------	----	----	----------------

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply Voltage		2.375	2.500	2.625	V
V _{OH}	Output High Voltage for Q and \overline{Q}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	-	_	1.675	V
V _{OL}	Output Low Voltage for Q and \overline{Q}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	0.700	_	_	V
V _{ODIFF}	Differential Output Voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	R_T = 100 Ω across Q and \overline{Q} signals	247	350	600	mV
V _{OCM}	Output Common-Mode Voltage	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
VIDIFF	Differential Input Voltage (Q – \overline{Q}), Q = H	100	350	600	mV	
V _{ICM}	Input Common-Mode Voltage		0.300	1.200	1.425	V

AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications in v1.07 from the 14.4/2012.4 device pack for ISE® Design Suite14.4 and Vivado® Design Suite 2012.4 for the -3, -2, -2L (1.0V), and -1 speed grades and v1.05 from the 14.4/2012.4 device pack for the -2L (0.9V) speed grade.

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production Product Specification

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Testing of AC Switching Characteristics

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Artix-7 FPGAs.

Speed Grade Designations

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 12 correlates the current status of each Artix-7 device on a per speed grade basis.

Table 12: Artix-7 Device Speed Grade Designations

Daviaa	Speed Grade Designations						
Device	Advance	Preliminary	Production				
XC7A100T	-2L (0.9V)		-3, -2, -2L (1.0V), -1				
XC7A200T	-2L (0.9V)		-3, -2, -2L (1.0V), -1				

Production Silicon and ISE Software Status

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases.

Table 13 lists the production released Artix-7 device, speed grade, and the minimum corresponding supported speed specification version and ISE software revisions. The ISE software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Table 13: Artix-7 Device Production Software and Speed Specification Release

Device		Speed Grade					
		1.0V					
	-3	-2/-2L	-1	-2L			
XC7A100T	ISE 14.4 and Vivac	ISE 14.4 and Vivado 2012.4 with the 14.4/2012.4 device pack v1.07					
XC7A200T	ISE 14.4 and Vivac	ISE 14.4 and Vivado 2012.4 with the 14.4/2012.4 device pack v1.07					

Notes:

1. Blank entries indicate a device and/or speed grade in advance or preliminary status.

Output Serializer/Deserializer Switching Characteristics

Table 21: OSERDES Switching Characteristics

Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Setup/Hold						
T _{OSDCK_D} /T _{OSCKD_D}	D input setup/hold with respect to CLKDIV	0.42/0.03	0.45/0.03	0.63/0.03	0.44/-0.25	ns
T _{OSDCK_T} /T _{OSCKD_T} ⁽¹⁾	T input setup/hold with respect to CLK	0.69/-0.13	0.73/-0.13	0.88/-0.13	0.60/-0.25	ns
T _{OSDCK_T2} /T _{OSCKD_T2} ⁽¹⁾	T input setup/hold with respect to CLKDIV	0.31/-0.13	0.34/-0.13	0.39/-0.13	0.46/-0.25	ns
T _{OSCCK_OCE} /T _{OSCKC_OCE}	OCE input setup/hold with respect to CLK	0.32/0.58	0.34/0.58	0.51/0.58	0.21/-0.15	ns
T _{OSCCK_S}	SR (reset) input setup with respect to CLKDIV	0.47	0.52	0.85	0.70	ns
T _{OSCCK_TCE} /T _{OSCKC_TCE}	TCE input setup/hold with respect to CLK	0.32/0.01	0.34/0.01	0.51/0.01	0.22/-0.15	ns
Sequential Delays						
T _{OSCKO_OQ}	Clock to out from CLK to OQ	0.40	0.42	0.48	0.54	ns
T _{OSCKO_TQ}	Clock to out from CLK to TQ	0.47	0.49	0.56	0.63	ns
Combinatorial	·	•	*	•		
T _{OSDO_TTQ}	T input to TQ Out	0.83	0.92	1.11	1.18	ns

Notes:

1. $T_{OSDCK_{T2}}$ and $T_{OSCKD_{T2}}$ are reported as $T_{OSDCK_{T}}/T_{OSCKD_{T}}$ in TRACE report.

Input/Output Delay Switching Characteristics

Table 22: Input/Output Delay Switching Characteristics

Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	0.9V -2L 3.22 200.00 N/A ±10 52.00 0 ±5 ±9 520.00 0.14/0.16 0.10/0.23	
IDELAYCTRL						<u> </u>
T _{DLYCCO_RDY}	Reset to ready for IDELAYCTRL	3.67	3.67	3.67	3.22	μs
FIDELAYCTRL_REF	Attribute REFCLK frequency = 200.00 ⁽¹⁾	200.00	200.00	200.00	200.00	MHz
	Attribute REFCLK frequency = 300.00 ⁽¹⁾	300.00	300.00	N/A	N/A	MHz
IDELAYCTRL_REF_PRECISION	REFCLK precision	±10	±10	±10	±10	MHz
T _{IDELAYCTRL_RPW}	Minimum Reset pulse width	59.28	59.28	59.28	52.00	ns
IDELAY		1	1	1	1	
TIDELAYRESOLUTION	IDELAY chain delay resolution			ps		
	Pattern dependent period jitter in delay chain for clock pattern. ⁽²⁾	0	0	0	0	ps per tap
T _{IDELAYPAT_JIT}	Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) ⁽³⁾	±5	±5	±5	±5	ps per tap
	Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) ⁽⁴⁾	±9	±9	±9	-2L 3.22 200.00 N/A ±10 52.00 0 ±5 ±9 520.00 6 0.14/0.16 2 0.10/0.23 4 0.22/0.19 Note 5	ps per tap
T _{IDELAY_CLK_MAX}	Maximum frequency of CLK input to IDELAY	680.00	680.00	600.00	520.00	MHz
TIDCCK_CE / TIDCKC_CE	CE pin setup/hold with respect to C for IDELAY	0.12/0.11	0.16/0.13	0.21/0.16	0.14/0.16	ns
TIDCCK_INC/ TIDCKC_INC	INC pin setup/hold with respect to C for IDELAY	0.12/0.16	0.14/0.18	0.16/0.22	0.10/0.23	ns
TIDCCK_RST/ TIDCKC_RST	RST pin setup/hold with respect to C for IDELAY	0.15/0.09	0.16/0.11	0.18/0.14	0.22/0.19	ns
T _{IDDO_IDATAIN}	Propagation delay through IDELAY	Note 5	Note 5	Note 5	Note 5	ps

Notes:

- 1. Average Tap Delay at 200 MHz = 78 ps, at 300 MHz = 52 ps.
- 2. When HIGH_PERFORMANCE mode is set to TRUE or FALSE.
- 3. When HIGH_PERFORMANCE mode is set to TRUE.
- 4. When HIGH_PERFORMANCE mode is set to FALSE.
- 5. Delay depends on IDELAY tap setting. See TRACE report for actual values.

CLB Switching Characteristics

Table 24: CLB Switching Characteristics

Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Combinatorial Delays	5					
T _{ILO}	An – Dn LUT address to A	0.10	0.11	0.13	0.15	ns, Max
T _{ILO_2}	An – Dn LUT address to AMUX/CMUX	0.27	0.30	0.36	0.41	ns, Max
T _{ILO_3}	An – Dn LUT address to BMUX_A	0.42	0.46	0.55	0.65	ns, Max
T _{ITO}	An – Dn inputs to A – D Q outputs	0.94	1.05	1.27	1.51	ns, Max
T _{AXA}	AX inputs to AMUX output	0.62	0.69	0.84	1.01	ns, Max
T _{AXB}	AX inputs to BMUX output	0.58	0.66	0.83	0.98	ns, Max
T _{AXC}	AX inputs to CMUX output	0.60	0.68	0.82	0.98	ns, Max
T _{AXD}	AX inputs to DMUX output	0.68	0.75	0.90	1.08	ns, Max
T _{BXB}	BX inputs to BMUX output	0.51	0.57	0.69	0.82	ns, Max
T _{BXD}	BX inputs to DMUX output	0.62	0.69	0.82	0.99	ns, Max
T _{CXC}	CX inputs to CMUX output	0.42	0.48	0.58	0.69	ns, Max
T _{CXD}	CX inputs to DMUX output	0.53	0.59	0.71	0.86	ns, Max
T _{DXD}	DX inputs to DMUX output	0.52	0.58	0.70	0.84	ns, Max
Sequential Delays			L	L		
Т _{СКО}	Clock to AQ – DQ outputs	0.40	0.44	0.53	0.62	ns, Max
Т _{SHCKO}	Clock to AMUX – DMUX outputs	0.47	0.53	0.66	0.73	ns, Max
Setup and Hold Time	s of CLB Flip-Flops Before/After Clock CLK		L	L		
T _{AS} /T _{AH}	$A_N - D_N$ input to CLK on A – D flip-flops	0.07/0.12	0.09/0.14	0.11/0.18	0.11/0.20	ns, Min
T _{DICK} /T _{CKDI}	$A_X - D_X$ input to CLK on A – D flip-flops	0.06/0.19	0.07/0.21	0.09/0.26	0.09/0.31	ns, Min
	$A_X - D_X$ input through MUXs and/or carry logic to CLK on $A-D$ flip-flops	0.59/0.08	0.66/0.09	0.81/0.11	0.97/0.12	ns, Min
T _{CECK_CLB} / T _{CKCE_CLB}	CE input to CLK on A – D flip-flops	0.15/0.00	0.17/0.00	0.21/0.01	0.34/-0.01	ns, Min
T _{SRCK} /T _{CKSR}	SR input to CLK on A – D flip-flops	0.38/0.03	0.43/0.04	0.53/0.05	0.62/0.05	ns, Min
Set/Reset			L	L		
T _{SRMIN}	SR input minimum pulse width	0.52	0.78	1.04	0.95	ns, Min
T _{RQ}	Delay from SR input to AQ – DQ flip-flops	0.53	0.59	0.71	0.83	ns, Max
T _{CEO}	Delay from CE input to AQ – DQ flip-flops	0.52	0.58	0.70	0.83	ns, Max
F _{TOG}	Toggle frequency (for export control)	1412	1286	1098	1098	MHz

CLB Distributed RAM Switching Characteristics (SLICEM Only)

Table 25: CLB Distributed RAM Switching Characteristics

Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Sequential Delays		·				
Т _{SHCKO}	Clock to A – B outputs	0.98	1.09	1.32	1.54	ns, Max
T _{SHCKO_1}	Clock to AMUX – BMUX outputs	1.37	1.53	1.86	2.18	ns, Max
Setup and Hold Time	s Before/After Clock CLK					
T _{DS_LRAM} /T _{DH_LRAM}	A – D inputs to CLK	0.54/0.28	0.60/0.30	0.72/0.35	0.96/0.40	ns, Min
T _{AS_LRAM} /T _{AH_LRAM}	Address An inputs to clock	0.27/0.55	0.30/0.60	0.37/0.70	0.43/0.71	ns, Min
	Address An inputs through MUXs and/or carry logic to clock	0.69/0.18	0.77/0.21	0.94/0.26	1.11/0.29	ns, Min
T _{WS_LRAM} /T _{WH_LRAM}	WE input to clock	0.38/0.10	0.43/0.12	0.53/0.17	0.62/0.13	ns, Min
T _{CECK_LRAM} / T _{CKCE_LRAM}	CE input to CLK	0.39/0.10	0.44/0.11	0.53/0.17	0.63/0.12	ns, Min
Clock CLK						
T _{MPW_LRAM}	Minimum pulse width	1.05	1.13	1.25	0.82	ns, Min
T _{MCP}	Minimum clock period	2.10	2.26	2.50	1.64	ns, Min

Notes:

- 1. A Zero "0" Hold Time listing indicates no hold time or a negative hold time.
- 2. T_{SHCKO} also represents the CLK to XMUX output. Refer to TRACE report for the CLK to XMUX path.

CLB Shift Register Switching Characteristics (SLICEM Only)

Table 26: CLB Shift Register Switching Characteristics

			Speed	Grade			
Symbol	Description		1.0V		0.9V	Units	
		-3	-2/-2L	-1	-2L		
Sequential Delays							
T _{REG}	Clock to A – D outputs	1.19	1.33	1.61	1.89	ns, Max	
T _{REG_MUX}	Clock to AMUX – DMUX output	1.58	1.77	2.15	2.53	ns, Max	
T _{REG_M31}	Clock to DMUX output via M31 output	1.12	1.23	1.46	1.68	ns, Max	
Setup and Hold Time	s Before/After Clock CLK	L					
T _{WS_SHFREG} / T _{WH_SHFREG}	WE input	0.37/0.10	0.41/0.12	0.51/0.17	0.59/0.13	ns, Min	
T _{CECK_SHFREG} / T _{CKCE_SHFREG}	CE input to CLK	0.37/0.10	0.42/0.11	0.52/0.17	0.60/0.12	ns, Min	
T _{DS_SHFREG} / T _{DH_SHFREG}	A – D inputs to CLK	0.33/0.34	0.37/0.37	0.44/0.43	0.54/0.47	ns, Min	
Clock CLK							
T _{MPW_SHFREG}	Minimum pulse width	0.77	0.86	0.98	1.04	ns, Min	

Notes:

1. A Zero "0" Hold Time listing indicates no hold time or a negative hold time.

Block RAM and FIFO Switching Characteristics

Table 27: Block RAM and FIFO Switching Characteristics

		Speed Grade				
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	-
Block RAM and FIFO Clock-to	-Out Delays					
T _{RCKO_DO} and T _{RCKO_DO} BEG ⁽¹⁾	Clock CLK to DOUT output (without output register) ⁽²⁾⁽³⁾	1.85	2.13	2.46	2.87	ns, Max
	Speed Grade Unit Description Speed Grade Unit Int Description Order CLK to DOUT output (without uput 1.85 2.13 2.46 2.87 n, N Clock CLK to DOUT output (with output 0.64 0.74 0.89 1.02 ns, N Clock CLK to DOUT output with ECC 2.77 3.04 3.84 5.30 ns, N Clock CLK to DOUT output with ECC 0.73 0.81 0.94 1.11 ns, N Clock CLK to DOUT output with ECC 0.73 0.81 0.94 1.11 ns, N Clock CLK to DOUT output with ECC 0.73 0.81 0.94 1.11 ns, N Clock CLK to DOUT output with ECC 0.73 0.81 1.55 1.64 1.65 N <	ns, Max				
T _{RCKO_DO_ECC} and T _{BCKO_DO_ECC} BEG	Clock CLK to DOUT output with ECC (without output register) ⁽²⁾⁽³⁾	2.77	3.04	3.84	5.30	ns, Max
	Clock CLK to DOUT output with ECC (with output register) ⁽⁴⁾⁽⁵⁾	0.73	0.81	0.94	1.11	ns, Max
T _{RCKO_DO_CASCOUT} and T _{BCKO_DO_CASCOUT} BEG	Clock CLK to DOUT output with cascade (without output register) ⁽²⁾	2.61	2.88	3.30	3.76	ns, Max
1010_50_5100001_1120	Clock CLK to DOUT output with cascade (with output register) ⁽⁴⁾	1.16	1.28	1.46	1.56	ns, Max
T _{RCKO_FLAGS}	Clock CLK to FIFO flags outputs ⁽⁶⁾	0.76	0.87	1.05	1.14	ns, Max
T _{RCKO_POINTERS}	Clock CLK to FIFO pointers outputs ⁽⁷⁾	0.94	1.02	1.15	1.30	ns, Max
T _{RCKO_PARITY_ECC}	Clock CLK to ECCPARITY in ECC encode only mode	0.78	0.85	0.94	1.10	ns, Max
T _{RCKO_SDBIT_ECC} and T _{RCKO_SDBIT_ECC_REG}	Clock CLK to BITERR (without output register)	2.56	2.81	3.55	4.90	ns, Max
	Clock CLK to BITERR (with output register)	0.68	0.76	0.89	1.05	ns, Max
T _{RCKO_RDADDR_ECC} and T _{RCKO_RDADDR_ECC_REG}	Clock CLK to RDADDR output with ECC (without output register)	0.75	0.88	1.07	1.15	ns, Max
	Clock CLK to RDADDR output with ECC (with output register)	0.84	0.93	1.08	1.29	ns, Max
Setup and Hold Times Before	After Clock CLK	1	1	1		
T _{RCCK_ADDRA} /T _{RCKC_ADDRA}	ADDR inputs ⁽⁸⁾	0.45/0.31	0.49/0.33	0.57/0.36	0.77/0.45	ns, Min
T _{RDCK_DI_WF_NC} / T _{RCKD_DI_WF_NC}	Data input setup/hold time when block RAM is configured in WRITE_FIRST or NO_CHANGE mode ⁽⁹⁾	0.58/0.60	0.65/0.63	0.74/0.67	0.92/0.76	ns, Min
T _{RDCK_DI_RF} /T _{RCKD_DI_RF}	Data input setup/hold time when block RAM is configured in READ_FIRST mode ⁽⁹⁾	0.20/0.29	0.22/0.34	0.25/0.41	0.29/0.38	ns, Min
T _{RDCK_DI_ECC} /T _{RCKD_DI_ECC}	DIN inputs with block RAM ECC in standard mode ⁽⁹⁾	0.50/0.43	0.55/0.46	0.63/0.50	0.78/0.54	ns, Min
TRDCK_DI_ECCW/ TRCKD_DI_ECCW	DIN inputs with block RAM ECC encode only ⁽⁹⁾	0.93/0.43	1.02/0.46	1.17/0.50	1.38/0.48	ns, Min
TRDCK_DI_ECC_FIFO/ TRCKD_DI_ECC_FIFO	DIN inputs with FIFO ECC in standard mode ⁽⁹⁾	1.04/0.56	1.15/0.59	1.32/0.64	1.55/0.77	ns, Min
TRCCK_INJECTBITERR/ TRCKC_INJECTBITERR	Inject single/double bit error in ECC mode	0.58/0.35	0.64/0.37	0.74/0.40	0.92/0.48	ns, Min
T _{RCCK_EN} /T _{RCKC_EN}	Block RAM enable (EN) input	0.35/0.20	0.39/0.21	0.45/0.23	0.57/0.26	ns, Min
T _{RCCK_REGCE} /T _{RCKC_REGCE}	CE input of output register	0.24/0.15	0.29/0.15	0.36/0.16	0.40/0.19	ns, Min
T _{RCCK_RSTREG} /T _{RCKC_RSTREG}	Synchronous RSTREG input	0.29/0.07	0.32/0.07	0.35/0.07	0.41/0.07	ns, Min

DSP48E1 Switching Characteristics

Table 28: DSP48E1 Switching Characteristics

		Speed Grade				
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Setup and Hold Times of Data/Control Pins to	he Input Register Clock					·
T _{DSPDCK_A_AREG} / T _{DSPCKD_A_AREG}	A input to A register CLK	0.26/ 0.12	0.30/ 0.13	0.37/ 0.14	0.45/ 0.14	ns
T _{DSPDCK_B_BREG} /T _{DSPCKD_B_BREG}	B input to B register CLK	0.33/ 0.15	0.38/ 0.16	0.45/ 0.18	0.60/ 0.19	ns
TDSPDCK_C_CREG/TDSPCKD_C_CREG	C input to C register CLK	0.17/ 0.17	0.20/ 0.19	0.24/ 0.21	0.34/ 0.29	ns
T _{DSPDCK_D_DREG} /T _{DSPCKD_D_DREG}	D input to D register CLK	0.25/ 0.25	0.32/ 0.27	0.42/ 0.27	0.54/ 0.23	ns
TDSPDCK_ACIN_AREG/TDSPCKD_ACIN_AREG	ACIN input to A register CLK	0.23/ 0.12	0.27/ 0.13	0.32/ 0.14	0.36/ 0.14	ns
T _{DSPDCK_BCIN_BREG} /T _{DSPCKD_BCIN_BREG}	BCIN input to B register CLK	0.25/ 0.15	0.29/ 0.16	0.36/ 0.18	0.41/ 0.19	ns
Setup and Hold Times of Data Pins to the Pipe	line Register Clock	I			I	I
T _{DSPDCK_{A, B}_MREG_MULT} T _{DSPCKD_B_MREG_MULT}	{A, B} input to M register CLK using multiplier	2.40/ 0.01	2.76/ 0.01	3.29/ 0.01	4.31/ -0.07	ns
T _{DSPDCK_{A, B}_ADREG} / T _{DSPCKD_D_ADREG}	{A, D} input to AD register CLK	1.29/ 0.02	1.48/ -0.02	1.76/ -0.02	2.29/ 0.27	ns
Setup and Hold Times of Data/Control Pins to	he Output Register Clock					•
T _{DSPDCK_{A, B}} PREG_MULT/ T _{DSPCKD_{A, B}} PREG_MULT	{A, B} input to P register CLK using multiplier	4.02/ 0.28	4.60/ 0.28	5.48/ 0.28	6.95/ 0.48	ns
T _{DSPDCK_D_PREG_MULT} / T _{DSPCKD_D_PREG_MULT}	D input to P register CLK using multiplier	3.93/ 0.73	4.50/ 0.73	5.35/ –0.73	6.73/ –1.68	ns
T _{DSPDCK_{A, B}} _PREG [/] T _{DSPCKD_{A, B}} _PREG	A or B input to P register CLK not using multiplier	1.73/ 0.28	1.98/ 0.28	2.35/ 0.28	2.80/ 0.48	ns
T _{DSPDCK_C_PREG} / T _{DSPCKD_C_PREG}	C input to P register CLK not using multiplier	1.54/ 0.26	1.76/ 0.26	2.10/ 0.26	2.54/ 0.45	ns
T _{DSPDCK_PCIN_PREG} / T _{DSPCKD_PCIN_PREG}	PCIN input to P register CLK	1.32/ -0.15	1.51/ -0.15	1.80/ 0.15	2.13/ -0.25	ns
Setup and Hold Times of the CE Pins						
TDSPDCK_{CEA;CEB}_{AREG;BREG}/ TDSPCKD_{CEA;CEB}_{AREG;BREG}	{CEA; CEB} input to {A; B} register CLK	0.35/ 0.06	0.42/ 0.08	0.52/ 0.11	0.64/ 0.11	ns
T _{DSPDCK_CEC_CREG} /T _{DSPCKD_CEC_CREG}	CEC input to C register CLK	0.28/ 0.10	0.34/ 0.11	0.42/ 0.13	0.49/ 0.16	ns
T _{DSPDCK_CED_DREG} / T _{DSPCKD_CED_DREG}	CED input to D register CLK	0.36/ 0.03	0.43/ 0.03	0.52/ 0.03	0.68/ 0.14	ns
T _{DSPDCK_CEM_MREG} / T _{DSPCKD_CEM_MREG}	CEM input to M register CLK	0.17/ 0.18	0.21/ 0.20	0.27/ 0.23	0.45/ 0.29	ns
T _{DSPDCK_CEP_PREG} / T _{DSPCKD_CEP_PREG}	CEP input to P register CLK	0.36/ 0.01	0.43/ 0.01	0.53/ 0.01	0.63/ 0.00	ns

PLL Switching Characteristics

Table 35: PLL Specification

		Speed Grade				
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	-
PLL_F _{INMAX}	Maximum input clock frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{INMIN}	Minimum input clock frequency	19.00	19.00	19.00	19.00	MHz
PLL_F _{INJITTER}	Maximum input clock period jitter	< 20% of clock input period or 1 ns Ma				lax
PLL_F _{INDUTY}	Allowable input duty cycle: 19-49 MHz	25	25	25	25	%
	Allowable input duty cycle: 50—199 MHz	30	30	30	30	%
	Allowable input duty cycle: 200-399 MHz	35	35	35	35	%
	Allowable input duty cycle: 400-499 MHz	40	40	40	40	%
	Allowable input duty cycle: >500 MHz	45	45	45	45	%
PLL_F _{VCOMIN}	Minimum PLL VCO frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{VCOMAX}	Maximum PLL VCO frequency	2133.00	1866.00	1600.00	1600.00	MHz
PLL_FBANDWIDTH	Low PLL bandwidth at typical ⁽¹⁾	1.00	1.00	1.00	1.00	MHz
	High PLL bandwidth at typical ⁽¹⁾	4.00	4.00	4.00	4.00	MHz
PLL_T _{STATPHAOFFSET}	Static phase offset of the PLL outputs ⁽²⁾	0.12	0.12	0.12	0.12	ns
PLL_T _{OUTJITTER}	PLL output jitter			Note 3		
PLL_T _{OUTDUTY}	PLL output clock duty-cycle precision ⁽⁴⁾	0.20	0.20	0.20	0.25	ns
PLL_T _{LOCKMAX}	PLL maximum lock time	100.00	100.00	100.00	100.00	μs
PLL_F _{OUTMAX}	PLL maximum output frequency	800.00	800.00	800.00	800.00	MHz
PLL_F _{OUTMIN}	PLL minimum output frequency ⁽⁵⁾	6.25	6.25	6.25	6.25	MHz
PLL_T _{EXTFDVAR}	External clock feedback variation	< 2	20% of clock	input perio	od or 1 ns N	lax
PLL_RST _{MINPULSE}	Minimum reset pulse width	5.00	5.00	5.00	5.00	ns
PLL_F _{PFDMAX}	Maximum frequency at the phase frequency detector	550.00	500.00	450.00	450.00	MHz
PLL_F _{PFDMIN}	Minimum frequency at the phase frequency detector	19.00	19.00	19.00	19.00	MHz
PLL_T _{FBDELAY}	Maximum delay in the feedback path		3 ns Max	or one CL	KIN cycle	
Dynamic Reconfigura	tion Port (DRP) for PLL Before and After DCLK					
T _{PLLDCK_DADDR} / T _{PLLCKD_DADDR}	Setup and hold of D address	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLDCK_DI} /T _{PLLCKD_DI}	Setup and hold of D input	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLDCK_DEN} / T _{PLLCKD_DEN}	Setup and hold of D enable	1.76/0.00	1.97/0.00	2.29/0.00	2.40/0.00	ns, Min
T _{PLLDCK_DWE} / T _{PLLCKD_DWE}	Setup and hold of D write enable	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Min
T _{PLLCKO_DRDY}	CLK to out of DRDY	0.65	0.72	0.99	0.99	ns, Max
F _{DCK}	DCLK frequency	200.00	200.00	200.00	100.00	MHz, Max

Notes:

1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.

2. The static offset is measured between any PLL outputs with identical phase.

3. Values for this parameter are available in the Clocking Wizard. See http://www.xilinx.com/products/intellectual-property/clocking_wizard.htm.

4. Includes global clock buffer.

5. Calculated as $F_{VCO}/128$ assuming output duty cycle is 50%.

Device Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 36: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)

Quartast			Speed Grade				
Symbol	Description	Device		1.0V		0.9V	Units
			-3 -2/-2L -1 -2L				
SSTL15 Clock-Capa	able Clock Input to Output Delay using Outp	out Flip-Flop, Fast S	Slew Rate,	without MM	CM/PLL.		
T _{ICKOF} Clock-c without	Clock-capable clock input and OUTFF	XC7A100T	5.14	5.74	6.72	7.64	ns
	without MMCM/PLL (near clock region)	XC7A200T	5.47	6.11	7.16	8.10	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 37: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)

	Description Device 1.0V		Speed Grade					
Symbol			0.9V	Units				
			-3	-2/-2L	-1	-2L		
SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, without MMCM/PLL.								
T _{ICKOFFAR} Clock-ca	Clock-capable clock input and OUTFF	XC7A100T	5.38	6.01	7.02	7.96	ns	
	without MMCM/PLL (far clock region)	XC7A200T	6.17	6.89	8.05	9.05	ns	

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 38: Clock-Capable Clock Input to Output Delay With MMCM

			Speed Grade					
Symbol	Description	Device		1.0V	0.9V	Units		
			-3	-2/-2L	-1	-2L		
SSTL15 Clock-Capa	ble Clock Input to Output Delay using Outp	out Flip-Flop, Fast S	Slew Rate, 1	with MMCM				
TICKOFMMCMCC	Clock-capable clock input and OUTFF	XC7A100T	0.89	0.94	0.96	1.81	ns	
		XC7A200T	0.90	0.97	1.01	1.86	ns	

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

2. MMCM output jitter is already included in the timing calculation.

Device Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 41: Global Clock Input Setup and Hold Without MMCM/PLL with ZHOLD_DELAY on HR I/O Banks

	Description						
Symbol		Device		1.0V	0.9V	Units	
			-3	-2/-2L	-1	-2L	
Input Setup and Hole	d Time Relative to Global Clock Input Sigr	nal for SSTL15	Standard.(1))			
T _{PSFD} / T _{PHFD}	Full delay (legacy delay or default delay) global clock input and IFF ⁽²⁾ without MMCM/PLL with ZHOLD_DELAY on HR I/O banks	XC7A100T	2.69/-0.46	2.89/-0.46	3.34/-0.46	5.66/-0.52	ns
		XC7A200T	3.03/-0.50	3.27/-0.50	3.79/-0.50	6.66/-0.53	ns

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input flip-flop or latch

3. A zero "0" hold time listing indicates no hold time or a negative hold time.

Table 42: Clock-Capable Clock Input Setup and Hold With MMCM

	Description					Speed Grade				
Symbol		Device	1.0V			0.9V	Units			
			-3	-2/-2L	-1	-2L				
Input Setup and Hol	d Time Relative to Global Clock Input Sigr	nal for SSTL15	5 Standard.(1))						
T _{PSMMCMCC} /	No delay clock-capable clock input and	XC7A100T	2.44/-0.62	2.80/-0.62	3.36/-0.62	2.15/-0.49	ns			
I PHMMCMCC		XC7A200T	2.57/-0.63	2.94/-0.63	3.52/-0.63	2.32/-0.53	ns			

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input flip-flop or latch

3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 43: Clock-Capable Clock Input Setup and Hold With PLL

					Speed Grade				
Symbol	Description	Device	1.0V			0.9V	Units		
			-3	-2/-2L	-1	-2L			
Input Setup and Hol	d Time Relative to Clock-Capable Clock Ir	nput Signal for	SSTL15 Sta	ndard. <mark>(1)</mark>					
T _{PSPLLCC} /	No delay clock-capable clock input and $IFF^{(2)}$ with PLL	XC7A100T	2.78/-0.32	3.15/-0.32	3.78/-0.32	2.47/-0.60	ns		
I PHPLLCC		XC7A200T	2.91/-0.33	3.29/-0.33	3.94/-0.33	2.64/-0.63	ns		

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input flip-flop or latch

3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

GTP Transceiver Protocol Jitter Characteristics

For Table 56 through Table 60, the <u>UG482</u>: 7 Series FPGAs GTP Transceiver User Guide contains recommended settings for optimal usage of protocol specific characteristics.

Table 56: Gigabit Ethernet Protocol Characteristics

Description Line Rate (Mb/s)			Мах	Units			
Gigabit Ethernet Transmitter Jitter Generation							
Total transmitter jitter (T_TJ)	1250	_	0.24	UI			
Gigabit Ethernet Receiver High Frequency Jitter Tolerance							
Total receiver jitter tolerance	1250	0.749	-	UI			

Table 57: XAUI Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units		
XAUI Transmitter Jitter Generation						
Total transmitter jitter (T_TJ)	3125	-	0.35	UI		
XAUI Receiver High Frequency Jitter Tolerance						
Total receiver jitter tolerance	3125	0.65	_	UI		

Table 58: PCI Express Protocol Characteristics⁽¹⁾

Standard	Description	Line Rate (Mb/s)	Min	Max	Units
PCI Express Transmitter Jit	tter Generation				
PCI Express Gen 1	Total transmitter jitter	2500	_	0.25	UI
PCI Express Gen 2	Total transmitter jitter	5000	_	0.25	UI
PCI Express Receiver High	Frequency Jitter Tolerance				
PCI Express Gen 1	Total receiver jitter tolerance	2500	0.65	_	UI
PCI Express Con 2(2)	Receiver inherent timing error	5000	0.40	-	UI
	Receiver inherent deterministic timing error	3000	0.30	_	UI

Notes:

1. Tested per card electromechanical (CEM) methodology.

2. Using common REFCLK.

Table 59: CEI-6G Protocol Characteristics

Description Line Rate (Mb/s)		Interface	Min	Max	Units		
CEI-6G Transmitter Jitter Generation							
Total transmitter jitter ⁽¹⁾	4976–6375	CEI-6G-SR –		0.3	UI		
CEI-6G Receiver High Frequency Jitter Tolerance							
Total receiver jitter tolerance ⁽¹⁾	4976–6375	CEI-6G-SR	0.6	_	UI		

Notes:

1. Tested at most commonly used line rate of 6250 Mb/s using 390.625 MHz reference clock.

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Internal Configuratio	n Access Port					
FICAPCK	Internal configuration access port (ICAPE2) clock frequency	100.00	100.00	100.00	70.00	MHz, Max
Master/Slave Serial N	Node Programming Switching	l.	L			
Т _{DCCK} /Т _{CCKD}	DIN setup/hold	4.00/0.00	4.00/0.00	4.00/0.00	5.00/0.00	ns, Min
T _{CCO}	DOUT clock to out	8.00	8.00	8.00	9.00	ns, Max
SelectMAP Mode Pro	gramming Switching					
T _{SMDCCK} /T _{SMCCKD}	D[31:00] setup/hold	4.00/0.00	4.00/0.00	4.00/0.00	4.50/0.00	ns, Min
T _{SMCSCCK} /T _{SMCCKCS}	CSI_B setup/hold	4.00/0.00	4.00/0.00	4.00/0.00	5.00/0.00	ns, Min
T _{SMWCCK} /T _{SMCCKW}	RDWR_B setup/hold	10.00/0.00	10.00/0.00	10.00/0.00	12.00/0.00	ns, Min
T _{SMCKCSO}	CSO_B clock to out (330 Ω pull-up resistor required)	7.00	7.00	7.00	8.00	ns, Max
T _{SMCO}	D[31:00] clock to out in readback	8.00	8.00	8.00	10.00	ns, Max
F _{RBCCK}	Readback frequency	100.00	100.00	100.00	70.00	MHz, Max
Boundary-Scan Port	Timing Specifications					
T _{TAPTCK} /T _{TCKTAP}	TMS and TDI setup/hold	3.00/2.00	3.00/2.00	3.00/2.00	3.00/2.00	ns, Min
T _{TCKTDO}	TCK falling edge to TDO output	7.00	7.00	7.00	8.50	ns, Max
F _{TCK}	TCK frequency	66.00	66.00	66.00	50.00	MHz, Max
BPI Flash Master Mo	de Programming Switching					
T _{BPICCO} ⁽²⁾	A[28:00], RS[1:0], FCS_B, FOE_B, FWE_B, ADV_B clock to out	8.50	8.50	8.50	10.00	ns, Max
T _{BPIDCC} /T _{BPICCD}	D[15:00] setup/hold	4.00/0.00	4.00/0.00	4.00/0.00	4.50/0.00	ns, Min
SPI Flash Master Mo	de Programming Switching					
T _{SPIDCC} /T _{SPICCD}	D[03:00] setup/hold	3.00/0.00	3.00/0.00	3.00/0.00	3.00/0.00	ns, Min
T _{SPICCM}	MOSI clock to out	8.00	8.00	8.00	9.00	ns, Max
T _{SPICCFC}	FCS_B clock to out	8.00	8.00	8.00	9.00	ns, Max

Table 63: Configuration Switching Characteristics (Cont'd)

Notes:

1. To support longer delays in configuration, use the design solutions described in UG470: 7 Series FPGA Configuration User Guide.

2. Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O.

eFUSE Programming Conditions

 Table 64 lists the programming conditions specifically for eFUSE. For more information, see UG470: 7 Series FPGA

 Configuration User Guide.

Table 64: eFUSE Programming Conditions⁽¹⁾

Symbol	Description	Min	Тур	Max	Units
I _{FS}	V _{CCAUX} supply current	-	-	115	mA
t j	Temperature range	15	—	125	°C

Notes:

1. The FPGA must not be configured during eFUSE programming.

Revision History

The following table shows the revision history for this document:

Date	Version	Description
09/26/11	1.0	Initial Xilinx release.
11/07/11	1.1	Revised the V _{OCM} specification in Table 11. Updated the AC Switching Characteristics based upon the ISE 13.3 software v1.02 speed specification throughout document including Table 12 and Table 13. Added MMCM_T _{FBDELAY} while adding MMCM_ to the symbol names of a few specifications in Table 34 and PLL to the symbol names in Table 35. In Table 36 through Table 43, updated the pin-to-pin description with the SSTL15 standard. Updated units in Table 46.
02/13/12	1.2	Updated the Artix-7 family of devices listed throughout the entire data sheet. Updated the AC Switching Characteristics based upon the ISE 13.4 software v1.03 for the -3, -2, and -1 speed grades and v1.00 for the -2L speed grade.
		Updated summary description on page 1. In Table 2, revised V_{CCO} for the 3.3V HR I/O banks and updated T _j . Updated the notes in Table 5. Added MGTAVCC and MGTAVTT power supply ramp times to Table 7. Rearranged Table 8, added Mobile_DDR, HSTL_I_18, HSTL_II_18, HSUL_12, SSTL135_R, SSTL15_R, and SSTL12 and removed DIFF_SSTL135, DIFF_SSTL18_I, DIFF_SSTL18_II, DIFF_HSTL_I, and DIFF_HSTL_II. Added Table 9 and Table 10. Revised the specifications in Table 11. Revised V _{IN} in Table 47. Updated the eFUSE Programming Conditions section and removed the endurance table. Added the table. Revised F _{TXIN} and F _{RXIN} in Table 53. Revised I _{CCADC} and updated Note 1 in Table 62. Revised DDR LVDS transmitter data width in Table 14. Removed notes from Table 24 as they are no longer applicable. Updated specifications in Table 63. Updated Note 1 in Table 33.
06/01/12	1.3	Reorganized entire data sheet including adding Table 40 and Table 44. Updated T_{SOL} in Table 1. Updated I _{BATT} and added R_{IN_TERM} to Table 3. Updated Power-On/Off Power Supply Sequencing section with regards to GTP transceivers. In Table 8, updated many parameters including SSTL135 and SSTL135_R. Removed V _{OX} column and added DIFF_HSUL_12 to Table 10. Updated V _{OL} in Table 11. Updated Table 14 and removed notes 2 and 3. Updated Table 15. Updated the AC Switching Characteristics based upon the ISE 14.1 software v1.03 for the -3, -2, -2L (1.0V), -1, and v1.01 for the -2L (0.9V) speed specifications throughout the document. In Table 27, updated Reset Delays section including Note 10 and Note 11. In Table 53, replaced F_{TXOUT} with F_{GLK} . Updated many of the XADC specifications in Table 62 and added Note 2. Updated and moved <i>Dynamic Reconfiguration Port (DRP) for MMCM Before and After DCLK</i> section from Table 63 to Table 34 and Table 35.

Date	Version	Description
09/20/12	1.4	In Table 1, updated the descriptions, changed V_{IN} and Note 2, and added Note 4. In Table 2, changed descriptions and notes. Updated parameters in Table 3. Added Table 4. Revised the Power-On/Off Power Supply Sequencing section. Updated standards and specifications in Table 8, Table 9, and Table 10. Removed the XC7A350T device from data sheet.
		Updated the AC Switching Characteristics section to the ISE 14.2 speed specifications throughout the document. Updated the IOB Pad Input/Output/3-State discussion and changed Table 17 by adding $T_{IOIBUFDISABLE}$. Removed many of the combinatorial delay specifications and T_{CINCK}/T_{CKCIN} from Table 24.Changed F_{PFDMAX} conditions in Table 34 and Table 35. Updated the GTP Transceiver Specifications section, moved the GTP Transceiver DC characteristics section to the overall DC Characteristics section, and added the GTP Transceiver Protocol Jitter Characteristics section. In Table 62, updated Note 1. In Table 63, updated T_{POR} .
02/01/13	1.5	Updated the AC Switching Characteristics based upon the 14.4/2012.4 device pack for ISE 14.4 and Vivado 2012.4, both at v1.07 for the -3, -2, -2L (1.0V), -1 speed specifications, and v1.05 for the -2L (0.9V) speed specifications throughout the document. Production changes to Table 12 and Table 13 for -3, -2, -2L (1.0V), -1 speed specifications.
		Revised I _{DCIN} and I _{DCOUT} and added Note 5 in Table 1. Added Note 2 to Table 2. Updated Table 5. Added minimum current specifications to Table 6. Removed SSTL12 and HSTL_I_12 from Table 8. Removed DIFF_SSTL12 from Table 10. Updated Table 12. Added a 2:1 memory controller section to Table 15. Updated Note 1 in Table 31. Revised Table 33. Updated Note 1 and Note 2 in Table 46.
		Updated D _{VPPIN} in Table 47. Updated V _{IDIFF} in Table 48. Removed T _{LOCK} and T _{PHASE} and revised F _{GCLK} in Table 51. Updated T _{DLOCK} in Table 52. Updated Table 53. In Table 54, updated T _{RTX} , T _{FTX} , V _{TXOOBVDPP} , and revised Note 1 through Note 7. In Table 55, updated RX _{SST} and RX _{PPMTOL} and revised Note 4 through Note 7. In Table 60, revised and added Note 1.
		Revised the maximum external channel input ranges in Table 62. In Table 63, revised F_{MCCK} and added the Internal Configuration Access Port section.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.