
E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detuns	
Product Status	Active
Number of LABs/CLBs	4075
Number of Logic Elements/Cells	52160
Total RAM Bits	2764800
Number of I/O	106
Number of Gates	-
Voltage - Supply	0.95V ~ 1.05V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	238-LFBGA, CSPBGA
Supplier Device Package	238-CSBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7a50t-1cpg236i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1: Absolute Maximum Ratings⁽¹⁾ (Cont'd)

Symbol	Description	Min	Max	Units
Temperature				
T _{STG}	Storage temperature (ambient)	-65	150	°C
т	Maximum soldering temperature for Pb/Sn component bodies (6)	-	+220	°C
ISOL	Maximum soldering temperature for Pb-free component bodies (6)	-	+260	°C
Tj	Maximum junction temperature ⁽⁶⁾	1	+125	°C

Notes:

- 2. The lower absolute voltage specification always applies.
- 3. For I/O operation, refer to UG471: 7 Series FPGAs SelectIO Resources User Guide.
- 4. The maximum limit applied to DC signals.
- 5. For maximum undershoot and overshoot AC specifications, see Table 4.
- 6. For soldering guidelines and thermal considerations, see UG475: 7 Series FPGA Packaging and Pinout Specification.

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾

Symbol	Description	Min	Тур	Max	Units
FPGA Logic	· · · · · ·				<u>.</u>
M	Internal supply voltage	0.95	1.00	1.05	V
V _{CCINT}	For -2L (0.9V) devices: internal supply voltage	0.87	0.90	0.93	V
V _{CCAUX}	Auxiliary supply voltage	1.71	1.80	1.89	V
V _{CCBRAM}	Block RAM supply voltage		1.00	1.05	V
V _{CCO} ⁽³⁾⁽⁴⁾	Supply voltage for 3.3V HR I/O banks	1.14	-	3.465	V
V (5)	I/O input voltage	-0.20	-	V _{CCO} + 0.20	V
V _{IN} ⁽⁵⁾	I/O input voltage for V _{REF} and differential I/O standards	-0.20	-	2.625	V
I _{IN} ⁽⁶⁾	Maximum current through any pin in a powered or unpowered bank when forward biasing the clamp diode.		-	10	mA
V _{CCBATT} ⁽⁷⁾	Battery voltage	1.0	-	1.89	V
GTP Transceiv	ver				1
V _{MGTAVCC} ⁽⁸⁾⁽⁹⁾	Analog supply voltage for the GTP transmitter and receiver circuits	0.97	1.0	1.03	V
V _{MGTAVTT} ⁽⁸⁾⁽⁹⁾	Analog supply voltage for the GTP transmitter and receiver termination circuits	1.17	1.2	1.23	V
XADC					
V _{CCADC}	XADC supply relative to GNDADC	1.71	1.80	1.89	V
V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V

^{1.} Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾ (Cont'd)

Symbol	Description	Min	Тур	Max	Units
Temperature				·	
	Junction temperature operating range for commercial (C) temperature devices	0	-	85	°C
тј	Junction temperature operating range for extended (E) temperature devices	0	-	100	°C
	Junction temperature operating range for industrial (I) temperature devices	-40	-	100	°C

Notes:

- 1. All voltages are relative to ground.
- 2. For the design of the power distribution system consult UG483, 7 Series FPGAs PCB Design and Pin Planning Guide.
- 3. Configuration data is retained even if V_{CCO} drops to 0V.
- 4. Includes V_{CCO} of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- 5. The lower absolute voltage specification always applies.
- 6. A total of 200 mA per bank should not be exceeded.
- 7. V_{CCBATT} is required only when using bitstream encryption. If battery is not used, connect V_{CCBATT} to either ground or V_{CCAUX}.
- 8. Each voltage listed requires the filter circuit described in UG482: 7 Series FPGAs GTP Transceiver User Guide.
- 9. Voltages are specified for the temperature range of $T_i = 0^{\circ}C$ to +85°C.

Table 3: DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
V _{DRINT}	Data retention V_{CCINT} voltage (below which configuration data might be lost)	0.75	_	_	V
V _{DRI}	Data retention V_{CCAUX} voltage (below which configuration data might be lost)	1.5	-	-	V
I _{REF}	V _{REF} leakage current per pin	_	-	15	μA
IL	Input or output leakage current per pin (sample-tested)	-	-	15	μA
C _{IN} ⁽²⁾	Die input capacitance at the pad	_	-	8	pF
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 3.3V$	90	_	330	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 2.5V$	68	_	250	μA
I _{RPU}	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.8V	34	_	220	μA
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.5V	23	_	150	μA
I _{RPD}	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.2V	12	_	120	μA
	Pad pull-down (when selected) @ V _{IN} = 3.3V	68	_	330	μA
IRPD	Pad pull-down (when selected) @ V _{IN} = 1.8V	45	_	180	μA
I _{CCADC}	Analog supply current, analog circuits in powered up state	_	_	25	mA
I _{BATT} (3)	Battery supply current	_	_	150	nA
	The venin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_40) for commercial (C), and industrial (I), and extended (E) temperature devices	28	40	55	Ω
R _{IN_TERM} ⁽⁴⁾	The venin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_50) for commercial (C), and industrial (I), and extended (E) temperature devices	35	50	65	Ω
	The venin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_60) for commercial (C), and industrial (I), and extended (E) temperature devices	44	60	83	Ω

Table 3: DC Characteristics Over Recommended Operating Conditions (Cont'd)

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
n	Temperature diode ideality factor	-	1.010	-	-
r	Temperature diode series resistance	_	2	_	Ω

Notes:

1. Typical values are specified at nominal voltage, 25°C.

2. This measurement represents the die capacitance at the pad, not including the package.

3. Maximum value specified for worst case process at 25°C.

4. Termination resistance to a $V_{CCO}/2$ level.

Table 4: VIN Maximum Allowed AC Voltage Overshoot and Undershoot for 3.3V HR I/O Banks⁽¹⁾

AC Voltage Overshoot	% of UI @-40°C to 100°C	AC Voltage Undershoot	% of UI @-40°C to 100°C
V _{CCO} + 0.40	100	-0.40	100
V _{CCO} + 0.45	100	-0.45	61.7
V _{CCO} + 0.50	100	-0.50	25.8
V _{CCO} + 0.55	100	-0.55	11.0
V _{CCO} + 0.60	46.6	-0.60	4.77
V _{CCO} + 0.65	21.2	-0.65	2.10
V _{CCO} + 0.70	9.75	-0.70	0.94
V _{CCO} + 0.75	4.55	-0.75	0.43
V _{CCO} + 0.80	2.15	-0.80	0.20
V _{CCO} + 0.85	1.02	-0.85	0.09
V _{CCO} + 0.90	0.49	-0.90	0.04
V _{CCO} + 0.95	0.24	-0.95	0.02

Notes:

1. A total of 200 mA per bank should not be exceeded.

Table 5: Typical Quiescent Supply Current

Symbol							
	Description	Device	1.0V			0.9V	Units
			-3	-2/-2L	-1	-2L	
ICCINTQ	Quiescent V _{CCINT} supply current	XC7A100T	155	155	155	108	mA
		XC7A200T	328	328	328	232	mA
I _{CCOQ} Q	Quiescent V _{CCO} supply current	XC7A100T	4	4	4	4	mA
		XC7A200T	5	5	5	5	mA
ICCAUXQ	Quiescent V _{CCAUX} supply current	XC7A100T	36	36	36	36	mA
		XC7A200T	73	73	73	73	mA
I _{CCBRAMQ}	Quiescent V _{CCBRAM} supply current	XC7A100T	4	4	4	4	mA
		XC7A200T	11	11	11	11	mA

Notes:

1. Typical values are specified at nominal voltage, 85°C junction temperature (T_j) with single-ended SelectIO resources.

2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.

3. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power consumption for conditions other than those specified.

Power-On/Off Power Supply Sequencing

The recommended power-on sequence is V_{CCINT}, V_{CCBRAM}, V_{CCAUX}, and V_{CCO} to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCINT} and V_{CCBRAM} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If V_{CCAUX} and V_{CCO} have the same recommended voltage levels then both can be powered by the same powered by the same supply and ramped simultaneously.

For V_{CCO} voltages of 3.3V in HR I/O banks and configuration bank 0:

- The voltage difference between V_{CCO} and V_{CCAUX} must not exceed 2.625V for longer than T_{VCCO2VCCAUX} for each power-on/off cycle to maintain device reliability levels.
- The T_{VCCO2VCCAUX} time can be allocated in any percentage between the power-on and power-off ramps.

The recommended power-on sequence to achieve minimum current draw for the GTP transceivers is V_{CCINT} , $V_{MGTAVCC}$, $V_{MGTAVCC}$, V_{CCINT} , $V_{MGTAVCT}$. There is no recommended sequencing for $V_{MGTVCCAUX}$. Both $V_{MGTAVCC}$ and V_{CCINT} can be ramped simultaneously. The recommended power-off sequence is the reverse of the power-on sequence to achieve minimum current draw.

If these recommended sequences are not met, current drawn from V_{MGTAVTT} can be higher than specifications during power-up and power-down.

- When V_{MGTAVTT} is powered before V_{MGTAVCC} and V_{MGTAVTT} V_{MGTAVCC} > 150 mV and V_{MGTAVCC} < 0.7V, the V_{MGTAVTT} current draw can increase by 460 mA per transceiver during V_{MGTAVCC} ramp up. The duration of the current draw can be up to 0.3 x T_{MGTAVCC} (ramp time from GND to 90% of V_{MGTAVCC}). The reverse is true for power-down.
- When V_{MGTAVTT} is powered before V_{CCINT} and V_{MGTAVTT} V_{CCINT} > 150 mV and V_{CCINT} < 0.7V, the V_{MGTAVTT} current draw can increase by 50 mA per transceiver during V_{CCINT} ramp up. The duration of the current draw can be up to 0.3 x T_{VCCINT} (ramp time from GND to 90% of V_{CCINT}). The reverse is true for power-down.

DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum V_{CCO} with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

I/O Standard	V _{IL}		V _I	н	V _{OL}	V _{OH}	I _{OL}	I _{OH}
i/O Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
HSTL_I	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	8.00	-8.00
HSTL_I_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	8.00	-8.00
HSTL_II	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	16.00	-16.00
HSTL_II_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	$V_{CCO} - 0.400$	16.00	-16.00
HSUL_12	-0.300	V _{REF} – 0.130	V _{REF} + 0.130	V _{CCO} + 0.300	20% V _{CCO}	80% V _{CCO}	0.10	-0.10
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.400	V _{CCO} – 0.400	Note 3	Note 3
LVCMOS15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	Note 4	Note 4
LVCMOS18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} – 0.450	Note 5	Note 5
LVCMOS25	-0.300	0.7	1.700	V _{CCO} + 0.300	0.400	$V_{CCO} - 0.400$	Note 4	Note 4
LVCMOS33	-0.300	0.8	2.000	3.450	0.400	$V_{CCO} - 0.400$	Note 4	Note 4
LVTTL	-0.300	0.8	2.000	3.450	0.400	2.400	Note 5	Note 5
MOBILE_DDR	-0.300	20% V _{CCO}	80% V _{CCO}	V _{CCO} + 0.300	10% V _{CCO}	90% V _{CCO}	0.10	-0.10
PCI33_3	-0.500	30% V _{CCO}	50% V _{CCO}	V _{CCO} + 0.500	10% V _{CCO}	90% V _{CCO}	1.50	-0.50
SSTL135	-0.300	V _{REF} – 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2-0.150	V _{CCO} /2 + 0.150	13.00	-13.00
SSTL135_R	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	8.90	-8.90
SSTL15	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2-0.175	V _{CCO} /2 + 0.175	13.00	-13.00
SSTL15_R	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2-0.175	V _{CCO} /2 + 0.175	8.90	-8.90
SSTL18_I	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	V _{CCO} /2-0.470	$V_{CCO}/2 + 0.470$	8.00	-8.00
SSTL18_II	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	$V_{CCO}/2 - 0.600$	$V_{CCO}/2 + 0.600$	13.40	-13.40

Table 8 [.]	SelectIO D	C Input and	Output	Levels ⁽¹⁾⁽²⁾
		ο πιραι απα	Juipui	

Notes:

1. Tested according to relevant specifications.

- 2. 3.3V and 2.5V standards are only supported in 3.3V I/O banks.
- 3. Supported drive strengths of 4, 8, or 12 mA in HR I/O banks.
- 4. Supported drive strengths of 4, 8, 12, or 16 mA in HR I/O banks.

5. Supported drive strengths of 4, 8, 12, 16, or 24 mA in HR I/O banks.

6. For detailed interface specific DC voltage levels, see UG471: 7 Series FPGAs SelectIO Resources User Guide.

LVDS DC Specifications (LVDS_25)

See <u>UG471</u>: 7 Series FPGAs SelectIO Resources User Guide for more information on the LVDS_25 standard in the HR I/O banks.

Table	11:	LVDS_	_25	DC	Specifications
-------	-----	-------	-----	----	----------------

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply Voltage		2.375	2.500	2.625	V
V _{OH}	Output High Voltage for Q and \overline{Q}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	-	-	1.675	V
V _{OL}	Output Low Voltage for Q and \overline{Q}	$R_T = 100 \Omega$ across Q and \overline{Q} signals	0.700	-	-	V
V _{ODIFF}	Differential Output Voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	247	350	600	mV
V _{OCM}	Output Common-Mode Voltage	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
V _{IDIFF}	Differential Input Voltage (Q – \overline{Q}), Q = High (\overline{Q} – Q), \overline{Q} = High			350	600	mV
V _{ICM}	Input Common-Mode Voltage		0.300	1.200	1.425	V

AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications in v1.07 from the 14.4/2012.4 device pack for ISE® Design Suite14.4 and Vivado® Design Suite 2012.4 for the -3, -2, -2L (1.0V), and -1 speed grades and v1.05 from the 14.4/2012.4 device pack for the -2L (0.9V) speed grade.

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production Product Specification

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Testing of AC Switching Characteristics

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Artix-7 FPGAs.

Performance Characteristics

This section provides the performance characteristics of some common functions and designs implemented in Artix-7 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the AC Switching Characteristics, page 9.

Table 14: Networking Applications Interface Performances

	Speed Grade							
Description		1.0V		0.9V	Units			
	-3	-2/-2L	-1	-2L				
SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8)	680	680	600	600	Mb/s			
DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 14)	1250	1250	950	950	Mb/s			
SDR LVDS receiver (SFI-4.1) ⁽¹⁾	680	680	600	600	Mb/s			
DDR LVDS receiver (SPI-4.2) ⁽¹⁾	1250	1250	950	950	Mb/s			

Notes:

1. LVDS receivers are typically bounded with certain applications where specific dynamic phase-alignment (DPA) algorithms dominate deterministic performance.

Table 15: Maximum Physical Interface (PHY) Rate for Memory Interfaces⁽¹⁾⁽²⁾

		Speed	Grade		
Memory Standard			0.9V	Units	
	-3	-2/-2L	-1	-2L	
4:1 Memory Controllers					
DDR3	1066	800	800	800	Mb/s
DDR3L	800	800	667	667	Mb/s
DDR2	800	800	667	667	Mb/s
LPDDR2	667	667	533	533	Mb/s
2:1 Memory Controllers		•	<u>.</u>	<u>.</u>	i
DDR3	800	700	620	620	Mb/s
DDR3L	800	700	620	620	Mb/s
DDR2	800	700	620	620	Mb/s

Notes:

1. V_{REF} tracking is required. For more information, see UG586, 7 Series FPGAs Memory Interface Solutions User Guide.

2. When using the internal V_{REF} the maximum data rate is 800 Mb/s (400 MHz).

IOB Pad Input/Output/3-State

Table 16 summarizes the values of standard-specific data input delay adjustments, output delays terminating at pads (based on standard) and 3-state delays.

- T_{IOPI} is described as the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The delay varies
 depending on the capability of the SelectIO input buffer.
- T_{IOOP} is described as the delay from the O pin to the IOB pad through the output buffer of an IOB pad. The delay varies depending on the capability of the SelectIO output buffer.
- T_{IOTP} is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output buffer. In HR I/O banks, the IN_TERM termination turn-on time is always faster than T_{IOTP} when the INTERMDISABLE pin is used.

		Τ _{ΙΟ}) PI			T _{IO}	OP			T _{IC}	ТР		
VO Stondard		Speed	Grade			Speed	Grade			Speed	Grade		Unite
I/O Standard		1.0V		0.9V		1.0V		0.9V		1.0V		0.9V	Units
	-3	-2/-2L	-1	-2L	-3	-2/-2L	-1	-2L	-3	-2/-2L	-1	-2L	
LVTTL_S4	1.26	1.34	1.41	1.58	3.80	3.93	4.18	4.41	4.37	4.59	5.01	5.06	ns
LVTTL_S8	1.26	1.34	1.41	1.58	3.54	3.66	3.92	4.15	4.11	4.32	4.75	4.80	ns
LVTTL_S12	1.26	1.34	1.41	1.58	3.52	3.65	3.90	4.13	4.09	4.31	4.73	4.78	ns
LVTTL_S16	1.26	1.34	1.41	1.58	3.07	3.19	3.45	3.68	3.64	3.85	4.28	4.33	ns
LVTTL_S24	1.26	1.34	1.41	1.58	3.29	3.41	3.67	3.90	3.86	4.07	4.50	4.55	ns
LVTTL_F4	1.26	1.34	1.41	1.58	3.26	3.38	3.64	3.86	3.83	4.04	4.46	4.51	ns
LVTTL_F8	1.26	1.34	1.41	1.58	2.74	2.87	3.12	3.35	3.31	3.52	3.95	4.00	ns
LVTTL_F12	1.26	1.34	1.41	1.58	2.73	2.85	3.10	3.33	3.29	3.51	3.93	3.98	ns
LVTTL_F16	1.26	1.34	1.41	1.58	2.55	2.68	2.93	3.16	3.12	3.34	3.76	3.81	ns
LVTTL_F24	1.26	1.34	1.41	1.58	2.52	2.65	2.90	3.22	3.09	3.31	3.73	3.87	ns
LVDS_25	0.73	0.81	0.88	0.90	1.29	1.41	1.67	1.86	1.86	2.07	2.49	2.51	ns
MINI_LVDS_25	0.73	0.81	0.88	0.90	1.27	1.40	1.65	1.88	1.84	2.06	2.48	2.53	ns
BLVDS_25	0.73	0.81	0.88	0.90	1.84	1.96	2.21	2.44	2.40	2.62	3.04	3.09	ns
RSDS_25 (point to point)	0.73	0.81	0.88	0.90	1.27	1.40	1.65	1.88	1.84	2.06	2.48	2.53	ns
PPDS_25	0.73	0.81	0.88	0.90	1.29	1.41	1.67	1.88	1.86	2.07	2.49	2.53	ns
TMDS_33	0.73	0.81	0.88	0.90	1.41	1.54	1.79	1.99	1.98	2.20	2.62	2.64	ns
PCI33_3	1.24	1.32	1.39	1.57	3.10	3.22	3.48	3.71	3.67	3.88	4.31	4.36	ns
HSUL_12	0.67	0.75	0.82	0.87	1.80	1.93	2.18	2.41	2.37	2.59	3.01	3.06	ns
DIFF_HSUL_12	0.68	0.76	0.83	0.88	1.80	1.93	2.18	2.21	2.37	2.59	3.01	2.86	ns
HSTL_I_S	0.67	0.75	0.82	0.87	1.62	1.74	1.99	2.19	2.19	2.40	2.82	2.84	ns
HSTL_II_S	0.65	0.73	0.80	0.85	1.41	1.54	1.79	1.99	1.98	2.20	2.62	2.64	ns
HSTL_I_18_S	0.67	0.75	0.82	0.87	1.29	1.41	1.67	1.86	1.86	2.07	2.49	2.51	ns
HSTL_II_18_S	0.66	0.75	0.81	0.87	1.41	1.54	1.79	1.97	1.98	2.20	2.62	2.62	ns
DIFF_HSTL_I_S	0.68	0.76	0.83	0.85	1.59	1.71	1.96	2.13	2.15	2.37	2.79	2.78	ns
DIFF_HSTL_II_S	0.68	0.76	0.83	0.85	1.51	1.63	1.88	2.07	2.08	2.29	2.71	2.72	ns
DIFF_HSTL_I_18_S	0.71	0.79	0.86	0.87	1.38	1.51	1.76	1.96	1.95	2.17	2.59	2.61	ns
DIFF_HSTL_II_18_S	0.70	0.78	0.85	0.87	1.46	1.58	1.84	2.00	2.03	2.24	2.67	2.65	ns
HSTL_I_F	0.67	0.75	0.82	0.87	1.10	1.22	1.48	1.69	1.67	1.88	2.31	2.34	ns

Table 16: 3.3V IOB High Range (HR) Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
IO_FIFO Clock to Out Delays					·	·
T _{OFFCKO_DO}	RDCLK to Q outputs	0.55	0.60	0.68	0.81	ns
T _{CKO_FLAGS}	Clock to IO_FIFO flags	0.55	0.61	0.77	0.55	ns
Setup/Hold						
T _{CCK_D} /T _{CKC_D}	D inputs to WRCLK	0.47/0.02	0.51/0.02	0.58/0.02	0.76/-0.05	ns
T _{IFFCCK_WREN} /T _{IFFCKC_WREN}	WREN to WRCLK	0.42/-0.01	0.47/-0.01	0.53/-0.01	0.70/-0.05	ns
T _{OFFCCK_RDEN} /T _{OFFCKC_RDEN}	RDEN to RDCLK	0.53/0.02	0.58/0.02	0.66/0.02	0.79/-0.02	ns
Minimum Pulse Width						
T _{PWH_IO_FIFO}	RESET, RDCLK, WRCLK	1.62	2.15	2.15	2.15	ns
T _{PWL_IO_FIFO}	RESET, RDCLK, WRCLK	1.62	2.15	2.15	2.15	ns
Maximum Frequency		·	•			
F _{MAX}	RDCLK and WRCLK	266.67	200.00	200.00	200.00	MHz

Table 23: IO_FIFO Switching Characteristics

CLB Switching Characteristics

Table 24: CLB Switching Characteristics

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
Combinatorial Del	ays		·			
T _{ILO}	An – Dn LUT address to A	0.10	0.11	0.13	0.15	ns, Max
T _{ILO_2}	An – Dn LUT address to AMUX/CMUX	0.27	0.30	0.36	0.41	ns, Max
T _{ILO_3}	An – Dn LUT address to BMUX_A	0.42	0.46	0.55	0.65	ns, Max
T _{ITO}	An – Dn inputs to A – D Q outputs	0.94	1.05	1.27	1.51	ns, Max
T _{AXA}	AX inputs to AMUX output	0.62	0.69	0.84	1.01	ns, Max
T _{AXB}	AX inputs to BMUX output	0.58	0.66	0.83	0.98	ns, Max
T _{AXC}	AX inputs to CMUX output	0.60	0.68	0.82	0.98	ns, Max
T _{AXD}	AX inputs to DMUX output	0.68	0.75	0.90	1.08	ns, Max
Т _{ВХВ}	BX inputs to BMUX output	0.51	0.57	0.69	0.82	ns, Max
T _{BXD}	BX inputs to DMUX output	0.62	0.69	0.82	0.99	ns, Max
T _{CXC}	CX inputs to CMUX output	0.42	0.48	0.58	0.69	ns, Max
T _{CXD}	CX inputs to DMUX output	0.53	0.59	0.71	0.86	ns, Max
T _{DXD}	DX inputs to DMUX output	0.52	0.58	0.70	0.84	ns, Max
Sequential Delays						
т _{ско}	Clock to AQ – DQ outputs	0.40	0.44	0.53	0.62	ns, Max
т _{ѕнско}	Clock to AMUX – DMUX outputs	0.47	0.53	0.66	0.73	ns, Max
Setup and Hold Ti	mes of CLB Flip-Flops Before/After Clock CLK					
T _{AS} /T _{AH}	$A_N - D_N$ input to CLK on A – D flip-flops	0.07/0.12	0.09/0.14	0.11/0.18	0.11/0.20	ns, Min
T _{DICK} /T _{CKDI}	$A_X - D_X$ input to CLK on A – D flip-flops	0.06/0.19	0.07/0.21	0.09/0.26	0.09/0.31	ns, Min
	$A_X - D_X$ input through MUXs and/or carry logic to CLK on A – D flip-flops	0.59/0.08	0.66/0.09	0.81/0.11	0.97/0.12	ns, Min
T _{CECK_CLB} / T _{CKCE_CLB}	CE input to CLK on A – D flip-flops	0.15/0.00	0.17/0.00	0.21/0.01	0.34/-0.01	ns, Min
T _{SRCK} /T _{CKSR}	SR input to CLK on A – D flip-flops	0.38/0.03	0.43/0.04	0.53/0.05	0.62/0.05	ns, Min
Set/Reset						
T _{SRMIN}	SR input minimum pulse width	0.52	0.78	1.04	0.95	ns, Min
T _{RQ}	Delay from SR input to AQ – DQ flip-flops	0.53	0.59	0.71	0.83	ns, Max
T _{CEO}	Delay from CE input to AQ – DQ flip-flops	0.52	0.58	0.70	0.83	ns, Max
F _{TOG}	Toggle frequency (for export control)	1412	1286	1098	1098	MHz

Table 32: Horizontal Clock Buffer Switching Characteristics (BUFH)

			Speed Grade							
Symbol	Description			1.0V	0.9V	Units				
			-3	-2/-2L	-1	-2L				
Т _{внско_о}	BUFH delay from I to O		0.10	0.11	0.13	0.16	ns			
T _{BHCCK_CE} /T _{BHCKC_CE}	CE pin setup and hold	0.1	19/0.13	0.22/0.15	0.28/0.21	0.35/0.08	ns			
Maximum Frequency		<u>.</u>								
F _{MAX_BUFH}	Horizontal clock buffer (BUFH)	6	28.00	628.00	464.00	394.00	MHz			

Table 33: Duty Cycle Distortion and Clock-Tree Skew

				Speed	Grade		
Symbol	Description	Device		1.0V		0.9V -2L	Units
			-3	-2/-2L	-1		
T _{DCD_CLK}	Global clock tree duty-cycle distortion ⁽¹⁾	All	0.20	0.20	0.20	0.25	ns
T _{CKSKEW}	Global clock tree skew ⁽²⁾	XC7A100T	0.27	0.33	0.36	0.48	ns
		XC7A200T	0.40	0.48	0.54	0.69	ns
T _{DCD_BUFIO}	I/O clock tree duty cycle distortion	All	0.14	0.14	0.14	0.14	ns
T _{BUFIOSKEW}	I/O clock tree skew across one clock region	All	0.03	0.03	0.03	0.03	ns
T _{DCD_BUFR}	Regional clock tree duty cycle distortion	All	0.18	0.18	0.18	0.18	ns

Notes:

1. These parameters represent the worst-case duty cycle distortion observable at the I/O flip flops. For all I/O standards, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times.

 The T_{CKSKEW} value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application.

MMCM Switching Characteristics

Table 34: MMCM Specification

			Speed	Grade				
Symbol	Description		1.0V	0.9V	Units			
		-3	-2/-2L	-1	-2L			
MMCM_F _{INMAX}	Maximum input clock frequency	800.00	800.00	800.00	800.00	MHz		
MMCM_F _{INMIN}	Minimum input clock frequency	10.00	10.00	10.00	10.00	MHz		
MMCM_F _{INJITTER}	Maximum input clock period jitter	< 20% of clock input period or 1 ns M						
MMCM_F _{INDUTY}	Allowable input duty cycle: 10-49 MHz	25	25	25	25	%		
	Allowable input duty cycle: 50-199 MHz	30	30	30	30	%		
	Allowable input duty cycle: 200-399 MHz	35	35	35	35	%		
	Allowable input duty cycle: 400-499 MHz	40	40	40	40	%		
	Allowable input duty cycle: >500 MHz	45	45	45	45	%		
MMCM_F _{MIN_PSCLK}	Minimum dynamic phase-shift clock frequency	0.01	0.01	0.01	0.01	MHz		
MMCM_F _{MAX_PSCLK}	Maximum dynamic phase-shift clock frequency	550.00	500.00	450.00	450.00	MHz		
MMCM_F _{VCOMIN}	Minimum MMCM VCO frequency	600.00	600.00	600.00	600.00	MHz		
MMCM_F _{VCOMAX}	Maximum MMCM VCO frequency	1600.00	1440.00	1200.00	1200.00	MHz		

			Speed	Grade		
Symbol	Description		1.0V		0.9V	Units
		-3	-2/-2L	-1	-2L	
MMCM_F _{BANDWIDTH}	Low MMCM bandwidth at typical ⁽¹⁾	1.00	1.00	1.00	1.00	MHz
	High MMCM bandwidth at typical ⁽¹⁾	4.00	4.00	4.00	4.00	MHz
MMCM_T _{STATPHAOFFSET}	Static phase offset of the MMCM outputs ⁽²⁾	0.12	0.12	0.12	0.12	ns
MMCM_T _{OUTJITTER}	MMCM output jitter			Note 3		
MMCM_T _{OUTDUTY}	MMCM output clock duty-cycle precision ⁽⁴⁾	0.20	0.20	0.20	0.25	ns
MMCM_T _{LOCKMAX}	MMCM maximum lock time	100.00	100.00	100.00	100.00	μs
MMCM_F _{OUTMAX}	MMCM maximum output frequency	800.00	800.00	800.00	800.00	MHz
MMCM_F _{OUTMIN}	MMCM minimum output frequency ⁽⁵⁾⁽⁶⁾	4.69	4.69	4.69	4.69	MHz
MMCM_T _{EXTFDVAR}	External clock feedback variation	< 2	20% of clock	k input perio	od or 1 ns N	lax
MMCM_RST _{MINPULSE}	Minimum reset pulse width	5.00	5.00	5.00	5.00	ns
MMCM_F _{PFDMAX}	Maximum frequency at the phase frequency detector		500.00	450.00	450.00	MHz
MMCM_F _{PFDMIN}	Minimum frequency at the phase frequency detector	10.00	10.00	10.00	10.00	MHz
MMCM_T _{FBDELAY}	Maximum delay in the feedback path		3 ns Max	or one CLI	KIN cycle	1
MMCM Switching Chara	acteristics Setup and Hold					
T _{MMCMDCK_PSEN} / T _{MMCMCKD_PSEN}	Setup and hold of phase-shift enable	1.04/0.00	1.04/0.00	1.04/0.00	1.04/0.00	ns
T _{MMCMDCK_} PSINCDEC [/] T _{MMCMCKD_} PSINCDEC	Setup and hold of phase-shift increment/decrement	1.04/0.00	1.04/0.00	1.04/0.00	1.04/0.00	ns
T _{MMCMCKO_PSDONE}	Phase shift clock-to-out of PSDONE	0.59	0.68	0.81	0.78	ns
Dynamic Reconfiguration	on Port (DRP) for MMCM Before and After DCLK			1	1	I
T _{MMCMDCK_DADDR} / T _{MMCMCKD_DADDR}	DADDR setup/hold	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Mir
T _{MMCMDCK_DI} / T _{MMCMCKD_DI}	DI setup/hold	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Mir
T _{MMCMDCK_DEN} / T _{MMCMCKD_DEN}	DEN setup/hold	1.76/0.00	1.97/0.00	2.29/0.00	2.40/0.00	ns, Mir
T _{MMCMDCK_DWE} / T _{MMCMCKD_DWE}	DWE setup/hold	1.25/0.15	1.40/0.15	1.63/0.15	1.43/0.00	ns, Mir
T _{MMCMCKO_DRDY}	CLK to out of DRDY	0.65	0.72	0.99	0.70	ns, Max
F _{DCK}	DCLK frequency	200.00	200.00	200.00	100.00	MHz, Ma

Table 34: MMCM Specification (Cont'd)

Notes:

- 1. The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.
- 2. The static offset is measured between any MMCM outputs with identical phase.
- 3. Values for this parameter are available in the Clocking Wizard. See <u>http://www.xilinx.com/products/intellectual-property/clocking_wizard.htm</u>.
- 4. Includes global clock buffer.
- 5. Calculated as $F_{VCO}\!/128$ assuming output duty cycle is 50%.
- 6. When CLKOUT4_CASCADE = TRUE, MMCM_F_{OUTMIN} is 0.036 MHz.

 Table 48 summarizes the DC specifications of the clock input of the GTP transceiver. Consult UG482: 7 Series FPGAs GTP

 Transceiver User Guide for further details.

Symbol	DC Parameter	Min	Тур	Max	Units
V _{IDIFF}	Differential peak-to-peak input voltage	350	—	2000	mV
R _{IN}	Differential input resistance	-	100	_	Ω
C _{EXT}	Required external AC coupling capacitor	_	100	-	nF

Table 48: GTP Transceiver Clock DC Input Level Specification

GTP Transceiver Switching Characteristics

Consult UG482: 7 Series FPGAs GTP Transceiver User Guide for further information.

Table 49: GTP Transceiver Performance

						Speed	Grade				
				1.0V						9V	
_		Output Divider	-	3	-2/-	-2L	-	1	-2	2L	
Symbol	Description					Packag	је Туре				Units
-			FFG FBG SBG	FGG FTG CSG	FFG FBG SBG	FGG FTG CSG	FFG FBG SBG	FGG FTG CSG	FFG FBG SBG	FGG FTG CSG	
F _{GTPMAX}	Maximum GTP transceiver of	lata rate	te 6.6 5.4		6.6	5.4	3.75	3.75	3.75	3.75	Gb/s
F _{GTPMIN}	Minimum GTP transceiver d	ata rate	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	Gb/s
		1	3.2–6.6		3.2–6.6		3.2–3.75		3.2–	3.75	Gb/s
-	PLL line rate range	2	1.6-	-3.3	1.6–3.3		1.6–3.2		1.6–3.2		Gb/s
F _{GTPRANGE}	PLL line rate range	4	0.8-	1.65	0.8–	1.65	0.8-	-1.6	0.8-	-1.6	Gb/s
		8	0.5–0	0.825	0.5–0).825	0.5–0.8		0.5–0.8		Gb/s
F _{GTPPLLRANGE}	GTP transceiver PLL freque range	ncy	1.6-	-3.3	1.6-	-3.3	1.6-	-3.3	1.6-	-3.3	GHz

Table 50: GTP Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

Symbol	Description		1.0V	0.9V	Units	
		-3	-2/-2L	-1	-2L	
FGTPDRPCLK	GTPDRPCLK maximum frequency	175	175	156	125	MHz

Table 51: GTP Transceiver Reference Clock Switching Characteristics

Symbol		Conditions	All	Units		
Symbol Description	Description	Conditions	Min	Тур	Max	Units
F _{GCLK}	Reference clock frequency range		60	—	660	MHz
T _{RCLK}	Reference clock rise time	20% - 80%	-	200	-	ps
T _{FCLK}	Reference clock fall time	20% - 80%	-	200	-	ps
T _{DCREF}	Reference clock duty cycle	Transceiver PLL only	40	l	60	%

GTP Transceiver Protocol Jitter Characteristics

For Table 56 through Table 60, the <u>UG482</u>: 7 Series FPGAs GTP Transceiver User Guide contains recommended settings for optimal usage of protocol specific characteristics.

Table 56: Gigabit Ethernet Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units		
Gigabit Ethernet Transmitter Jitter Generation						
Total transmitter jitter (T_TJ)	1250	-	0.24	UI		
Gigabit Ethernet Receiver High Frequency Jitter Tolerance						
Total receiver jitter tolerance	1250	0.749	-	UI		

Table 57: XAUI Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units		
XAUI Transmitter Jitter Generation						
Total transmitter jitter (T_TJ)	3125	-	0.35	UI		
XAUI Receiver High Frequency Jitter Tolerance						
Total receiver jitter tolerance	3125	0.65	_	UI		

Table 58: PCI Express Protocol Characteristics⁽¹⁾

Standard	Description	Line Rate (Mb/s)	Min	Max	Units
PCI Express Transmitter	Jitter Generation				
PCI Express Gen 1	Total transmitter jitter	2500	-	0.25	UI
PCI Express Gen 2	Total transmitter jitter	5000	-	0.25	UI
PCI Express Receiver Hi	gh Frequency Jitter Tolerance				
PCI Express Gen 1	Total receiver jitter tolerance	2500	0.65	-	UI
PCI Express Gen 2 ⁽²⁾	Receiver inherent timing error	5000	0.40	-	UI
	Receiver inherent deterministic timing error	5000	0.30	-	UI

Notes:

1. Tested per card electromechanical (CEM) methodology.

2. Using common REFCLK.

Table 59: CEI-6G Protocol Characteristics

Description	Line Rate (Mb/s)	Interface	Min	Max	Units	
CEI-6G Transmitter Jitter Gene	eration					
Total transmitter jitter ⁽¹⁾	4976–6375	CEI-6G-SR	-	0.3	UI	
CEI-6G Receiver High Frequen	CEI-6G Receiver High Frequency Jitter Tolerance					
Total receiver jitter tolerance ⁽¹⁾	4976–6375	CEI-6G-SR	0.6	-	UI	

Notes:

1. Tested at most commonly used line rate of 6250 Mb/s using 390.625 MHz reference clock.

Table 60: CPRI Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units
CPRI Transmitter Jitter Generation				·
	614.4	-	0.35	UI
	1228.8	-	0.35	UI
Total transmitter iitter	2457.6	-	0.35	UI
Total transmitter jitter	3072.0	-	0.35	UI
	4915.2	-	0.3	UI
	6144.0	-	0.3	UI
CPRI Receiver Frequency Jitter Tolerance				
	614.4	0.65	-	UI
	1228.8	0.65	-	UI
Total receiver iitter telerence	2457.6	0.65	-	UI
Total receiver jitter tolerance	3072.0	0.65	-	UI
	4915.2 ⁽¹⁾	0.60	_	UI
	6144.0 ⁽¹⁾	0.60	-	UI

Notes:

1. Tested to CEI-6G-SR.

Integrated Interface Block for PCI Express Designs Switching Characteristics

More information and documentation on solutions for PCI Express designs can be found at: http://www.xilinx.com/technology/protocols/pciexpress.htm

Table 61: Maximum Performance for PCI Express Designs

			Speed Grade				
Symbol	Description		1.0V	0.9V	Units		
	-		-2/-2L	-1	-2L		
F _{PIPECLK}	Pipe clock maximum frequency	250.00	250.00	250.00	250.00	MHz	
FUSERCLK	User clock maximum frequency	250.00	250.00	250.00	250.00	MHz	
F _{USERCLK2}	User clock 2 maximum frequency	250.00	250.00	250.00	250.00	MHz	
F _{DRPCLK}	DRP clock maximum frequency	250.00	250.00	250.00	250.00	MHz	

www.xilinx.com

Table 62: XADC Specifications (Cont'd)

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
DCLK Duty Cycle			40	-	60	%
XADC Reference ⁽⁵⁾						
External Reference	V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V
On-Chip Reference	I	Ground V_{REFP} pin to AGND, T _j = -40°C to 100°C	1.2375	1.25	1.2625	V

Notes:

- 1. Offset and gain errors are removed by enabling the XADC automatic gain calibration feature. The values are specified for when this feature is enabled.
- 2. Only specified for BitGen option XADCEnhancedLinearity = ON.
- 3. See the ADC chapter in UG480: 7 Series FPGAs XADC User Guide for a detailed description.
- 4. See the Timing chapter in UG480: 7 Series FPGAs XADC User Guide for a detailed description.
- 5. Any variation in the reference voltage from the nominal V_{REFP} = 1.25V and V_{REFN} = 0V will result in a deviation from the ideal transfer function. This also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external ratiometric type applications allowing reference to vary by ±4% is permitted. On-chip reference variation is ±1%.

Configuration Switching Characteristics

Table 63: Configuration Switching Characteristics

Symbol	Description	1.0V			0.9V	Units
		-3	-2/-2L	-1	-2L	
Power-up Timing	Characteristics					
T _{PL} ⁽¹⁾	Program latency	5.00	5.00	5.00	5.00	ms, Max
T _{POR} ⁽¹⁾	Power-on reset (50 ms ramp rate time)	10/50	10/50	10/50	10/50	ms, Min/Max
	Power-on reset (1 ms ramp rate time)	10/35	10/35	10/35	10/35	ms, Min/Max
T _{PROGRAM}	Program pulse width	250.00	250.00	250.00	250.00	ns, Min
CCLK Output (Ma	aster Mode)	I	1	1	1	L.
Т _{ICCK}	Master CCLK output delay	150.00	150.00	150.00	150.00	ns, Min
T _{MCCKL}	Master CCLK clock Low time duty cycle	40/60	40/60	40/60	40/60	%, Min/Max
Т _{МССКН}	Master CCLK clock High time duty cycle	40/60	40/60	40/60	40/60	%, Min/Max
F _{MCCK}	Master CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max
	Master CCLK frequency for AES encrypted x16	50.00	50.00	50.00	35.00	MHz, Max
F _{MCCK_START}	Master CCLK frequency at start of configuration	3.00	3.00	3.00	3.00	MHz, Typ
F _{MCCKTOL}	Frequency tolerance, master mode with respect to nominal CCLK	±50	±50	±50	±50	%, Max
CCLK Input (Slav	re Modes)	I	1	1	1	L.
T _{SCCKL}	Slave CCLK clock minimum Low time	2.50	2.50	2.50	2.50	ns, Min
Т _{SCCKH}	Slave CCLK clock minimum High time	2.50	2.50	2.50	2.50	ns, Min
F _{SCCK}	Slave CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max
EMCCLK Input (M	Aaster Mode)	1			1	
T _{EMCCKL}	External master CCLK Low time	2.50	2.50	2.50	2.50	ns, Min
T _{EMCCKH}	External master CCLK High time	2.50	2.50	2.50	2.50	ns, Min
F _{EMCCK}	External master CCLK frequency	100.00	100.00	100.00	70.00	MHz, Max

www.xilinx.com

Symbol	Description		1.0V	0.9V	Units	
		-3	-2/-2L	-1	-2L	
Internal Configuratio	n Access Port					
F _{ICAPCK}	Internal configuration access port (ICAPE2) clock frequency	100.00	100.00	100.00	70.00	MHz, Max
Master/Slave Serial N	Node Programming Switching					
T _{DCCK} /T _{CCKD}	DIN setup/hold	4.00/0.00	4.00/0.00	4.00/0.00	5.00/0.00	ns, Min
T _{CCO}	DOUT clock to out	8.00	8.00	8.00	9.00	ns, Max
SelectMAP Mode Pro	gramming Switching					
T _{SMDCCK} /T _{SMCCKD}	D[31:00] setup/hold	4.00/0.00	4.00/0.00	4.00/0.00	4.50/0.00	ns, Min
T _{SMCSCCK} /T _{SMCCKCS}	CSI_B setup/hold	4.00/0.00	4.00/0.00	4.00/0.00	5.00/0.00	ns, Min
Т _{SMWCCK} /Т _{SMCCKW}	RDWR_B setup/hold	10.00/0.00	10.00/0.00	10.00/0.00	12.00/0.00	ns, Min
T _{SMCKCSO}	CSO_B clock to out (330 Ω pull-up resistor required)	7.00	7.00	7.00	8.00	ns, Max
T _{SMCO}	D[31:00] clock to out in readback	8.00	8.00	8.00	10.00	ns, Max
F _{RBCCK}	Readback frequency	100.00	100.00	100.00	70.00	MHz, Max
Boundary-Scan Port	Timing Specifications					
T _{TAPTCK} /T _{TCKTAP}	TMS and TDI setup/hold	3.00/2.00	3.00/2.00	3.00/2.00	3.00/2.00	ns, Min
Т _{тсктро}	TCK falling edge to TDO output	7.00	7.00	7.00	8.50	ns, Max
F _{TCK}	TCK frequency	66.00	66.00	66.00	50.00	MHz, Max
BPI Flash Master Mo	de Programming Switching					
T _{BPICCO} ⁽²⁾	A[28:00], RS[1:0], FCS_B, FOE_B, FWE_B, ADV_B clock to out	8.50	8.50	8.50	10.00	ns, Max
T _{BPIDCC} /T _{BPICCD}	D[15:00] setup/hold	4.00/0.00	4.00/0.00	4.00/0.00	4.50/0.00	ns, Min
SPI Flash Master Mo	de Programming Switching					
T _{SPIDCC} /T _{SPICCD}	D[03:00] setup/hold	3.00/0.00	3.00/0.00	3.00/0.00	3.00/0.00	ns, Min
T _{SPICCM}	MOSI clock to out	8.00	8.00	8.00	9.00	ns, Max
T _{SPICCFC}	FCS_B clock to out	8.00	8.00	8.00	9.00	ns, Max

Table 63: Configuration Switching Characteristics (Cont'd)

Notes:

1. To support longer delays in configuration, use the design solutions described in UG470: 7 Series FPGA Configuration User Guide.

2. Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O.

eFUSE Programming Conditions

 Table 64 lists the programming conditions specifically for eFUSE. For more information, see UG470: 7 Series FPGA

 Configuration User Guide.

Table 64: eFUSE Programming Conditions⁽¹⁾

Symbol	Description		Тур	Мах	Units
I _{FS}	V _{CCAUX} supply current	_	_	115	mA
t j	Temperature range	15	Ι	125	°C

Notes:

1. The FPGA must not be configured during eFUSE programming.

Revision History

The following table shows the revision history for this document:

1.0	
	Initial Xilinx release.
1.1	Revised the V _{OCM} specification in Table 11. Updated the AC Switching Characteristics based upon the ISE 13.3 software v1.02 speed specification throughout document including Table 12 and Table 13. Added MMCM_T _{FBDELAY} while adding MMCM_ to the symbol names of a few specifications in Table 34 and PLL to the symbol names in Table 35. In Table 36 through Table 43, updated the pin-to-pin description with the SSTL15 standard. Updated units in Table 46.
1.2	Updated the Artix-7 family of devices listed throughout the entire data sheet. Updated the AC Switching Characteristics based upon the ISE 13.4 software v1.03 for the -3, -2, and -1 speed grades and v1.00 for the -2L speed grade.
	Updated summary description on page 1. In Table 2, revised V_{CCO} for the 3.3V HR I/O banks and updated T _j . Updated the notes in Table 5. Added MGTAVCC and MGTAVTT power supply ramp times to Table 7. Rearranged Table 8, added Mobile_DDR, HSTL_I_18, HSTL_II_18, HSUL_12, SSTL135_R, SSTL15_R, and SSTL12 and removed DIFF_SSTL135, DIFF_SSTL18_I, DIFF_SSTL18_II, DIFF_HSTL_I, and DIFF_HSTL_II. Added Table 9 and Table 10. Revised the specifications in Table 11. Revised V _{IN} in Table 47. Updated the eFUSE Programming Conditions section and removed the endurance table. Added the table. Revised F _{TXIN} and F _{RXIN} in Table 53. Revised I _{CCADC} and updated Note 1 in Table 62. Revised DDR LVDS transmitter data width in Table 14. Removed notes from Table 24 as they are no longer applicable. Updated specifications in Table 63. Updated Note 1 in Table 33.
1.3	Reorganized entire data sheet including adding Table 40 and Table 44. Updated T_{SOL} in Table 1. Updated I_{BATT} and added R_{IN_TERM} to Table 3. Updated Power-On/Off Power Supply Sequencing section with regards to GTP transceivers. In Table 8, updated many parameters including SSTL135 and SSTL135_R. Removed V_{OX} column and added DIFF_HSUL_12 to Table 10. Updated V_{OL} in Table 11. Updated Table 14 and removed notes 2 and 3. Updated Table 15. Updated the AC Switching Characteristics based upon the ISE 14.1 software v1.03 for the -3, -2, -2L (1.0V), -1, and v1.01 for the -2L (0.9V) speed specifications throughout the document. In Table 27, updated Reset Delays section including Note 10 and Note 11. In Table 53, replaced F_{TXOUT} with F_{GLK} . Updated many of the XADC specifications in Table 62 and added Note 2. Updated and moved <i>Dynamic Reconfiguration Port (DRP) for MMCM Before and After DCLK</i> section from
	1.2

Date	Version	Description
09/20/12	1.4	In Table 1, updated the descriptions, changed V _{IN} and Note 2, and added Note 4. In Table 2, changed descriptions and notes. Updated parameters in Table 3. Added Table 4. Revised the Power-On/Off Power Supply Sequencing section. Updated standards and specifications in Table 8, Table 9, and Table 10. Removed the XC7A350T device from data sheet.
		Updated the AC Switching Characteristics section to the ISE 14.2 speed specifications throughout the document. Updated the IOB Pad Input/Output/3-State discussion and changed Table 17 by adding $T_{IOIBUFDISABLE}$. Removed many of the combinatorial delay specifications and T_{CINCK}/T_{CKCIN} from Table 24.Changed F _{PFDMAX} conditions in Table 34 and Table 35. Updated the GTP Transceiver Specifications section, moved the GTP Transceiver DC characteristics section to the overall DC Characteristics section, and added the GTP Transceiver Protocol Jitter Characteristics section. In Table 62, updated Note 1. In Table 63, updated T _{POR} .
02/01/13	1.5	Updated the AC Switching Characteristics based upon the 14.4/2012.4 device pack for ISE 14.4 and Vivado 2012.4, both at v1.07 for the -3, -2, -2L (1.0V), -1 speed specifications, and v1.05 for the -2L (0.9V) speed specifications throughout the document. Production changes to Table 12 and Table 13 for -3, -2, -2L (1.0V), -1 speed specifications.
		Revised I _{DCIN} and I _{DCOUT} and added Note 5 in Table 1. Added Note 2 to Table 2. Updated Table 5. Added minimum current specifications to Table 6. Removed SSTL12 and HSTL_I_12 from Table 8. Removed DIFF_SSTL12 from Table 10. Updated Table 12. Added a 2:1 memory controller section to Table 15. Updated Note 1 in Table 31. Revised Table 33. Updated Note 1 and Note 2 in Table 46.
		Updated D _{VPPIN} in Table 47. Updated V _{IDIFF} in Table 48. Removed T _{LOCK} and T _{PHASE} and revised F _{GCLK} in Table 51. Updated T _{DLOCK} in Table 52. Updated Table 53. In Table 54, updated T _{RTX} , T _{FTX} , V _{TXOOBVDPP} , and revised Note 1 through Note 7. In Table 55, updated RX _{SST} and RX _{PPMTOL} and revised Note 4 through Note 7. In Table 60, revised and added Note 1.
		Revised the maximum external channel input ranges in Table 62. In Table 63, revised F_{MCCK} and added the Internal Configuration Access Port section.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.