

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15356-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description		
RD1/AND1/SDA2 ⁽¹⁾ /SDI2 ^(1,4)	RD1	TTL/ST	CMOS/OD	General purpose I/O.		
	AND1	AN	_	ADC Channel D0 input.		
	SDA2 ⁽¹⁾	l ² C	OD	MSSP2 I ² C serial data input/output.		
	SDI2 ^(1,4)	TTL/ST	_	MSSP2 SPI serial data input (default input location, SDI2 is a PPS remappable input and output).		
RD2/AND2	RD2	TTL/ST	CMOS/OD	General purpose I/O.		
	AND2	AN	_	ADC Channel D0 input.		
RD3/AND3	RD3	TTL/ST	CMOS/OD	General purpose I/O.		
	AND3	AN	_	ADC Channel D0 input.		
RD4/AND4	RD4	TTL/ST	CMOS/OD	General purpose I/O.		
	AND4	AN	_	ADC Channel D0 input.		
RD5/AND5	RD5	TTL/ST	CMOS/OD	General purpose I/O.		
	AND5	AN	_	ADC Channel D0 input.		
RD6/AND6	RD6	TTL/ST	CMOS/OD	General purpose I/O.		
	AND6	AN	_	ADC Channel D0 input.		
RD7/AND7	RD7	TTL/ST	CMOS/OD	General purpose I/O.		
	AND7	AN	_	ADC Channel D0 input.		
RE0/ANE0	RE0	TTL/ST	CMOS/OD	General purpose I/O.		
	ANE0	AN	_	ADC Channel D0 input.		
RE1/ANE1	RE1	TTL/ST	CMOS/OD	General purpose I/O.		
	ANE1	AN	_	ADC Channel D0 input.		
RE2/ANE2	RE2	TTL/ST	CMOS/OD	General purpose I/O.		
	ANE2	AN	_	ADC Channel D0 input.		
RE3/MCLR/IOCE3	RE3	TTL/ST	-	General purpose input only (when $\overline{\text{MCLR}}$ is disabled by the Configuration bit).		
	MCLR	ST	_	Master clear input with internal weak pull-up resistor.		
	IOCE3	TTL/ST	_	Interrupt-on-change input.		
RF0/ANF0	RF0	TTL/ST	CMOS/OD	General purpose I/O.		
	ANF0	AN	_	ADC Channel D0 input.		
RF1/ANF1	RF1	TTL/ST	CMOS/OD	General purpose I/O.		
	ANF1	AN	_	ADC Channel D0 input.		
RF2/ANF2	RF2	TTL/ST	CMOS/OD	General purpose I/O.		
	ANF2	AN	—	ADC Channel D0 input.		
RF3/ANF3	RF3	TTL/ST	CMOS/OD	General purpose I/O.		
	ANF3	AN	_	ADC Channel D0 input.		
RF4/ANF4	RF4	TTL/ST	CMOS/OD	General purpose I/O.		
	ANF4	AN	_	ADC Channel D0 input.		

TABLE 1-4: PIC16(L)F15385/86 PINOUT DESCRIPTION (CONTINUED)

HV = High Voltage

XTAL

Note

= Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 15-5, Table 15-6 and Table 15-7.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 16											
				CPULCOR	E REGISTERS.	see Table 4-3 for	specifics				
		•					opeeniee				
80Ch	WDTCON0	—	—	WDTPS<4:0> SWDTEN							dd dddo
80Dh	WDTCON1	-		WDTCS<2:0>		—		WINDOW<2:0)>	-ववव -ववव	-वेवेवे -वेवेवे
80Eh	WDTPSL				PSCNT	<7:0>				0000 0000	0000 0000
80Fh	WDTPSH		PSCNT<15:8>							0000 0000	0000 0000
810h	WDTTMR	—		WDTTM	R<3:0>		STATE	PSCNT17	PSCNT16	xxxx x000	xxxx x000
811h	BORCON	SBOREN	_	-	-	—	—	_	BORRDY	1 q	uı
812h	VREGCON	—	—		_	—		VREGPM ⁽¹⁾	_	0-	0-
813h	PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011 110q	वववव ववपा
814h	PCON1	—	_			_		MEMV		1-	u-
815h	—				Unimpler	nented				—	
816h	—				Unimpler	mented				—	-
817h	—				Unimpler	mented				—	-
818h	—				Unimpler	mented				—	—
819h	—				Unimpler	mented				—	—
81Ah	NVMADRL				NVMAD	R<7:0>				xxxx xxxx	սսսս սսսս
81Bh	NVMADRH	—				NVMADR<14:8	>			-xxx xxxx	-uuu uuuu
81Ch	NVMDATL				NVMDA	Γ<7:0>				0000 0000	0000 0000
81Dh	NVMDATH	_	_			NVMD	AT<13:8>			00 0000	00 0000
81Eh	NVMCON1	_	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 q000
81Fh	NVMCON2				NVMCON	2<7:0>				XXXX XXXX	սսսս սսսս

x = unknown, u = unchanged, g = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Note 1: Present only on PIC16F15356/75/76/85/86.

5.0 DEVICE CONFIGURATION

Device configuration consists of the Configuration Words, User ID, Device ID, Device Information Area (DIA), (see Section 6.0 "Device Information Area"), and the Device Configuration Information (DCI) regions, (see Section 7.0 "Device Configuration Information").

5.1 Configuration Words

The devices have several Configuration Words starting at address 8007h. The Configuration bits establish configuration values prior to the execution of any software; Configuration bits enable or disable device-specific features.

In terms of programming, these important Configuration bits should be considered:

1. LVP: Low-Voltage Programming Enable bit

- <u>1</u> = ON Low-Voltage Programming is enabled. MCLR/VPP pin function is MCLR. MCLRE Configuration bit is ignored.
- 0 = OFF HV on MCLR/VPP must be used for programming.
- 2. CP: User Nonvolatile Memory (NVM) Program Memory Code Protection bit
- 1 = OFF User NVM code protection disabled
- 0 = ON User NVM code protection enabled

REGISTER 9-7: OSCTUNE: HFINTOSC TUNING REGISTER

U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—		HFTUN<5:0>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 U	nimplemented: Read as '0'.
01	FTUN<5:0>: HFINTOSC Frequency Tuning bits 1 1111 = Maximum frequency 1 1110 =
	 0 0001 = 0 0000 = Center frequency. Oscillator module is running at the calibrated frequency (default value). 1 1111 = 0 0001 = 0 0000 = Minimum frequency.

REGISTER 10-14: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
_	_			_	_	TMR2IF	TMR1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set

bit 7-2 bit 1	Unimplemented: Read as '0' TRM2IF: Timer2 Interrupt Flag bit 1 = The TMR2 postscaler overflowed, or in 1:1 mode, a TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 event has occurred
bit 0	TRM1IF: Timer1 Overflow Interrupt Flag bit 1 = Timer1 overflow occurred (must be cleared in software) 0 = No Timer1 overflow occurred
Note:	Interrupt flag bits are set when an interrupt

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

© 2016 Microchip Technology Inc.

				INEQUED				
R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0	
CLC4IF	CLC3IF	CLC2IF	CLC1IF	—		—	TMR1GIF	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BOI	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set			
bit 7	CLC4IF: CLC	4 Interrupt Flag	g bit					
				curred (must l	be cleared in so	ftware)		
	0 = No CLC4	interrupt event	has occurred					
bit 6	CLC3IF: CLC	3 Interrupt Flag	g bit					
				curred (must b	be cleared in so	ftware)		
	0 = No CLC3	interrupt event	has occurred					
bit 5	CLC2IF: CLC	2 Interrupt Flag	g bit					
		UT interrupt co interrupt event		curred (must b	be cleared in so	ftware)		
bit 4		1 Interrupt Flag						
			5	curred (must l	be cleared in so	ftware)		
	0 = No CLC1	interrupt event	has occurred			,		
bit 3-1	Unimplemen	ted: Read as '	כ'					
bit 0	TMR1GIF: Tir	mer1 Gate Inte	rrupt Flag bit					
	1 = The Timer1 Gate has gone inactive (the acquisition is complete)							
	0 = The Time	r1 Gate has no	t gone inactive	9				
Note: Inte	errupt flag bits a	re set when an	interrupt					
	aprillag bito u		apt					

REGISTER 10-15: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5

Note:	Interrupt flag bits are set when an interrupt							
	condition occurs, regardless of the state of							
	its corresponding enable bit or the Global							
	Enable bit, GIE, of the INTCON register.							
	User software should ensure the							
	appropriate interrupt flag bits are clear							
	prior to enabling an interrupt.							

REGISTER 14-37: WPUE: WEAK PULL-UP PORTE REGISTER

U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	_	—	WPUE3 ⁽²⁾	WPUE2 ⁽¹⁾	WPUE1 ⁽¹⁾	WPUE0 ⁽¹⁾
bit 7	•						bit 0

Legend:

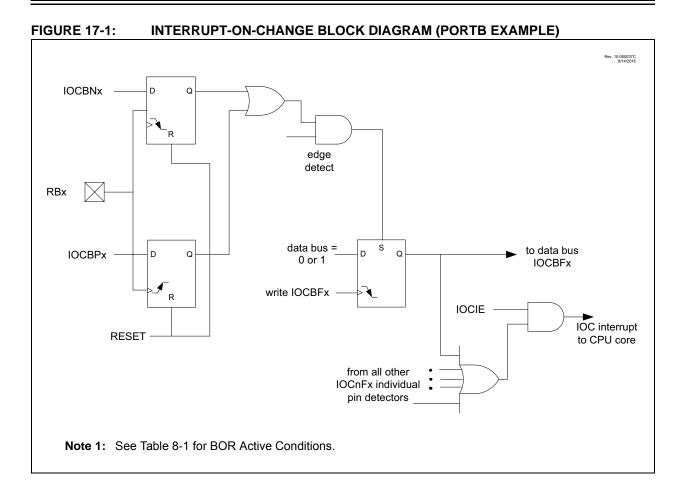
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 3-0	WPUE<3:0>: Weak Pull-up Register bits
	1 = Pull-up enabled
	0 = Pull-up disabled

Note 1: Present on PIC16(L)F15375/76/85/86 only.

- 2: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.
- 3: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 14-38: ODCONE: PORTE OPEN-DRAIN CONTROL REGISTER⁽¹⁾


U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
		—	_	—	ODCE2	ODCE1	ODCE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0' bit 3-0 ODCE<3:0>: PORTE Open-Drain Enable bits For RE<3:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

Note 1: Present on PIC16(L)F15375/76/85/86 only.

REGISTER	16-6: PMD5	5 – PMD CON	ITROL REGI	STER 5			
U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
—	—	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	t	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7-5	Unimplemen	ted: Read as '	D'				
bit 4	CLC4MD: Dis	able CLC4 bit					
	1 = CLC4 mc	dule disabled					
	0 = CLC4 mc	dule enabled					
bit 3	CLC3MD: Dis	able CLC3 bit					
	1 = CLC3 mc						
	0 = CLC3 mc	dule enabled					
bit 2	CLC2MD: Dis	able CLC2 bit					
	1 = CLC2 module disabled						
	0 = CLC2 module enabled						
bit 1 CLC1MD: Disable CLC bit							
	1 = CLC1 module disabled 0 = CLC1 module enabled						
			<u>.</u>				
bit 0	Unimplemen	ted: Read as '	J				

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	_	—	—	INTEDG	146
PIR7	_	—	NVMIF	NCO1IF	_	_	_	CWG1IF	162
PIE7	—	—	NVMIE	NCO1IE		—	—	CWG1IE	154
NCO1CON	N1EN	_	N1OUT	N1POL	_	—	_	N1PFM	294
NCO1CLK		N1PWS<2:0> — N1CKS<3:0>							
NCO1ACCL				NCO1ACC<	:7:0>				296
NCO1ACCH				NCO1ACC<	15:8>				296
NCO1ACCU	—	_	—	—	296				
NCO1INCL				NCO1INC<	7:0>				297
NCO1INCH				NCO1INC<	15:8>				297
NCO1INCU	—	—	—	—		NCO1AINC	2<19:16>		297
RxyPPS	_	_	_		R	xyPPS<4:0>			242

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCO

Legend: – = unimplemented read as '0'. Shaded cells are not used for NCO module.

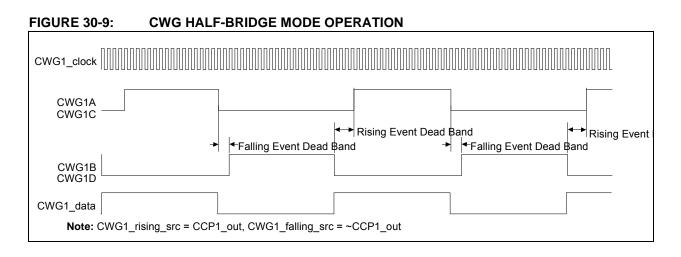
24.9 Register Definitions: ZCD Control

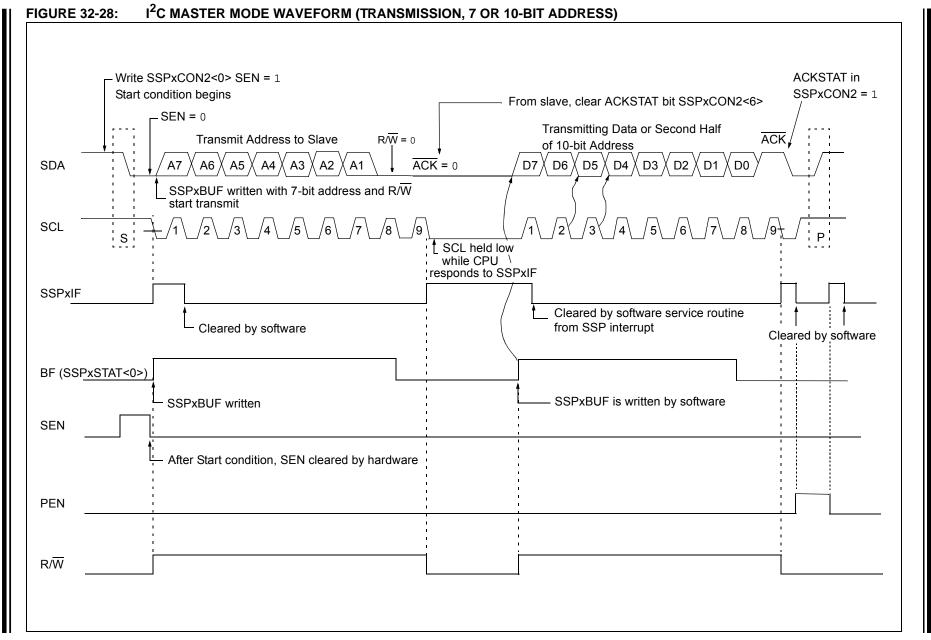
REGISTER 24-1: ZCDCON: ZERO-CROSS DETECTION CONTROL REGISTER

R/W-q/q	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
SEN	—	OUT	POL	—	_	INTP	INTN	
bit 7								
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'		
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BC	OR/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared	q = value dep	ends on Confi	guration bits		
 bit 7 SEN: Zero-Cross Detection Enable bit 1 = Zero-cross detect is enabled. ZCD pin is forced to output to source and sink current. 0 = Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls. 								
bit 6	Unimplemer	ted: Read as	ʻ0'					
bit 5	POL bit = 1: 1 = ZCD pin 0 = ZCD pin POL bit = 0: 1 = ZCD pin	ross Detection is sourcing cur is sinking curr is sinking curr is sourcing cu	rrent ent	it				
bit 4	1 = ZCD log	ross Detection ic output is inve ic output is not	erted	Polarity bit				
bit 3-2	Unimplemer	ted: Read as	ʻ0'					
bit 1	INTP: Zero-C	Cross Positive I	Edge Interrupt	Enable bit				
	 1 = ZCDIF bit is set on low-to-high ZCDx_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCDx_output transition 							
bit 0	INTN: Zero-C	Cross Negative	Edge Interrup	ot Enable bit				
				_output transiti v ZCDx_output				

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
ZCDxCON	EN	_	OUT	POL			INTP	INTN	314


Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.


TABLE 24-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0.01/5/0.0	13:8	_	_	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV		100
CONFIG2	7:0	BOREN	N <1:0>	LPBOREN		—		PWRTE	MCLRE	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
T0EN	TOEN — TOOUT T016BIT				TOOUTI	PS<3:0>			
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
u = Bit is unc	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is se	t	'0' = Bit is cle	ared						
bit 7	TOEN: Time	r0 Enable bit							
		dule is enabled							
		dule is disabled		vest power mod	de				
bit 6	Unimpleme	nted: Read as	0'						
bit 5		T0OUT: Timer0 Output bit (read-only) Timer0 output bit							
bit 4	T016BIT: Tir	mer0 Operating	as 16-bit Time	er Select bit					
		is a 16-bit timer							
	0 = Timer0 i	s an 8-bit timer							
bit 3-0	T0OUTPS<	3:0>: Timer0 ou	tput postscale	r (divider) seled	ct bits				
	1111 = 1:16								
	1110 = 1:15 1101 = 1:14								
	1101 - 1.14 1100 = 1:13								
	1011 = 1:12								
	1010 = 1:11								
	1001 = 1:10	Postscaler							
	1000 = 1:9	Postscaler							
	0111 = 1:8 								
	0110 = 1:7								
	0101 = 1:6 Postscaler								
		0100 = 1:5 Postscaler 0011 = 1:4 Postscaler							
	0011 = 1.41 0010 = 1:31								
	0001 = 1:2								
	0000 = 1:1								

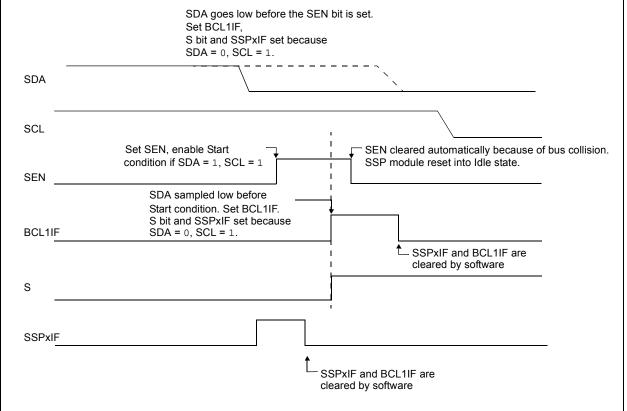
32.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 32-33).
- b) SCL is sampled low before SDA is asserted low (Figure 32-34).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:


- · the Start condition is aborted,
- the BCL1IF flag is set and
- the MSSP module is reset to its Idle state (Figure 32-33).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 32-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

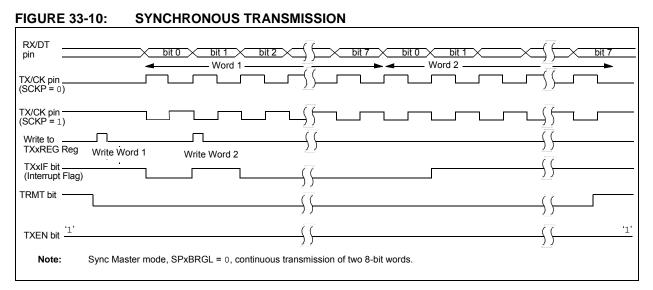
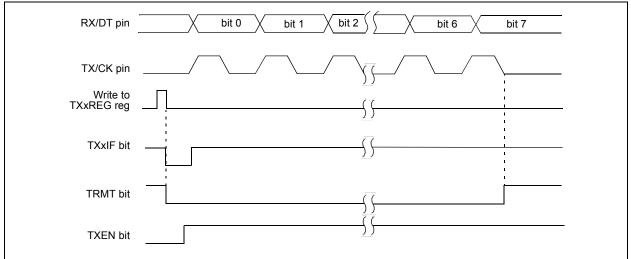



FIGURE 33-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

33.4.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCxSTA register) or the Continuous Receive Enable bit (CREN of the RCxSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence. To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RXxIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCxREG. The RXxIF bit remains set as long as there are unread characters in the receive FIFO.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

35.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM refer to the "PIC16(L)F153XX*Memory Programming Specification*" (DS40001838).

35.1 High-Voltage Programming Entry Mode

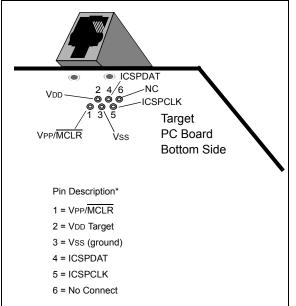
The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

35.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'. The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.


Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the MCLR Reset function is automatically enabled and cannot be disabled. See **Section 8.5"MCLR**" for more information.

35.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 35-1.

Another connector often found in use with the PICkit™ programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 35-2.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 35-3 for more information.

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Set

instruction is executed.

If bit 'b' in register 'f' is '0', the next

If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle

 $0 \le f \le 127$ $0 \le b < 7$ skip if (f) = 1

instruction.

None

BRA	Relative Branch	BTFSS
Syntax:	[label] BRA label	Syntax:
	[<i>label</i>] BRA \$+k	Operands:
Operands:	-256 ≤ label - PC + 1 ≤ 255	
	$-256 \le k \le 255$	Operation:
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Affected:
Status Affected:	None	Description:
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have	
	incremented to fetch the next	
	instruction, the new address will be	
	PC + 1 + k. This instruction is a	
	2-cycle instruction. This branch has a	
	limited range.	

BRW Relative Branch with W

Syntax:	[<i>label</i>] BRW
Operands:	None
Operation:	$(PC) + (W) \rightarrow PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

RETLW	Return with literal in W		
Syntax:	[<i>label</i>] RETLW k		
Operands:	$0 \le k \le 255$		
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC		
Status Affected:	None		
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.		
Words:	1		
Cycles:	2		
Example:	CALL TABLE;W contains table ;offset value • ;W now has table value		
TABLE	• • ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • • RETLW kn ; End of table		
	Before Instruction		

W =

W =

Return from Subroutine

Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.

After Instruction

[label] RETURN

None

None

 $\text{TOS} \rightarrow \text{PC}$

RETURN

Operands:

Operation:

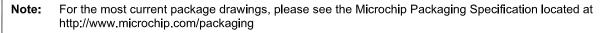
Description:

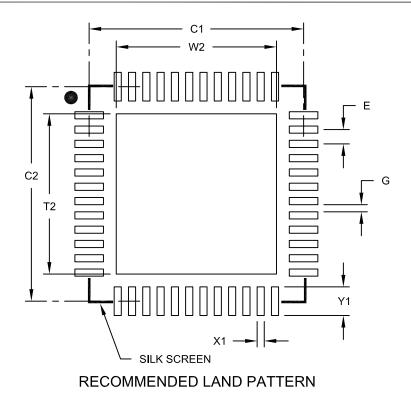
Status Affected:

Syntax:

0x07

value of k8


RLF	Rotate Left f through Carry			
Syntax:	[<i>label</i>] RLF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	See description below			
Status Affected:	С			
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	RLF REG1,0			
	Before Instruction			
	REG1 = 1110 0110			
	C = 0			
	After Instruction			
	REG1 = 1110 0110			
	$W = 1100 \ 1100$			
	C = 1			
RRF	Rotate Right f through Carry			


RKF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

─ ► C →	Register f	-

ര	2016	Microchin	Technology Inc.
S	2010	which och hp	rechnology mc.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.40 BSC		
Optional Center Pad Width	W2			4.45	
Optional Center Pad Length	T2			4.45	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.80	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A