

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15356-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: PIC16(L)F153XX FAMILY TYPES

Device	Data Sheet Index	Program Flash Memory (KW)	Program Flash Memory (KB)	Storage Area Flash (B)	Data SRAM (bytes)	I/OPins	10-bit ADC	5-bit DAC	Comparator	8-bit/ (with HLT) Timer	16-bit Timer	Window Watchdog Timer	CCP/10-bit PWM	CWG	NCO	CLC	Zero-Cross Detect	Temperature Indicator	Memory Access Partition	Device Information Area	EUSART/ I ² C-SPI	Peripheral Pin Select	Peripheral Module Disable	Debug ⁽¹⁾
PIC16(L)F15313	(C)	2	3.5	224	256	6	5	1	1	1	2	Υ	2/4	1	1	4	Υ	Y	Y	Y	1/1	Y	Y	Ι
PIC16(L)F15323	(C)	2	3.5	224	256	12	11	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	1/1	Υ	Υ	Ι
PIC16(L)F15324	(D)	4	7	224	512	12	11	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15325	(B)	8	14	224	1024	12	11	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15344	(D)	4	7	224	512	18	17	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15345	(B)	8	14	224	1024	18	17	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15354	(A)	4	7	224	512	25	24	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Y	Υ	2/2	Υ	Υ	Т
PIC16(L)F15355	(A)	8	14	224	1024	25	24	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15356	(E)	16	28	224	2048	25	24	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15375	(E)	8	14	224	1024	36	35	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15376	(E)	16	28	224	2048	36	35	1	2	1	2	Y	2/4	1	1	4	Y	Y	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15385	(E)	8	14	224	1024	44	43	1	2	1	2	Y	2/4	1	1	4	Y	Υ	Y	Υ	2/2	Y	Υ	Ι
PIC16(L)F15386	(E)	16	28	224	2048	44	43	1	2	1	2	Y	2/4	1	1	4	Υ	Υ	Y	Y	2/2	Υ	Υ	Ι

Note 1: I - Debugging integrated on chip.

Data Sheet Index:

ote:	For other small form-factor package availability and marking information, visit					
E:	DS40001866	PIC16(L)F15356/75/76/85/86 Data Sheet, 28/40/48-Pin				
D:	Future Release	PIC16(L)F15324/44 Data Sheet, 14/20-Pin				
C:	Future Release	PIC16(L)F15313/23 Data Sheet, 8/14-Pin				
В:	DS40001865	PIC16(L)F15325/45 Data Sheet, 14/20-Pin				
A :	DS40001853	PIC16(L)F15354/5 Data Sheet, 28-Pin				

Note: For other small form-factor package availability and marking information, visit www.microchip.com/packaging or contact your local sales office.

P
IC16
(L)F1
5356
5/75/7
76/85
186

40/44-PIN ALLOCATION TABLE (PIC16(L)F15375, PIC16(L)F15376) (CONTINUED) TABLE 4:

I/O ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	ССР	MMd	OWG	MSSP	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RC3	18	33	37	37	ANC3	—	-	_	-	T2IN ⁽¹⁾	—	_	-	SCL1 SCK1 ^(1,4)	—	-	_	—	IOCC3	Y	_
RC4	23	38	42	42	ANC4	_	-	_	_	-	—	_	_	SDA1 SDI1 ^(1,4)	—	-	_	_	IOCC4	Y	—
RC5	24	39	43	43	ANC5	—	_	_	_		_	_	_	_	_	_	_	—	IOCC5	Y	_
RC6	25	40	44	44	ANC6	_	_	_	-	_	—	_	—	-	_	TX1 CK1 ⁽¹⁾	_	_	IOCC6	Y	_
RC7	26	1	1	1	ANC7	_	-	_	-	_	—	_	_	_	_	RX1 DT1 ⁽¹⁾	_	_	IOCC7	Y	_
RD0	19	34	38	38	AND0	—	_	_	-	_	_	_	_	SCK2, SCL2 ^(1,4)	—	-	_	-	_	—	_
RD1	20	35	39	39	AND1	_	-	_	_	-	—	_	_	SDA2, SDI2 ^(1,4)	_	-	_	_	-	—	_
RD2	21	36	40	40	AND2	—	—	_	_	—		_	—	_	—			—	_	—	_
RD3	22	37	41	41	AND3		—	_	_	—	—	—	_	_	—	—	—	-	—	—	_
RD4	27	2	2	2	AND4	_	—	—	—	—	_	-	_	—	—	—	—	_	—	—	—
RD5	28	3	3	3	AND5	—	—	—	—		—	—	—	—	—	—	—	—	—	—	_
RD6	29	4	4	4	AND6	_	—	_	—	-	—	_	—	_	—	—	—	_	_	—	_
RD7	30	5	5	5	AND7	-	—	—	_	—	—	_	—	_	—	_	—	—	—	—	_
RE0	8	23	25	25	ANE0	_	—	—	—	—	—	_	—	—	—	_	—	—		—	_
RE1	9	24	26	26	ANE1	—	—	_	_	—	_	_	—	_	—	_	_	—		—	_
RE2	10	25	27	27	ANE2	_	—	—	—	—	—	_	—	—	—	_	—	—		—	_
RE3	1	16	18	18	—	-	_	_	_	_	—	_	—	—	—	_	—	—	IOCE3	Y	MCLR VPP
VDD	11	26	7	7	—	_	—	—	—	—	_	-	_	—	—	—	—	_	—	—	Vdd
VDD	32	7	28	28	-	_	—	_	_	-	—	_	_	_	—	_	_	_		—	VDD
Vss	12	27	6	6	—	_	—	-	-	-	_	_	_	-	—	_	_	_	_	—	Vss
Vss	31	6	30	29	-	—	-	—	-	—	—	—	—	-	—	—	—	—	—	—	Vss

This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. 1: Note

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or 4: SMBUS input buffer thresholds.

REGISTER 12-3: WDTPSL: WDT PRESCALE SELECT LOW BYTE REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCN	T<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'	
u = Bit is unchange	d	x = Bit is unknown		-n/n = Value at	POR and BOR/V	alue at all other	Resets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 PSCNT<7:0>: Prescale Select Low Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 12-4: WDTPSH: WDT PRESCALE SELECT HIGH BYTE REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCNT<	:15:8> (1)			
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSCNT<15:8>**: Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 12-5: WDTTMR: WDT TIMER REGISTER

U-0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
—		WDTTM	1R<3:0>		STATE	PSCNT<	:17:16> (1)
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '0'

bit 6-3 WDTTMR<3:0>: Watchdog Timer Value bits

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed

0 = WDT is not armed

bit 1-0 **PSCNT<17:16>**: Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 14-22: ODCONC: PORTC OPEN-DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCC7 | ODCC6 | ODCC5 | ODCC4 | ODCC3 | ODCC2 | ODCC1 | ODCC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ODCC<7:0>:** PORTC Open-Drain Enable bits For RC<7:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 14-23: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRC7 | SLRC6 | SLRC5 | SLRC4 | SLRC3 | SLRC2 | SLRC1 | SLRC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRC<7:0>: PORTC Slew Rate Enable bits

- For RC<7:0> pins, respectively
- 1 = Port pin slew rate is limited
- 0 = Port pin slews at maximum rate

REGISTER 14-24: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLC7 | INLVLC6 | INLVLC5 | INLVLC4 | INLVLC3 | INLVLC2 | INLVLC1 | INLVLC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLC<7:0>: PORTC Input Level Select bits For RC<7:0> pins, respectively 1 = ST input used for PORT reads and interrupt-on-change 0 = TTL input used for PORT reads and interrupt-on-change

© 2016 Microchip Technology Inc.

19.2.1 CALIBRATION

19.2.1.1 Single-Point Calibration

Single-point calibration is performed by application software using Equation 19-1 and the assumed Mt. A reading of VTSENSE at a known temperature is taken, and the theoretical temperature is calculated by temporarily setting TOFFSET = 0. Then TOFFSET is computed as the difference of the actual and calculated temperatures. Finally, TOFFSET is stored in nonvolatile memory within the device, and is applied to future readings to gain a more accurate measurement.

19.2.1.2 Higher-Order Calibration

If the application requires more precise temperature measurement, additional calibrations steps will be necessary. For these applications, two-point or three-point calibration is recommended.

Note 1:	The TOFFSET value may be determined
	by the user with a temperature test.

- 2: Although the measurement range is -40°C to +125 °C due to the variations in offset error, the single-point uncalibrated calculated TSENSE value may indicate a temperature from -140°C to +225°C before the calibration offset is applied.
- The user must take into consideration self-heating of the device at different clock frequencies and output pin loading. For package related thermal characteristics information, refer to Section TABLE 37-6: "Thermal Characteristics".

19.2.2 TEMPERATURE RESOLUTION

The resolution of the ADC reading, Ma (°C/count), depends on both the ADC resolution N and the reference voltage used for conversion, as shown in Equation 19-2. It is recommended to use the smallest VREF value, such as 2.048 FVR reference voltage, instead of VDD.

Note:	Refer	to	Sec	tion 3	37.0	"Electrical
	Specifi	icatio	ons"	for	FVR	reference
	voltage	accu	iracy.			

EQUATION 19-2: TEMPERATURE RESOLUTION (°C/LSb)

$$Ma = \frac{V_{REF}}{2^N} \times Mt$$

$$Ma = \frac{\frac{V_{REF}}{2^{N}}}{Mv}$$

Where:

Mv = sensor voltage sensitivity (V/°C)

VREF = Reference voltage of the ADC module (in Volts)

N = Resolution of the ADC

The typical Mv value for a single diode is approximately -1.267 to -1.32 mV/C. The typical Mv value for a stack of two diodes (low range setting) is approximately -2.533 mV/C. The typical Mv value for a stack of three diodes (high range setting) is approximately -3.8 mV/C.

EXAMPLE 19-1: TEMPERATURE RESOLUTION

Using VREF = 2.048V and a 10-bit ADC provides 2 mV/LSb measurements.

Because Mv can vary from -2.40 to -2.65 mV/°C, the range of Ma = 0.75 to 0.83 °C/LSb.

19.3 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait a minimum of 25 us for the ADC value to settle, after the ADC input multiplexer is connected to the temperature indicator output, before the conversion is performed.

20.4 Register Definitions: ADC Control

REGISTER 20-1: ADCON0: ADC CONTROL REGISTER 0

rt/vv-U/U	rt/ VV-U/U	R/W-U/U	F(/ VV-U/U	K/W-U/U	r:/vv-U/U		
		CHS<5	0.U>			GO/DONE	ADUN
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '	0'	
u = Bit is unchang	jed	x = Bit is unknow	n	-n/n = Value at F	OR and BOR/Va	lue at all other Res	sets
'1' = Bit is set		'0' = Bit is cleared	ł				
bit 7-2	CHS<5:0>: /	Analog Channel Select	t hits				
	1111111 =	FVR Buffer 2 referen	ce voltage ⁽²⁾				
	111110 =	FVR 1Buffer 1 refere	nce voltage ⁽²⁾				
	111101 =	DAC1 output voltage	(1)				
	111100 =	Temperature sensor	output ⁽³⁾				
	111011 =	AVss (Analog Group	d)				
	111010-100	0000 = Reserved No	channel conne	cted			
	101111 =	RF7					
	101110 =	RF6					
	101101 =	RE5					
	101100 =	RF4					
	101011 =	RF3					
	101011 =	RF2					
	101001 =	RF1					
	101001 =	REO					
	101000 =	RF2					
	100010 =	RE1					
	100001 -						
	100000 =						
	011111 -						
	011110 -						
	011101 -						
	01100 -						
	011011 -	RD3					
	011010 =	RD2					
	011001 =	RD1					
	011000 =						
	010111 =	RC/(*)					
	010110 =	RC6(*)					
	010101 =	RC5					
	010100 =	RC4					
	010011 =	RC3					
	010010 =	RC2					
	010001 =	RC1					
	010000 =	RC0					
	001111 =	RB7(4)					
	001110 =	RB6 ⁽⁴⁾					
	001101 =	RB5 ⁽⁴⁾					
	001100 =	RB4 ⁽⁴⁾					
	001011-000	0110 = Reserved					
	000101 =	RA5					
	000100 =	RA4					
	000011 =	RA3					
	000010 =	RA2					
	000001 =	RA1					
	000000 =	RA0					
bit 1	GO/DONE	ADC Conversion Statu	s bit				
	1 = ADC con	version cycle in progre	ess. Setting thi	s bit starts an ADC	conversion cycle.		
	This bit is	s automatically cleared	by hardware	when the ADC conv	version has comp	leted.	

0 = ADC conversion completed/not in progress

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	146
PIE1	OSFIE	CSWIE	—	—	—	—	—	ADIE	148
PIR1	OSFIF	CSWIF	_	_	_	_	_	ADIF	156
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	200
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	206
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	211
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	201
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	207
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	212
ADCON0			CHS<	:5:0>			GO/DONE	ADON	277
ADCON1	ADFM		ADCS<2:0>		_	—	ADPREF	<1:0>	279
ADACT	—	—	—	—		ADA	ACT<3:0>		280
ADRESH				ADRE	SH<7:0>				281
ADRESL				ADRE	ESL<7:0>				281
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVR<	<1:0>	264
DAC1CON1	_	_	—			DAC1R<4	:0>		287
OSCSTAT1	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR	137

TABLE 20-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	—	DAC1NSS	287
DAC1CON1	_	—	_			DAC1R<4:	0>		287
CM1PSEL	_	—	_	_	_		PCH<2:0>		307
CM2PSEL	—	_	—				PCH<2:0>		307

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

22.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for application that requires frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse Width Control
- Multiple Clock Input Sources
- Output Polarity Control
- Interrupt Capability

Figure 22-1 is a simplified block diagram of the NCO module.

REGISTER 22-3: NCO1ACCL: NCO1 ACCUMULATOR REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCO1A	CC<7:0>			
bit 7							bit 0
l egend.							

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1ACC<7:0>: NCO1 Accumulator, Low Byte

REGISTER 22-4: NCO1ACCH: NCO1 ACCUMULATOR REGISTER – HIGH BYTE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | NCO1ACC | 2<15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NOC1ACC<15:8>: NCO1 Accumulator, High Byte

REGISTER 22-5: NCO1ACCU: NCO1 ACCUMULATOR REGISTER – UPPER BYTE⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	_	—		NCO1AC	C<19:16>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCO1ACC<19:16>: NCO1 Accumulator, Upper Byte

Note 1: The accumulator spans registers NCO1ACCU:NCO1ACCH: NCO1ACCL. The 24 bits are reserved but not all are used. This register updates in real-time, asynchronously to the CPU; there is no provision to guarantee atomic access to this 24-bit space using an 8-bit bus. Writing to this register while the module is operating will produce undefined results.

30.5 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWG1DBR and CWG1DBF registers, respectively.

30.5.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 30-9.

30.5.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWG1CON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWG1A and CWG1C signals will change upon the first rising input edge following a direction change, but the modulated signals (CWG1B or CWG1D, depending on the direction of the change) will experience a delay dictated by the deadband counters. This is demonstrated in Figure 30-3.

30.6 Rising Edge and Reverse Dead Band

CWG1DBR controls the rising edge dead-band time at the leading edge of CWG1A (Half-Bridge mode) or the leading edge of CWG1B (Full-Bridge mode). The CWG1DBR value is double-buffered. When EN = 0, the CWG1DBR register is loaded immediately when CWG1DBR is written. When EN = 1, then software must set the LD bit of the CWG1CON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

30.7 Falling Edge and Forward Dead Band

CWG1DBF controls the dead-band time at the leading edge of CWG1B (Half-Bridge mode) or the leading edge of CWG1D (Full-Bridge mode). The CWG1DBF value is double-buffered. When EN = 0, the CWG1DBF register is loaded immediately when CWG1DBF is written. When EN = 1 then software must set the LD bit of the CWG1CON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

Refer to Figure 30-6 and Figure 30-7 for examples.

I²C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1) **FIGURE 32-19:**

33.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 33-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCxREG register.

33.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCxSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

33.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 33.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RXxIF interrupt flag bit of the PIR3 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCxREG register.

Note: If the receive FIFO is overrun, no additional characters will be received until the overrun condition is cleared. See Section 33.1.2.5 "Receive Overrun Error" for more information on overrun errors.

REGISTER 33-4: RCxREG⁽¹⁾: RECEIVE DATA REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
RCxREG<7:0>							
bit 7							bit 0

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **RCxREG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 33-2)

Note 1: RCxREG (including the 9th bit) is double buffered, and data is available while new data is being received.

REGISTER 33-5: TXxREG⁽¹⁾: TRANSMIT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXxREG<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TXxREG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 33-1)

Note 1: TXxREG (including the 9th bit) is double buffered, and can be written when previous data has started shifting.

REGISTER 33-6: SPxBRGL⁽¹⁾: BAUD RATE GENERATOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPxBRG<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SPxBRG<7:0>: Lower eight bits of the Baud Rate Generator

Note 1: Writing to SP1BRG resets the BRG counter.

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	Ν		40	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	—	.023
Overall Row Spacing §	eB	_	_	.700

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch E		0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

