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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 25

Program Memory Size 28KB (16K x 14)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 24x10b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-UFQFN Exposed Pad

Supplier Device Package 28-UQFN (4x4)
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Ba

x0
x8
   —
x1
x9

— —

Le  as ‘0’.

TA

A Bit 0
Value on: 
POR, BOR

Value on: 
MCLR
nk 21-59

CPU CORE REGISTERS; see Table 4-3 for specifics

Ch/
Ch

Fh/
Fh

— Unimplemented

gend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as ‘0’, r = reserved. Shaded locations unimplemented, read

BLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

ddress Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
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1E — —

1E — —

1E — —

1E MLC1OUT ---- xxxx ---- uuuu

1E 0-00 0000 0-00 0000

1E LC1G1POL 0--- xxxx 0--- uuuu

1E --xx xxxx --uu uuuu

1E --xx xxxx --uu uuuu

1E --xx xxxx --uu uuuu

1E --xx xxxx --uu uuuu

1E LC1G1D1N xxxx xxxx uuuu uuuu

1E LC1G2D1N xxxx xxxx uuuu uuuu

1E LC1G3D1N xxxx xxxx uuuu uuuu

1E LC1G4D1N xxxx xxxx uuuu uuuu

1E 0-00 0000 0-00 0000

1E LC2G1POL 0--- xxxx 0--- uuuu

1E --xx xxxx --uu uuuu

1E --xx xxxx --uu uuuu

1E --xx xxxx --uu uuuu

1E --xx xxxx --uu uuuu

1E LC2G1D1N xxxx xxxx uuuu uuuu

1E LC2G2D1N xxxx xxxx uuuu uuuu

1E LC2G3D1N xxxx xxxx uuuu uuuu

1E LC2G4D1N xxxx xxxx uuuu uuuu

1E 0-00 0000 0-00 0000

1E LC3G1POL 0--- xxxx 0--- uuuu

1E --xx xxxx --uu uuuu

1E --xx xxxx --uu uuuu

1E --xx xxxx --uu uuuu

1E --xx xxxx --uu uuuu

1E LC3G1D1N xxxx xxxx uuuu uuuu

Le  as ‘0’.

TA

A Bit 0
Value on: 
POR, BOR

Value on: 
MCLR
nk 60

CPU CORE REGISTERS; see Table 4-3 for specifics

0Ch — Unimplemented

0Dh — Unimplemented

0Eh — Unimplemented

0Fh CLCDATA — — — — MLC4OUT MLC3OUT MLC2OUT

10h CLCCON LC1EN — LC1OUT LC1INTP LC1INTN LC1MODE<2:0>

11h CLC1POL LC1POL — — — LC1G4POL LC1G3POL LC1G2POL

12h CLC1SEL0 — — LC1D1S<5:0>

13h CLC1SEL1 — — LC1D2S<5:0>

14h CLC1SEL2 — — LC1D3S<5:0>

15h CLC1SEL3 — — LC1D4S<5:0>

16h CLC1GLS0 LC1G1D4T LC1G4D3N LC1G1D3T LC1G1D3N LC1G1D2T LC1G1D2N LC1G1D1T

17h CLC1GLS1 LC1G2D4T LC1G4D3N LC1G2D3T LC1G2D3N LC1G2D2T LC1G2D2N LC1G2D1T

18h CLC1GLS2 LC1G3D4T LC1G4D3N LC1G3D3T LC1G3D3N LC1G3D2T LC1G3D2N LC1G3D1T

19h CLC1GLS3 LC1G4D4T LC1G4D3N LC1G4D3T LC1G4D3N LC1G4D2T LC1G4D2N LC1G4D1T

1Ah CLC2CON LC2EN — LC2OUT LC2INTP LC2INTN LC2MODE<2:0>

1Bh CLC2POL LC2POL — — — LC2G4POL LC2G3POL LC2G2POL

1Ch CLC2SEL0 — — LC2D1S<5:0>

1Dh CLC2SEL1 — — LC2D2S<5:0>

1Eh CLC2SEL2 — — LC2D3S<5:0>

1Fh CLC2SEL3 — — LC2D4S<5:0>

20h CLC2GLS0 LC2G1D4T LC2G4D3N LC2G1D3T LC2G1D3N LC2G1D2T LC2G1D2N LC2G1D1T

21h CLC2GLS1 LC2G2D4T LC2G4D3N LC2G2D3T LC2G2D3N LC2G2D2T LC2G2D2N LC2G2D1T

22h CLC2GLS2 LC2G3D4T LC2G4D3N LC2G3D3T LC2G3D3N LC2G3D2T LC2G3D2N LC2G3D1T

23h CLC2GLS3 LC2G4D4T LC2G4D3N LC2G4D3T LC2G4D3N LC2G4D2T LC2G4D2N LC2G4D1T

24h CLC3CON LC3EN — LC3OUT LC3INTP LC3INTN LC3MODE

25h CLC3POL LC3POL — — — LC3G4POL LC3G3POL LC3G2POL

26h CLC3SEL0 — — LC3D1S<5:0>

27h CLC3SEL1 — — LC3D2S<5:0>

28h CLC3SEL2 — — LC3D3S<5:0>

29h CLC3SEL3 — — LC3D4S<5:0>

2Ah CLC3GLS0 LC3G1D4T LC3G4D3N LC3G1D3T LC3G1D3N LC3G1D2T LC3G1D2N LC3G1D1T

gend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as ‘0’, r = reserved. Shaded locations unimplemented, read

BLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

ddress Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1



PIC16(L)F15356/75/76/85/86
5.6 Device ID and Revision ID

The 14-bit Device ID word is located at 8006h and the
14-bit Revision ID is located at 8005h. These locations
are read-only and cannot be erased or modified.

Development tools, such as device programmers and
debuggers, may be used to read the Device ID,
Revision ID and Configuration Words. These locations
can also be read from the NVMCON register.

5.7 Register Definitions: Device and Revision

             

REGISTER 5-6: DEVID: DEVICE ID REGISTER

R R R R R R

DEV<13:8>

bit 13 bit 8

R R R R R R R R

DEV<7:0>

bit 7 bit 0

Legend:

R = Readable bit

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 13-0 DEV<13:0>: Device ID bits

Device DEVID<13:0> Values

PIC16F15356 11 0000 1011 0000 (30B0h)

PIC16LF15356 11 0000 1011 0001 (30B1h)

PIC16F15375 11 0000 1011 0010 (30B2h)

PIC16LF15375 11 0000 1011 0011 (30B3h)

PIC16F15376 11 0000 1011 0100 (30B4h)

PIC16LF15376 11 0000 1011 0101 (30B5h)

PIC16F15385 11 0000 1011 0110 (30B6h)

PIC16LF15385 11 0000 1011 0111 (30B7h)

PIC16F15386 11 0000 1011 1000 (30B8h)

PIC16LF15386 11 0000 1011 1001 (30B9h)
 2016 Microchip Technology Inc. Preliminary DS40001866A-page 109
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8.4 Low-Power Brown-out Reset 
(LPBOR)

The Low-Power Brown-out Reset (LPBOR) is an
important part of the Reset subsystem. Refer to
Figure 8-1 to see how the BOR and LPBOR interact
with other modules. 

The LPBOR is used to monitor the external VDD pin.
When too low of a voltage is detected, the device is
held in Reset.

8.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of the
Configuration Word (Register 5-1). When the device is
erased, the LPBOR module defaults to disabled. 

8.4.2 LPBOR MODULE OUTPUT

The output of the LPBOR module is a signal indicating
whether or not a Reset is to be asserted. When this
occurs, a register bit (BOR) is changed to indicate that
a BOR Reset has occurred. The same bit is set for
either the BOR or the LPBOR (refer to Register 8-3).
This signal is OR’d with the output of the BOR module
to provide the generic BOR signal, which goes to the
PCON register and to the power control block. Refer to
Figure 8-1 for the OR gate connections of the BOR and
LPBOR Reset signals, which eventually generates one
common BOR Reset.

8.5 MCLR

The MCLR is an optional external input that can reset
the device. The MCLR function is controlled by the
MCLRE bit of Configuration Words and the LVP bit of
Configuration Words (Table 8-2).

8.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device
is held in Reset. The MCLR pin is connected to VDD

through an internal weak pull-up. Refer to Section 2.3
“Master Clear (MCLR) Pin” for recommended MCLR
connections.

The device has a noise filter in the MCLR Reset path.
The filter will detect and ignore small pulses.

8.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general
purpose input and the internal weak pull-up is under
software control. See Section 14.1 “I/O Priorities” for
more information.

8.6 Windowed Watchdog Timer 
(WWDT) Reset

The Watchdog Timer generates a Reset if the firmware
does not issue a CLRWDT instruction within the time-out
period and the window is open. The TO and PD bits in
the STATUS register and the WDT bit in PCON are
changed to indicate a WDT Reset caused by the timer
overflowing, and WDTWV bit in the PCON register is
changed to indicate a WDT Reset caused by a window
violation. See Section 12.0 “Windowed Watchdog
Timer (WWDT)” for more information.

8.7 RESET Instruction

A RESET instruction will cause a device Reset. The RI
bit in the PCON register will be set to ‘0’. See Table 8-4
for default conditions after a RESET instruction has
occurred.

8.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or
Underflows. The STKOVF or STKUNF bits of the PCON
register indicate the Reset condition. These Resets are
enabled by setting the STVREN bit in Configuration
Words. See Section 4.5.2 “Overflow/Underflow
Reset” for more information.

8.9 Programming Mode Exit

Upon exit of In-Circuit Serial Programming™ (ICSP™)
mode, the device will behave as if a POR had just
occurred (the device does not reset upon run time
self-programming/erase operations).

8.10 Power-up Timer

The Power-up Timer optionally delays device execution
after a BOR or POR event. This timer is typically used to
allow VDD to stabilize before allowing the device to start
running.

The Power-up Timer is controlled by the PWRTE bit of
the Configuration Words.

The Power-up Timer provides a nominal 64 ms time out
on POR or Brown-out Reset. The device is held in
Reset as long as PWRT is active. The PWRT delay
allows additional time for the VDD to rise to an accept-
able level. The Power-up Timer is enabled by clearing
the PWRTE bit in the Configuration Words. The
Power-up Timer starts after the release of the POR and
BOR. For additional information, refer to Application
Note AN607, “Power-up Trouble Shooting” (DS00607).

TABLE 8-2: MCLR CONFIGURATION

MCLRE LVP MCLR

0 0 Disabled

1 0 Enabled

x 1 Enabled

Note: A Reset does not drive the MCLR pin low.
 2016 Microchip Technology Inc. Preliminary DS40001866A-page 118
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Changing the clock post-divider without changing the
clock source (e.g., changing FOSC from 1 MHz to 2
MHz) is handled in the same manner as a clock source
change, as described previously. The clock source will
already be active, so the switch is relatively quick.
CSWHOLD must be clear (CSWHOLD = 0) for the
switch to complete.

The current COSC and CDIV are indicated in the
OSCCON2 register up to the moment when the switch
actually occurs, at which time OSCCON2 is updated
and ORDY is set. NOSCR is cleared by hardware to
indicate that the switch is complete.

9.3.2 PLL INPUT SWITCH

Switching between the PLL and any non-PLL source is
managed as described above. The input to the PLL is
established when NOSC selects the PLL, and main-
tained by the COSC setting. 

When NOSC and COSC select the PLL with different
input sources, the system continues to run using the
COSC setting, and the new source is enabled per
NOSC. When the new oscillator is ready (and
CSWHOLD = 0), system operation is suspended while
the PLL input is switched and the PLL acquires lock. 

9.3.3 CLOCK SWITCH AND SLEEP

If OSCCON1 is written with a new value and the device
is put to Sleep before the switch completes, the switch
will not take place and the device will enter Sleep
mode.

When the device wakes from Sleep and the
CSWHOLD bit is clear, the device will wake with the
‘new’ clock active, and the clock switch interrupt flag bit
(CSWIF) will be set.

When the device wakes from Sleep and the
CSWHOLD bit is set, the device will wake with the ‘old’
clock active and the new clock will be requested again.

FIGURE 9-6: CLOCK SWITCH (CSWHOLD = 0)

Note: If the PLL fails to lock, the FSCM will
trigger.

Note 1: CSWIF is asserted coincident with NOSCR; interrupt is serviced at OSC#2 speed.
2: The assertion of NOSCR is hidden from the user because it appears only for the duration of the switch.

CSWHOLD

NOSCR

OSC #2

CSWIF

OSCCON1
WRITTEN

NOTE 1

USER
CLEAR

OSC #1

NOTE 2

ORDY
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10.3 Interrupts During Sleep

Interrupts can be used to wake from Sleep. To wake
from Sleep, the peripheral must be able to operate
without the system clock. The interrupt source must
have the appropriate Interrupt Enable bit(s) set prior to
entering Sleep.

On waking from Sleep, if the GIE bit is also set, the
processor will branch to the interrupt vector. Otherwise,
the processor will continue executing instructions after
the SLEEP instruction. The instruction directly after the
SLEEP instruction will always be executed before
branching to the ISR. Refer to Section 11.0 “Power-
Saving Operation Modes” for more details.

10.4 INT Pin

The INT pin can be used to generate an asynchronous
edge-triggered interrupt. Refer to Figure 10-3. This
interrupt is enabled by setting the INTE bit of the PIE0
register. The INTEDG bit of the INTCON register
determines on which edge the interrupt will occur. When
the INTEDG bit is set, the rising edge will cause the
interrupt. When the INTEDG bit is clear, the falling edge
will cause the interrupt. The INTF bit of the PIR0 register
will be set when a valid edge appears on the INT pin. If
the GIE and INTE bits are also set, the processor will
redirect program execution to the interrupt vector.

10.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is
saved on the stack. Additionally, the following registers
are automatically saved in the shadow registers:

• W register

• STATUS register (except for TO and PD)

• BSR register

• FSR registers

• PCLATH register

Upon exiting the Interrupt Service Routine, these
registers are automatically restored. Any modifications
to these registers during the ISR will be lost. If
modifications to any of these registers are desired, the
corresponding shadow register should be modified and
the value will be restored when exiting the ISR. The
shadow registers are available in Bank 31 and are
readable and writable. Depending on the user’s
application, other registers may also need to be saved.
 2016 Microchip Technology Inc. Preliminary DS40001866A-page 145
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14.0 I/O PORTS

TABLE 14-1: PORT AVAILABILITY PER 
DEVICE

Each port has ten standard registers for its operation.
These registers are:

• PORTx registers (reads the levels on the pins of 
the device)

• LATx registers (output latch)

• TRISx registers (data direction)

• ANSELx registers (analog select)

• WPUx registers (weak pull-up)

• INLVLx (input level control)

• SLRCONx registers (slew rate)

• ODCONx registers (open-drain)

Most port pins share functions with device peripherals,
both analog and digital. In general, when a peripheral
is enabled on a port pin, that pin cannot be used as a
general purpose output; however, the pin can still be
read.

The Data Latch (LATx registers) is useful for
read-modify-write operations on the value that the I/O
pins are driving.

A write operation to the LATx register has the same
effect as a write to the corresponding PORTx register.
A read of the LATx register reads of the values held in
the I/O PORT latches, while a read of the PORTx
register reads the actual I/O pin value.

Ports that support analog inputs have an associated
ANSELx register. When an ANSEL bit is set, the digital
input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels
on the pin between a logic high and low from causing
excessive current in the logic input circuitry. A
simplified model of a generic I/O port, without the
interfaces to other peripherals, is shown in Figure 14-1.

FIGURE 14-1: GENERIC I/O PORT 
OPERATION 

14.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset.
Other functions are selected with the peripheral pin
select logic. See Section 15.0 “Peripheral Pin Select
(PPS) Module” for more information.

Analog input functions, such as ADC and comparator
inputs, are not shown in the peripheral pin select lists.
These inputs are active when the I/O pin is set for
Analog mode using the ANSELx register. Digital output
functions may continue to control the pin when it is in
Analog mode.

Analog outputs, when enabled, take priority over the
digital outputs and force the digital output driver to the
high-impedance state.
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PIC16(L)F15356 ● ● ● ●
PIC16(L)F15375/76 ● ● ● ● ●
PIC16(L)F15385/86 ● ● ● ● ● ●

Write LATx
Write PORTx

Data bus

Read PORTx

To digital peripherals

To analog peripherals

Data Register

TRISx

VSS

I/O pin

ANSELx

D Q

CK

Read LATx

VDD

Rev. 10-000052A
7/30/2013
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14.2 PORTA Registers

14.2.1 DATA REGISTER

PORTA is an 8-bit wide, bidirectional port. The
corresponding data direction register is TRISA
(Register 14-2). Setting a TRISA bit (= 1) will make the
corresponding PORTA pin an input (i.e., disable the
output driver). Clearing a TRISA bit (= 0) will make the
corresponding PORTA pin an output (i.e., enables
output driver and puts the contents of the output latch
on the selected pin). Example 14.2.8 shows how to
initialize PORTA.

Reading the PORTA register (Register 14-1) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then
written to the PORT data latch (LATA).

The PORT data latch LATA (Register 14-3) holds the
output port data, and contains the latest value of a
LATA or PORTA write.

EXAMPLE 14-1: INITIALIZING PORTA

14.2.2 DIRECTION CONTROL

The TRISA register (Register 14-2) controls the
PORTA pin output drivers, even when they are being
used as analog inputs. The user should ensure the bits
in the TRISA register are maintained set when using
them as analog inputs. I/O pins configured as analog
inputs always read ‘0’.

14.2.3 OPEN-DRAIN CONTROL

The ODCONA register (Register 14-6) controls the
open-drain feature of the port. Open-drain operation is
independently selected for each pin. When an
ODCONA bit is set, the corresponding port output
becomes an open-drain driver capable of sinking
current only. When an ODCONA bit is cleared, the
corresponding port output pin is the standard push-pull
drive capable of sourcing and sinking current.

14.2.4 SLEW RATE CONTROL

The SLRCONA register (Register 14-7) controls the
slew rate option for each port pin. Slew rate control is
independently selectable for each port pin. When an
SLRCONA bit is set, the corresponding port pin drive is
slew rate limited. When an SLRCONA bit is cleared,
The corresponding port pin drive slews at the maximum
rate possible.

14.2.5 INPUT THRESHOLD CONTROL

The INLVLA register (Register 14-8) controls the input
voltage threshold for each of the available PORTA input
pins. A selection between the Schmitt Trigger CMOS or
the TTL Compatible thresholds is available. The input
threshold is important in determining the value of a read
of the PORTA register and also the level at which an
interrupt-on-change occurs, if that feature is enabled.
See Table 37-4 for more information on threshold
levels.

; This code example illustrates
; initializing the PORTA register. The 
; other ports are initialized in the same
; manner.

BANKSEL PORTA ;
CLRF PORTA ;Init PORTA
BANKSEL LATA ;Data Latch
CLRF LATA ;
BANKSEL ANSELA ;
CLRF ANSELA ;digital I/O
BANKSEL TRISA ;
MOVLW B'00111000' ;Set RA<5:3> as inputs
MOVWF TRISA ;and set RA<2:0> as

;outputs

Note: It is not necessary to set open-drain
control when using the pin for I2C; the I2C
module controls the pin and makes the pin
open-drain.

Note: Changing the input threshold selection
should be performed while all peripheral
modules are disabled. Changing the
threshold level during the time a module is
active may inadvertently generate a
transition associated with an input pin,
regardless of the actual voltage level on
that pin.
 2016 Microchip Technology Inc. Preliminary DS40001866A-page 198
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REGISTER 14-44: ANSELF: PORTF ANALOG SELECT REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

ANSF7 ANSF6 ANSF5 ANSF4 ANSF3 ANSF2 ANSF1 ANSF0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ANSF<7:0>: Analog Select between Analog or Digital Function on Pins RF<7:0>, respectively(1)

0 = Digital I/O. Pin is assigned to port or digital special function.
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to 
allow external control of the voltage on the pin.

REGISTER 14-45: WPUF: WEAK PULL-UP PORTF REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

WPUF7 WPUF6 WPUF5 WPUF4 WPUF3 WPUF2 WPUF1 WPUF0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 WPUF<7:0>: Weak Pull-up Register bits(1)

1 = Pull-up enabled
0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.
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30.0 COMPLEMENTARY WAVEFORM 
GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG)
produces half-bridge, full-bridge, and steering of PWM
waveforms. It is backwards compatible with previous
ECCP functions.

The CWG has the following features:

• Six operating modes:

- Synchronous Steering mode

- Asynchronous Steering mode

- Full-Bridge mode, Forward 

- Full-Bridge mode, Reverse

- Half-Bridge mode

- Push-Pull mode

• Output polarity control

• Output steering

- Synchronized to rising event

- Immediate effect

• Independent 6-bit rising and falling event dead-
band timers

- Clocked dead band

- Independent rising and falling dead-band 
enables

• Auto-shutdown control with:

- Selectable shutdown sources

- Auto-restart enable

- Auto-shutdown pin override control

The CWG modules available are shown in Table 30-1.

30.1 Fundamental Operation

The CWG module can operate in six different modes,
as specified by MODE of the CWG1CON0 register:

• Half-Bridge mode (Figure 30-9)

• Push-Pull mode (Figure 30-2)

- Full-Bridge mode, Forward (Figure 30-3)

- Full-Bridge mode, Reverse (Figure 30-3)

• Steering mode (Figure 30-10)

• Synchronous Steering mode (Figure 30-11)

It may be necessary to guard against the possibility of
circuit faults or a feedback event arriving too late or not
at all. In this case, the active drive must be terminated
before the Fault condition causes damage. Thus, all
output modes support auto-shutdown, which is covered
in 30.10 “Auto-Shutdown”. 

30.1.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated
as true and inverted versions of the input as illustrated
in Figure 30-9. A non-overlap (dead-band) time is
inserted between the two outputs as described in
Section 30.5 “Dead-Band Control”. 

The unused outputs CWG1C and CWG1D drive similar
signals, with polarity independently controlled by the
POLC and POLD bits of the CWG1CON1 register,
respectively. 

TABLE 30-1: AVAILABLE CWG MODULES

Device CWG1

PIC16(L)F15356/75/76/85/86 ●
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30.1.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated,
alternating copies of the input as illustrated in
Figure 30-2. This alternation creates the push-pull
effect required for driving some transformer-based
power supply designs.

The push-pull sequencer is reset whenever EN = 0 or
if an auto-shutdown event occurs. The sequencer is
clocked by the first input pulse, and the first output
appears on CWG1A.

The unused outputs CWG1C and CWG1D drive copies
of CWG1A and CWG1B, respectively, but with polarity
controlled by the POLC and POLD bits of the
CWG1CON1 register, respectively.

30.1.3 FULL-BRIDGE MODES

In Forward and Reverse Full-Bridge modes, three out-
puts drive static values while the fourth is modulated by
the input data signal. In Forward Full-Bridge mode,
CWG1A is driven to its active state, CWG1B and
CWG1C are driven to their inactive state, and CWG1D
is modulated by the input signal. In Reverse Full-Bridge
mode, CWG1C is driven to its active state, CWG1A and
CWG1D are driven to their inactive states, and CWG1B
is modulated by the input signal. In Full-Bridge mode,
the dead-band period is used when there is a switch
from forward to reverse or vice-versa. This dead-band
control is described in Section 30.5 “Dead-Band Con-
trol”, with additional details in Section 30.6 “Rising
Edge and Reverse Dead Band” and Section
30.7 “Falling Edge and Forward Dead Band”.

The mode selection may be toggled between forward
and reverse toggling the MODE<0> bit of the
CWG1CON0 while keeping MODE<2:1> static, without
disabling the CWG module.
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REGISTER 30-7: CWG1STR: CWG1 STEERING CONTROL REGISTER(1)

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

OVRD OVRC OVRB OVRA STRD(2) STRC(2) STRB(2) STRA(2)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7 OVRD: Steering Data D bit

bit 6 OVRC: Steering Data C bit

bit 5 OVRB: Steering Data B bit

bit 4 OVRA: Steering Data A bit

bit 3 STRD: Steering Enable D bit(2)

1 = CWG1D output has the CWG1_data waveform with polarity control from POLD bit
0 = CWG1D output is assigned the value of OVRD bit

bit 2 STRC: Steering Enable C bit(2)

1 = CWG1C output has the CWG1_data waveform with polarity control from POLC bit
0 = CWG1C output is assigned the value of OVRC bit

bit 1 STRB: Steering Enable B bit(2)

1 = CWG1B output has the CWG1_data waveform with polarity control from POLB bit
0 = CWG1B output is assigned the value of OVRB bit

bit 0 STRA: Steering Enable A bit(2)

1 = CWG1A output has the CWG1_data waveform with polarity control from POLA bit
0 = CWG1A output is assigned the value of OVRA bit

Note 1: The bits in this register apply only when MODE<2:0> = 00x.

2: This bit is effectively double-buffered when MODE<2:0> = 001.
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32.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as
external clock pulses appear on SCK. When the last
bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock
line must match the proper Idle state. The clock line can
be observed by reading the SCK pin. The Idle state is
determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by
the external clock source on the SCK pin. This external
clock must meet the minimum high and low times as
specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive
data. The shift register is clocked from the SCK pin
input and when a byte is received, the device will
generate an interrupt. If enabled, the device will
wake-up from Sleep.

32.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a
daisy-chain configuration. The first slave output is
connected to the second slave input, the second slave
output is connected to the third slave input, and so on.
The final slave output is connected to the master input.
Each slave sends out, during a second group of clock
pulses, an exact copy of what was received during the
first group of clock pulses. The whole chain acts as
one large communication shift register. The
daisy-chain feature only requires a single Slave Select
line from the master device.

Figure 32-7 shows the block diagram of a typical
daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent
byte on the bus is required by the slave. Setting the
BOEN bit of the SSPxCON3 register will enable writes
to the SSPxBUF register, even if the previous byte has
not been read. This allows the software to ignore data
that may not apply to it.

32.2.5 SLAVE SELECT 
SYNCHRONIZATION

The Slave Select can also be used to synchronize
communication. The Slave Select line is held high until
the master device is ready to communicate. When the
Slave Select line is pulled low, the slave knows that a
new transmission is starting. 

If the slave fails to receive the communication properly,
it will be reset at the end of the transmission, when the
Slave Select line returns to a high state. The slave is
then ready to receive a new transmission when the
Slave Select line is pulled low again. If the Slave Select
line is not used, there is a risk that the slave will
eventually become out of sync with the master. If the
slave misses a bit, it will always be one bit off in future
transmissions. Use of the Slave Select line allows the
slave and master to align themselves at the beginning
of each transmission.

The SS pin allows a Synchronous Slave mode. The
SPI must be in Slave mode with SS pin control enabled
(SSPxCON1<3:0> = 0100). 

When the SS pin is low, transmission and reception are
enabled and the SDO pin is driven. 

When the SS pin goes high, the SDO pin is no longer
driven, even if in the middle of a transmitted byte and
becomes a floating output. External pull-up/pull-down
resistors may be desirable depending on the applica-
tion.    

When the SPI module resets, the bit counter is forced
to ‘0’. This can be done by either forcing the SS pin to
a high level or clearing the SSPEN bit.

Note 1: When the SPI is in Slave mode with SS pin
control enabled (SSPxCON1<3:0> =
0100), the SPI module will reset if the SS
pin is set to VDD.

2: When the SPI is used in Slave mode with
CKE set; the user must enable SS pin
control.

3: While operated in SPI Slave mode the
SMP bit of the SSPxSTAT register must
remain clear.
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33.2 Clock Accuracy with 
Asynchronous Operation

The factory calibrates the internal oscillator block
output (INTOSC). However, the INTOSC frequency
may drift as VDD or temperature changes, and this
directly affects the asynchronous baud rate. Two
methods may be used to adjust the baud rate clock, but
both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE
register to adjust the INTOSC output. Adjusting the
value in the OSCTUNE register allows for fine resolution
changes to the system clock source. See
Section 9.2.2.2 “Internal Oscillator Frequency
Adjustment” for more information.

The other method adjusts the value in the Baud Rate
Generator. This can be done automatically with the
Auto-Baud Detect feature (see Section 33.3.1
“Auto-Baud Detect”). There may not be fine enough
resolution when adjusting the Baud Rate Generator to
compensate for a gradual change in the peripheral
clock frequency.
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FIGURE 34-1: CLOCK REFERENCE BLOCK DIAGRAM

FIGURE 34-2: CLOCK REFERENCE TIMING
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REGISTER 34-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

R/W-0/0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

CLKREN — — CLKRDC<1:0> CLKRDIV<2:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 CLKREN: Reference Clock Module Enable bit

1 = Reference clock module enabled
0 = Reference clock module is disabled

bit 6-5 Unimplemented: Read as ‘0’

bit 4-3 CLKRDC<1:0>: Reference Clock Duty Cycle bits (1)

11 = Clock outputs duty cycle of 75%
10 = Clock outputs duty cycle of 50%
01 = Clock outputs duty cycle of 25%
00 = Clock outputs duty cycle of 0%

bit 2-0 CLKRDIV<2:0>: Reference Clock Divider bits

111 = Base clock value divided by 128
110 = Base clock value divided by 64
101 = Base clock value divided by 32
100 = Base clock value divided by 16
011 = Base clock value divided by 8
010 = Base clock value divided by 4
001 = Base clock value divided by 2
000 = Base clock value

Note 1: Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.
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TABLE 37-23: SPI MODE REQUIREMENTS   

Standard Operating Conditions (unless otherwise stated)

Param. 
No.

Symbol Characteristic Min. Typ† Max. Units Conditions

SP70* TSSL2SCH, 
TSSL2SCL

SS to SCK or SCK input 2.25*TCY — — ns

SP71* TSCH SCK input high time (Slave mode) TCY + 20 — — ns

SP72* TSCL SCK input low time (Slave mode) TCY + 20 — — ns

SP73* TDIV2SCH, 
TDIV2SCL

Setup time of SDI data input to SCK 
edge

100 — — ns

SP74* TSCH2DIL, 
TSCL2DIL

Hold time of SDI data input to SCK edge 100 — — ns

SP75* TDOR SDO data output rise time — 10 25 ns 3.0V  VDD  5.5V

— 25 50 ns 1.8V  VDD  5.5V

SP76* TDOF SDO data output fall time — 10 25 ns

SP77* TSSH2DOZ SS to SDO output high-impedance 10 — 50 ns

SP78* TSCR SCK output rise time 
(Master mode)

— 10 25 ns 3.0V  VDD  5.5V

— 25 50 ns 1.8V  VDD  5.5V

SP79* TSCF SCK output fall time (Master mode) — 10 25 ns

SP80* TSCH2DOV,
TSCL2DOV

SDO data output valid after SCK edge — — 50 ns 3.0V  VDD  5.5V

— — 145 ns 1.8V  VDD  5.5V

SP81* TDOV2SCH,
TDOV2SCL

SDO data output setup to SCK edge 1 Tcy — — ns

SP82* TSSL2DOV SDO data output valid after SS edge — — 50 ns

SP83* TSCH2SSH,
TSCL2SSH

SS after SCK edge 1.5 TCY + 40 — — ns

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are 

not tested.
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FIGURE 37-21: I2C BUS START/STOP BITS TIMING

TABLE 37-24: I2C BUS START/STOP BITS REQUIREMENTS

FIGURE 37-22: I2C BUS DATA TIMING

Standard Operating Conditions (unless otherwise stated)

Param.
No.

Symbol Characteristic Min. Typ Max. Units Conditions

SP90* TSU:STA Start condition 100 kHz mode 4700 — — ns Only relevant for Repeated Start 
conditionSetup time 400 kHz mode 600 — —

SP91* THD:STA Start condition 100 kHz mode 4000 — — ns After this period, the first clock 
pulse is generatedHold time 400 kHz mode 600 — —

SP92* TSU:STO Stop condition 100 kHz mode 4700 — — ns

Setup time 400 kHz mode 600 — —

SP93 THD:STO Stop condition 100 kHz mode 4000 — — ns

Hold time 400 kHz mode 600 — —

* These parameters are characterized but not tested.

Note: Refer to Figure 37-4 for load conditions.
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