

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15356-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PACKAGES

Device	(S)PDIP	SOIC	SSOP	TQFP (7x7)	TQFP (10x10)	QFN (8x8)	UQFN (4x4)	UQFN (5x5)	UQFN (6x6)
PIC16(L)F15356	•	•	•				•		
PIC16(L)F15375	٠				•	٠		•	
PIC16(L)F15376	•				•	٠		•	
PIC16(L)F15385				•					•
PIC16(L)F15386				•					•

PIC16(L)F15356/75/76/85/86

TABLE 5: 48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) (CONTINUED)

I/O ⁽²⁾	48-Pin UQFN/TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	ССР	MWd	ЭМЭ	MSSP	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RF5	13	ANF5	_	—	—	—	—	—	—		—	—	_	—	—		Υ	
RF6	14	ANF6		—	—	_	—	—	—		_	—		—	_		Υ	
RF7	15	ANF7	-	—	—	_	—	—	—		—	—		—	-		Υ	I
Vdd	30			—	—	_	—	—	—		_	—		—	_		Υ	Vdd
Vdd	7	I	-	—	—	_	—	—	—		—	—		—	-		_	Vdd
Vss	6			—	—	_	—	—	—		_	—		—	_		—	Vss
Vss	31		_	—	—	—	—	—	—	-	—	—	_	—	-		—	Vss
OUT ⁽²⁾	-	_	—	C1OUT	NCO10UT	_	TMR0	CCP1	PWM3OUT	CWG1A CWG2A	SDO1 SDO2	—	DT ⁽³⁾	CLC10UT	CLKR	—	-	—
	-	-	—	C2OUT	—	_	—	CCP2	PWM4OUT	CWG1B CWG2B	SCK1 SCK2	—	CK1 CK2	CLC2OUT				
	—	_	_	_	_	_	_	_	PWM5OUT	CWG1C CWG2C	SCK1 ^(3,4) SCL2 ^(3,4)	_	TX1 TX2	CLC3OUT	_	_	—	_
	—	—	_	—	—	—	—	—	PWM6OUT	CWG1D CWG2D	SDA1 ^(3,4) SDA2 ^(3,4)	—	—	CLC4OUT	_	_	—	—

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

Name	Function	Input Type	Output Type	Description
RD1/AND1/SDA1 ⁽¹⁾ /SDI1 ⁽¹⁾	RD1	TTL/ST	CMOS/OD	General purpose I/O.
	AND1	AN	_	ADC Channel D0 input.
	SDA1 ⁽¹⁾	l ² C	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI serial data input.
RD2/AND2	RD2	TTL/ST	CMOS/OD	General purpose I/O.
	AND2	AN	_	ADC Channel D0 input.
RD3/AND3	RD3	TTL/ST	CMOS/OD	General purpose I/O.
	AND3	AN	_	ADC Channel D0 input.
RD4/AND4	RD4	TTL/ST	CMOS/OD	General purpose I/O.
	AND4	AN	-	ADC Channel D0 input.
RD5/AND5	RD5	TTL/ST	CMOS/OD	General purpose I/O.
	AND5	AN	_	ADC Channel D0 input.
RD6/AND6	RD6	TTL/ST	CMOS/OD	General purpose I/O.
	AND6	AN	_	ADC Channel D0 input.
RD7/AND7	RD7	TTL/ST	CMOS/OD	General purpose I/O.
	AND7	AN	_	ADC Channel D0 input.
RE0/ANE0	RE0	TTL/ST	CMOS/OD	General purpose I/O.
	ANE0	AN	_	ADC Channel D0 input.
RE1/ANE1	RE1	TTL/ST	CMOS/OD	General purpose I/O.
	ANE1	AN	-	ADC Channel D0 input.
RE2/ANE2	RE2	TTL/ST	CMOS/OD	General purpose I/O.
	ANE2	AN	_	ADC Channel D0 input.
RE3/MCLR/IOCE3	RE3	TTL/ST	_	General purpose input only (when $\overline{\text{MCLR}}$ is disabled by the Configuration bit).
	MCLR	ST	_	Master clear input with internal weak pull-up resistor.
	IOCE3	TTL/ST	—	Interrupt-on-change input.
Vdd	Vdd	Power	_	Positive supply voltage input.
Vss	Vss	Power	_	Ground reference.

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output

Note

CMOS = CMOS compatible input or output

= Open-Drain

TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels = Crystal levels XTAI

I²C = Schmitt Trigger input with I^2C

= High Voltage HV

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1: pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 15-5, Table 15-6 and Table 15-6.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

IABLE 4	4-11: SPECI	AL FUNCTION	REGISTER	SUMMARY	BANKS 0-	63 (CONTIN	IUED)					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 2	ank 2											
	CPU CORE REGISTERS; see Table 4-3 for specifics											
10Ch 	-				Unimpler	mented				-	-	
119h	RC1REG	EUSART Receive Dat	a Register							0000 0000	0000 0000	
11Ah	TX1REG	EUSART Transmit Da	ta Register							0000 0000	0000 0000	
11Bh	SP1BRGL				SP1BR0	G<7:0>				0000 0000	0000 0000	
11Ch	SP1BRGH				SP1BRG	6<15:8>				0000 0000	0000 0000	
11Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000	
11Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010	
11Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00	

CISTED SUMMADY DANKS A 62 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

IADLL -	-11. OI LO		NEO101 EIX		DANKO V-	03 (00141114					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 4											
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
20Ch	TMR1L	Holding Register for t	he Least Significa	ant Byte of the 16	-bit TMR1 Regis	ter				0000 0000	uuuu uuuu
20Dh	TMR1H	Holding Register for th	e Most Significant	Byte of the 16-bit	TMR1 Register					0000 0000	uuuu uuuu
20Eh	T1CON	—	_	CKPS	6<1:0>	_	SYNC	RD16	ON	00 -000	uu -u0u
20Fh	T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	-	0000 0x	uuuu ux
210h	T1GATE	-	_	_			GSS<4:0>			0 0000	u uuuu
211h	T1CLK	—	_	_	—		C	S<3:0>		0000	uuuu
212h 21Fh	_				Unimple	mented				-	_

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

PIC16(L)F15356/75/76/85/86

					Rev. 10-0000438 7/30/2013
			0x0F		1
			0x0E		-
			0x0D		-
			0x0C		
			0x0B		
			0x0A		
			0x09		This figure shows the stack configuration
			0x08		If a RETURN instruction is executed, the
			0x07		return address will be placed in the
			0x06		decremented to the empty state (0x1F).
			0x05		_
			0x04		-
			0x03		-
			0x02		-
TOCUL		Λ			
RE 4-7:	ACCE	ESSING	THE STA	CK EXAMPLE :	3
RE 4-7:	ACCE	ESSING		CK EXAMPLE	3 8er: 10-00043C 7902013
RE 4-7:	ACCE	ESSING		CK EXAMPLE	3 Rev: 10-000410C 77602013
RE 4-7:	ACCE	ESSING T	0x0F	CK EXAMPLE	3
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D		3 Rev. 10-00043C 7/902013
RE 4-7:	ACCE	ESSING T	0x0F 0x0E 0x0D 0x0C	CK EXAMPLE	3 Rev: 10.00004C 7/592013
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D 0x0C 0x0D 0x0C 0x0B		3 Rev. 10.000044C 7702013 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will research use a the return endereeses inte
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09 0x08		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-7:	ACCE		0x0F 0x0E 0x0D 0x0C 0x0A 0x0A 0x09 0x08 0x07	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-7:	ACCE		THE STA 0x0F 0x0E 0x0D 0x0C 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
RE 4-7:	ACCE		THE STA 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
RE 4-7:	ACCE		THE STA 0x0F 0x0E 0x0D 0x0C 0x0D 0x0C 0x0A 0x09 0x07 0x06 0x05 0x04 0x03	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
RE 4-7: TOSH	ACCE		THE STA 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
RE 4-7:	ACCE		0x0F 0x0E 0x0D 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x02 0x01	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06

TABLE 5-1: BOOT BLOCK SIZE BITS

BBEN	BBSIZE<2:0>	Actual Boo User Program Me	Actual Boot Block Size User Program Memory Size (words)				
		PIC16(L)F15375/85	PIC16(L)F15356/76/86	Memory Access			
1	xxx	0	0	_			
0	111	512	512	01FFh			
0	110	1024	1024	03FFh			
0	101	2048	2048	07FFh			
0	100	4096	4096	0FFFh			
0	011	—	8192	1FFFh			

Note 1: The maximum boot block size is half the user program memory size. All selections higher than the maximum are set to half size. For example, all BBSIZE = 000 - 100 produce a boot block size of 4kW on a 8kW device.

REGISTER 5-5: CONFIGURATION WORD 5: CODE PROTECTION

	U-1	U-1	U-1	U-1	U-1	U-1
	—		—	—	—	—
	bit 13					bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/P-1

—	—	—	—	—	—	—	CP
bit 7							bit 0
Lanandi							

Legend.			
R = Readable bit	P = Programmable bit	x = Bit is unknown	U = Unimplemented bit, read as '1'
'0' = Bit is cleared	'1' = Bit is set	W = Writable bit	n = Value when blank or after Bulk Erase

bit 13-1 Unimplemented: Read as '1'

U-1

- bit 0 **CP:** Program Flash Memory Code Protection bit
 - 1 = Program Flash Memory code protection disabled
 - 0 = Program Flash Memory code protection enabled

© 2016 Microchip Technology Inc.

PIC16(L)F15356/75/76/85/86

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	EXTOEN: Ex 1 = EXTOS 0 = EXTOS	ternal Oscillato C is explicitly e C could be ena	r Manual Requ nabled, operat ibled by some	uest Enable bit ing as specifie modules	(1) d by FEXTOSC	2	
bit 6	HFOEN: HFI 1 = HFINTC 0 = HFINTC	NTOSC Oscilla SC is explicitly SC could be e	tor Manual Re / enabled, opei nabled by anot	quest Enable t rating as specit ther module	bit fied by OSCFR	Q	
bit 5	MFOEN: MFI 1 = MFINTOS 0 = MFINTOS	INTOSC Oscilla SC is explicitly SC could be en	ator Manual Re enabled abled by anoth	equest Enable	bit		
bit 4	LFOEN: LFIN 1 = LFINTO 0 = LFINTO	NTOSC (31 kHz SC is explicitly SC could be er	z) Oscillator Ma enabled nabled by anot	anual Request her module	Enable bit		
bit 3	SOSCEN: Set 1 = Second 0 = Second	econdary (Time ary oscillator is ary oscillator co	r1) Oscillator N explicitly enab ould be enable	/lanual Reques bled, operating d by another m	st bit as specified by odule	SOSCPWR	
bit 2	ADOEN: FRC 1 = FRC is 0 0 = FRC con	C Oscillator Ma explicitly enable uld be enabled	nual Request I ed by another mc	Enable bit odule			
bit 1-0	Unimplemen	ted: Read as '	0'				

REGISTER 9-5: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

10.6 Register Definitions: Interrupt Control

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0	R/W-1/1
GIE	PEIE	—		—		—	INTEDG
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is un	changed	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7	GIE: Global Ir	nterrupt Enable	bit				
	1 = Enables a	II active interru	pts				
	0 = Disables a	all interrupts					
bit 6	PEIE: Periphe	eral Interrupt E	nable bit				
	1 = Enables a	Ill active periph	eral interrupts	5			
		all periprieral in La da Da ada a fu	terrupts				
DIT 5-1	Unimplement	ted: Read as 1).				
bit 0	INTEDG: Inte	rrupt Edge Sel	ect bit				
	1 = Interrupt c	on rising edge o	of INT pin				
		on tailing edge					
Note:	nterrupt flag bits a	re set when an	interrupt				
c	condition occurs, re	egardless of the	e state of				
it	ts corresponding e	enable bit or th	e Global				
E	Enable bit, GIE, o	f the INTCON	register.				
L L	Jser software	should ensu	ire the				
a	appropriate interru	upt flag bits a	ire clear				
p	prior to enabling ar	n interrupt.					

REGISTER 12-3: WDTPSL: WDT PRESCALE SELECT LOW BYTE REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCN	T<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'	
u = Bit is unchange	d	x = Bit is unknown		-n/n = Value at	POR and BOR/V	alue at all other	Resets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 **PSCNT<7:0>**: Prescale Select Low Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 12-4: WDTPSH: WDT PRESCALE SELECT HIGH BYTE REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCNT<	:15:8> (1)			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSCNT<15:8>**: Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 12-5: WDTTMR: WDT TIMER REGISTER

U-0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
—	WDTTMR<3:0>				STATE	PSCNT<	:17:16> (1)
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '0'

bit 6-3 WDTTMR<3:0>: Watchdog Timer Value bits

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed

0 = WDT is not armed

bit 1-0 **PSCNT<17:16>**: Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

14.4 PORTB Registers

14.4.1 DATA REGISTER

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 14-10). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., disable the output driver). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize PORTB.

Reading the PORTB register (Register 14-9) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

The PORT data latch LATB (Register 14-11) holds the output port data, and contains the latest value of a LATB or PORTB write.

14.4.2 DIRECTION CONTROL

The TRISB register (Register 14-10) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.4.3 OPEN-DRAIN CONTROL

The ODCONB register (Register 14-14) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I ² C; the I ² C
	module controls the pin and makes the pin open-drain.

14.4.4 SLEW RATE CONTROL

The SLRCONB register (Register 14-15) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.4.5 INPUT THRESHOLD CONTROL

The INLVLB register (Register 14-8) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

14.4.6 ANALOG CONTROL

The ANSELB register (Register 14-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with its TRIS bit clear and its ANSEL bit set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog								
	mode after Reset. To use any pins as								
	digital general purpose or peripheral								
	inputs, the corresponding ANSEL bits								
	must be initialized to '0' by user software.								

14.4.7 WEAK PULL-UP CONTROL

The WPUB register (Register 14-5) controls the individual weak pull-ups for each PORT pin.

14.4.8 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic or by enabling an analog output, such as the DAC. See **Section 15.0** "**Peripheral Pin Select (PPS) Module**" for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

23.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See Comparator Specifications in Table 37-14 for more information.

23.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 26.6 "Timer Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

23.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from a comparator can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 23-2) and the Timer1 Block Diagram (Figure 26-1) for more information.

23.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

23.6 Comparator Positive Input Selection

Configuring the CxPCH<2:0> bits of the CMxPSEL register directs an internal voltage reference or an analog pin to the noninverting input of the comparator:

- CxIN0+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See **Section 18.0** "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 21.0 "5-Bit Digital-to-Analog Converter (DAC1) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

23.7 Comparator Negative Input Selection

The CxNCH<2:0> bits of the CMxCON1 register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:

- CxIN- pin
- FVR (Fixed Voltage Reference)
- · Analog Ground

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

24.9 Register Definitions: ZCD Control

REGISTER 24-1: ZCDCON: ZERO-CROSS DETECTION CONTROL REGISTER

R/W-q/q	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
SEN		OUT	POL			INTP	INTN
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	ends on Config	uration bits	
bit 7	SEN: Zero-Cros 1 = Zero-cros 0 = Zero-cros	oss Detection I s detect is ena s detect is disa	Enable bit abled. ZCD pir abled. ZCD pir	n is forced to o n operates acc	utput to source sording to PPS a	and sink currer and TRIS contro	nt. ols.
bit 6	Unimplement	ted: Read as '	כ'				
bit 5	OUT: Zero-Cro	oss Detection I	Logic Level bi	t			
	$\frac{\text{POL bit} = 1}{1 = \text{ZCD pin i}}$ $0 = \text{ZCD pin i}$ $\frac{\text{POL bit} = 0}{1 = \text{ZCD pin i}}$ $0 = \text{ZCD pin i}$	s sourcing curr s sinking curre s sinking curre s sourcing curr	rent nt ent rent				
bit 4	POL: Zero-Cro 1 = ZCD logic 0 = ZCD logic	oss Detection c output is inve c output is not i	Logic Output I rted inverted	Polarity bit			
bit 3-2	Unimplement	ted: Read as '	כי				
bit 1	INTP: Zero-Cross Positive Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCDx_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCDx_output transition						
bit 0	INTN: Zero-Cu 1 = ZCDIF bit 0 = ZCDIF bit	ross Negative t is set on high t is unaffected	Edge Interrup -to-low ZCDx_ by high-to-low	t Enable bit _output transition ZCDx_output	on transition		

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
ZCDxCON	EN	_	OUT	POL	_	_	INTP	INTN	314

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 24-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	—	100
CONFIG2	7:0	BOREN	N <1:0>	LPBOREN		_		PWRTE	MCLRE	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

				-		
PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 28-2:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

TABLE 28-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

28.3.8 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

28.3.9 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

28.3.10 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

32.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 32-1:	I ² C BUS TERMS
-------------	----------------------------

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

32.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an active state. Figure 32-12 shows wave forms for Start and Stop conditions.

32.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note:	At least one SCL low time must appear
	before a Stop is valid, therefore, if the SDA
	line goes low then high again while the SCL
	line stays high, only the Start condition is
	detected.

32.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 32-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data.

32.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

33.4.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 33.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCxREG register. If the RXxIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 33.4.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RXxIF bit will be set when reception is complete. An interrupt will be generated if the RXxIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCxREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

36.2 General Format for Instructions

TABLE 36-3:	INSTRUCTION SET

Mnemonic, Operands		Description	Cycles		14-Bit Opcode)	Status Affected	Notes
		Description		MSb			LSb		
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f. d	Decrement f	1	00	0011	dfff	ffff	z	2
INCF	f. d	Increment f	1	0.0	1010	dfff	ffff	z	2
IORWE	fd	Inclusive OR W with f	1	0.0	0100	dfff	ffff	7	2
MOVE	f d	Move f	1	0.0	1000	dfff	ffff	7	2
MOVWE	f., 🕰	Move W to f	1	0.0	0000	1fff	ffff	-	2
RIF	fd	Rotate Left f through Carry	1	0.0	1101	dfff	ffff	C	2
RRF	f d	Rotate Right f through Carry	1	00	1100	dfff	ffff	C	2
SUBWE	f d	Subtract W from f	1	00	0010	dfff	ffff		2
SUDWED	i, u f d	Subtract with Borrow W/ from f	1	11	1011	JEEE		C, DC, Z	2
SUBVIE	i, u f d	Subiraci with Borrow W Ironn i	1	11	1110	arre	LILL	C, DC, Z	2
SWAFF	i, u f d	Swap hipples in I	1	00	0110	arre	LILL	7	2
JURWF	1, U				0110	aiii	IIII	2	2
	£ _				1 0 1 1	1666			4.0
DECFSZ	r, a f. d	Increment f. Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCESZ	., -								-, _
		BIT-ORIENTED FILE REGIST			5			r	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	t, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED SKIP O	PERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL C	LITERAL OPERATIONS								
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	000	0k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVIW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C DC Z	
XORIW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	7	
				l <u>+ +</u>	TOTO		17171717	<u> </u>	<u>ــــــــــــــــــــــــــــــــــــ</u>

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

PIC16(L)F15356/75/76/85/86

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT}, \\ 0 \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Time and its prescaler are cleared. See Section 11.2 "Sleep Mode" for more information.

SUBWF	Subtract W from f				
Syntax:	[label] SL	JBWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - (W) \rightarrow (d	lestination)			
Status Affected:	C, DC, Z				
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.				
	C = 0	W > f			
	C = 1	$W \leq f$			
	DC = 0 W<3:0> > f<3:0>				

 $W<3:0> \le f<3:0>$

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

DC = 1

SUBLW	Subtract W from literal			
Syntax:	[label]	SUBLW k		
Operands:	$0 \le k \le 2\xi$	55		
Operation:	k - (W) →	• (W)		
Status Affected:	C, DC, Z			
Description:	The W re complem literal 'k'. register.	gister is subtracted (2's ent method) from the 8-bit The result is placed in the W		
	C = 0	W > k		
	C = 1	W≤k		

DC = 0

DC = 1

W<3:0> > k<3:0>

 $W<3:0> \le k<3:0>$

SWAPF	Swap Nibbles in f				
Syntax:	[label] SWAPF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$				
Status Affected:	None				
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.				

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	Ν				
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	С	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	—	.023	
Overall Row Spacing §	eB	_	_	.700	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		8.40	
Contact Pad Spacing	C2		8.40	
Contact Pad Width (X48)	X1			0.30
Contact Pad Length (X48)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2300-PT Rev A