

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XE

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15356t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Н	
	_
	O
	Ŧ
	35
	5
	UT I
	6
I	
I	85/
I	
I	8
I	ő
н	

Preliminary

I/O ⁽²⁾	48-Pin UQFN/TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	CCP	MWM	SWC	ASSM	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RC2	40	ANC2	—	—	—	_	—	CCP1 ⁽¹⁾	-	—	—		—	-	—	IOCC2	Y	—
RC3	41	ANC3	-	-	-	_	T2IN ⁽¹⁾	-	_	_	SCL1 SCL2 ^(1,4)	_	—	_	-	IOCC3	Y	-
RC4	46	ANC4	-	_	_	_	-	—	_	-	SDA1 SDI1 ^(1,4)	_	—	_	_	IOCC4	Y	_
RC5	47	ANC5	_	—	_	_	_	_	_	_	_	_	—	_	_	IOCC5	Υ	_
RC6	48	ANC6	-	—	—	_	—	—	_	—	—		TX1 CK1 ⁽¹⁾	_	-	IOCC6	Y	—
RC7	1	ANC7	-	—	—	_	—	—	_	—	_		RX1 DT1 ⁽¹⁾	_	-	IOCC7	Y	—
RD0	42	AND0	-	—	-	-	-	—	—	-	SCK2 SCL2 ^(1,4)	—	-	—	-	-	Y	—
RD1	43	AND1	—	—	—		—	—	_	—	SDA2 SDI2 ^(1,4)		_	_	-	—	Y	—
RD2	44	AND2	_	_	—	_	_	_	-	_	_	_	—	-	_	_	Y	_
RD3	45	AND3	_	_	_	_	_	_		_	_		_		—	_	Y	_
RD4	2	AND4	_	_	—	_	_	—	_	_	_	_	_	_	_	_	Υ	_
RD5	3	AND5	_	_	—	_	_	—	-	_	_	-	_	-	_	_	Υ	_
RD6	4	AND6	_	_	—	_	_	_	_	—	_	_	_	_	_	—	Υ	_
RD7	5	AND7	—	—	—	_	—	—	-	—	—	-	—	-	—	—	Υ	—
RE0	27	ANE0	-	—	—	_	—	—	-	—	—	-	—	-	—	—	Υ	—
RE1	28	ANE1	_	—	—	_	-	—	_	-	_	_	_	_	—	-	Υ	—
RE2	29	ANE2	_	—	—	—	—	—	—	—	—	_	—	—	—	—	Y	—
RE3	20	_	-	—	—		—	—	_	—	—	_	—	_	_	IOCE3	Y	MCLR VPP
RF0	36	ANF0	_	_	—	_	—	_	_	—	_		_	_	_	—	Y	_
RF1	37	ANF1	_	—	—	_	-	—	-	—	—	_	—	-	—	—	Υ	—
RF2	38	ANF2	_	—	—	_	-	_	_	—	—	_	—	_	—	—	Υ	_
RF3	39	ANF3	_	—	—	_	-	—	-	—	—	_	—	-	—	—	Υ	—
RF4	12	ANF4	—	—	—		—	—		_	_		_		—	—	Υ	—

TABLE 5: 48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) (CONTINUED)

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.
 All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

TABLE 1-4: PIC16(L)F15385/86 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RF5/ANF5	RF5	TTL/ST	CMOS/OD	General purpose I/O.
	ANF5	AN	_	ADC Channel D0 input.
RF6/ANF6	RF6	TTL/ST	CMOS/OD	General purpose I/O.
	ANF6	AN	—	ADC Channel D0 input.
RF7/ANF7	RF5	TTL/ST	CMOS/OD	General purpose I/O.
	ANF5	AN	_	ADC Channel D0 input.
VDD	Vdd	Power	_	Positive supply voltage input.
Vss	Vss	Power	_	Ground reference.
Legend: AN = Analog input or outp TTL = TTL compatible input			mpatible input or	

TTL = TTL compatible input

HV = High Voltage

XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-7.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for l^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the l^2C specific or SMBus input buffer thresholds. 4:

read program and data memory.

The hardware stack is 16-levels deep and has Overflow and Underflow Reset capability. Direct,

Indirect, and Relative Addressing modes are available.

Two File Select Registers (FSRs) provide the ability to

3.0 ENHANCED MID-RANGE CPU

This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 48 instructions. Interrupt capability includes automatic context saving.

FIGURE 3-1: CORE DATA PATH DIAGRAM

Rev. 10-000055C 11/30/2016 15 Configuration Data Bus 15 8 Program Counter Flash MUX Program Memory 16-Level Stack RAM (15-bit) 14 Program Program Memory 12 RAM Addr Bus Read (PMR) Addr MUX Instruction Reg Indirect Direct Addr Addr 7 12 5 12 BSR Reg 15, FSR0 Reg 15, FSR1 Reg STATUS Reg 8 MUX Power-up Instruction Timer Decode and Power-on Control Reset ALU 8 Watchdog CLKIN Timer Brown-out CLKOUT Timing Reset W Reg Generation \boxtimes SOSCI sosco 🖂 囟 囟 Vdd Vss Internal Oscillator Block

The HIGH directive will set bit 7 if a label points to a location in the program memory. This applies to the assembly code Example 4-2 shown below.

EXAMPLE 4-2: ACCESSING PROGRAM MEMORY VIA FSR

constants					
RETLW	DATA0		;Index0	data	
RETLW	DATA1		;Index1	data	
RETLW	DATA2				
RETLW	DATA3				
my_functi	on				
;… LOI	IS OF CODE	c			
MOVLW	LOW con	stan	ts		
MOVWF	FSR1L				
MOVLW	HIGH CO	nsta	nts		
MOVWF	FSR1H				
MOVIW	0[FSR1]				
; THE PROG	RAM MEMORY	Y IS	IN W		

4.2 Memory Access Partition (MAP)

User Flash is partitioned into:

- Application Block
- Boot Block, and
- Storage Area Flash (SAF) Block

The user can allocate the memory usage by setting the BBEN bit, selecting the size of the partition defined by BBSIZE[2:0] bits and enabling the Storage Area Flash by the SAFEN bit of the Configuration Word (see Register 5-4). Refer to Table 4-2 for the different user Flash memory partitions.

4.2.1 APPLICATION BLOCK

Default settings of the Configuration bits ($\overline{BBEN} = 1$ and $\overline{SAFEN} = 1$) assign all memory in the user Flash area to the Application Block.

4.2.2 BOOT BLOCK

If $\overline{\text{BBEN}} = 1$, the Boot Block is enabled and a specific address range is alloted as the Boot Block based on the value of the BBSIZE bits of Configuration Word (Register 5-4) and the sizes provided in Table 5-1.

4.2.3 STORAGE AREA FLASH

Storage Area Flash (SAF) is enabled by clearing the SAFEN bit of the Configuration Word in Register 5-4. If enabled, the SAF block is placed at the end of memory and spans 128 words. If the Storage Area Flash (SAF) is enabled, the SAF area is not available for program execution.

4.2.4 MEMORY WRITE PROTECTION

All the memory blocks have corresponding write protection fuses WRTAPP, WRTB and WRTC bits in the Configuration Word 4 (Register 5-4). If write-protected locations are written from NVMCON registers, memory is not changed and the WRERR bit defined in Register 12-5 is set as explained in **Section 13.3.8 "WRERR Bit**".

4.2.5 MEMORY VIOLATION

A Memory Execution Violation Reset occurs while executing an instruction that has been fetched from outside a valid execution area, clearing the MEMV bit. Refer to **Section 8.12 "Memory Execution Violation"** for the available valid program execution areas and the PCON1 register definition (Register 8-3) for MEMV bit conditions.

TABLE 4	1-11: SPECI	AL FUNCTION	REGISTER	SUMMARY	BANKS 0-	63 (CONTIN	IUED)				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 17	ank 17										
	CPU CORE REGISTERS; see Table 4-3 for specifics										
88Ch	CPUDOZE	IDLEN	DOZEN	ROI	DOE	_	DOZE2	DOZE1	DOZE0	0000 -000	u000 -000
88Dh	OSCCON1	—		NOSC<2:0>			ND	IV<3:0>		-qqq 0000	-qqq 0000
88Eh	OSCCON2	—		COSC<2:0>			CD	IV<3:0>		-বর্বর বর্ববর	-বর্বর বর্ববর
88Fh	OSCCON3	CSWHOLD	SOSCPWR	_	ORDY	NOSCR	—	—	—	00-0 0	00-0 0
890h	OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	d000 dd-0	বর্ববুর বর-ব
891h	OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	—	—	0000 00	0000 00
892h	OSCTUNE	—	-			HFT	UN<5:0>			10 0000	10 0000
893h	OSCFRQ	—	-	_	_	—		HFFRQ<2:0	>	वेर्वेवे	ddd
894h	—				Unimpler	nented				—	—
895h	CLKRCON	CLKREN	-	- CLKRDC<1:0> CLKRDIV<2:0>					0x xxxx	0u uuuu	
896h	CLKRCLK	—	CLKRCLK<3:0>						0000	0000	
897h 89Fh — Unimplemented							_	_			

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
CLC4IE	CLC3IE	CLC2IE	CLC1IE	—	—	—	TMR1GIE
bit 7							bit 0
Legend:							
R = Readab		W = Writable		•	mented bit, read		
u = Bit is un	0	x = Bit is unkr			at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7 CLC4IE: CLC4 Interrupt Enable bit 1 = CLC4 interrupt enabled 0 = CLC4 interrupt disabled							
bit 6	1 = CLC3 i	C3 Interrupt Ena nterrupt enableo nterrupt disable	b				
bit 5	1 = CLC2 i	C2 Interrupt Ena nterrupt enabled nterrupt disable	t				
bit 4	1 = CLC1 i	C1 Interrupt Ena nterrupt enableo nterrupt disable	b				
bit 3-1	Unimpleme	nted: Read as '	0'				
bit 0 TMR1GIE: Timer1 Gate Interrupt Enable bit 1 = Enables the Timer1 gate acquisition interrupt 0 = Disables the Timer1 gate acquisition interrupt							
s	Bit PEIE of the IN set to enable a controlled by regis	any peripheral	interrupt				

REGISTER 10-7: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

13.2 FSR and INDF Access

The FSR and INDF registers allow indirect access to the PFM.

13.2.1 FSR READ

With the intended address loaded into an FSR register a MOVIW instruction or read of INDF will read data from the PFM.

Reading from NVM requires one instruction cycle. The CPU operation is suspended during the read, and resumes immediately after. Read operations return a single byte of memory.

13.2.2 FSR WRITE

Writing/erasing the NVM through the FSR registers (ex. MOVWI instruction) is not supported in the PIC16(L)F15356/75/76/85/86 devices.

13.3 NVMREG Access

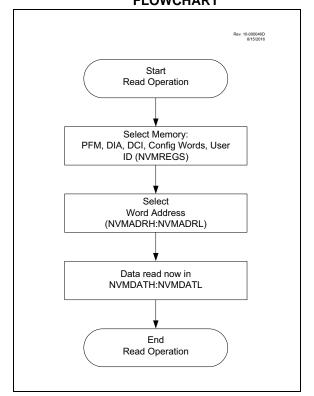
The NVMREG interface allows read/write access to all the locations accessible by FSRs, and also read/write access to the User ID locations, and read-only access to the device identification, revision, and Configuration data.

Writing or erasing of NVM via the NVMREG interface is prevented when the device is write-protected.

13.3.1 NVMREG READ OPERATION

To read a NVM location using the NVMREG interface, the user must:

- 1. Clear the NVMREGS bit of the NVMCON1 register if the user intends to access PFM locations, or set NMVREGS if the user intends to access User ID, or Configuration locations.
- Write the desired address into the NVMADRH:NVMADRL register pair (Table 13-2).
- 3. Set the RD bit of the NVMCON1 register to initiate the read.


Once the read control bit is set, the CPU operation is suspended during the read, and resumes immediately after. The data is available in the very next cycle, in the NVMDATH:NVMDATL register pair; therefore, it can be read as two bytes in the following instructions.

NVMDATH:NVMDATL register pair will hold this value until another read or until it is written to by the user.

Upon completion, the RD bit is cleared by hardware.

FLASH PROGRAM MEMORY READ FLOWCHART

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSD7 | ANSD6 | ANSD5 | ANSD4 | ANSD3 | ANSD2 | ANSD1 | ANSD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSD<7:0>**: Analog Select between Analog or Digital Function on Pins RD<7:0>, respectively⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

REGISTER 14-29: WPUD: WEAK PULL-UP PORTD REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUD7 | WPUD6 | WPUD5 | WPUD4 | WPUD3 | WPUD2 | WPUD1 | WPUD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUD<7:0>: Weak Pull-up Register bits⁽¹⁾

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

ADC Clock P	eriod (TAD)		Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz	
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs	
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾	
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾	
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽²⁾	
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽²⁾	64.0 μs ⁽²⁾	
ADCRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)					

TABLE 20-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.


Note 1: See TAD parameter for ADCRC source typical TAD value.

2: These values violate the required TAD time.

3: Outside the recommended TAD time.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the ADCRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 20-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

25.0 TIMER0 MODULE

The Timer0 module is an 8/16-bit timer/counter with the following features:

- 16-bit timer/counter
- 8-bit timer/counter with programmable period
- Synchronous or asynchronous operation
- Selectable clock sources
- Programmable prescaler (independent of Watchdog Timer)
- Programmable postscaler
- Operation during Sleep mode
- · Interrupt on match or overflow
- Output on I/O pin (via PPS) or to other peripherals

25.1 Timer0 Operation

Timer0 can operate as either an 8-bit timer/counter or a 16-bit timer/counter. The mode is selected with the T016BIT bit of the T0CON register.

25.1.1 16-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

25.1.1.1 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0, which is neither directly readable nor writable (see Figure 25-1). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte was valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

25.1.2 8-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

The value of TMR0L is compared to that of the Period buffer, a copy of TMR0H, on each clock cycle. When the two values match, the following events happen:

- TMR0_out goes high for one prescaled clock period
- TMR0L is reset
- The contents of TMR0H are copied to the period buffer

In 8-bit mode, the TMR0L and TMR0H registers are both directly readable and writable. The TMR0L register is cleared on any device Reset, while the TMR0H register initializes at FFh.

Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR0L register
- A write to either the T0CON0 or T0CON1 registers
- <u>Any device Reset Power-on Reset (POR),</u> <u>MCLR Reset, Watchdog Timer Reset (WDTR) or</u>
- Brown-out Reset (BOR)

25.1.3 COUNTER MODE

In Counter mode, the prescaler is normally disabled by setting the T0CKPS bits of the T0CON1 register to '0000'. Each rising edge of the clock input (or the output of the prescaler if the prescaler is used) increments the counter by '1'.

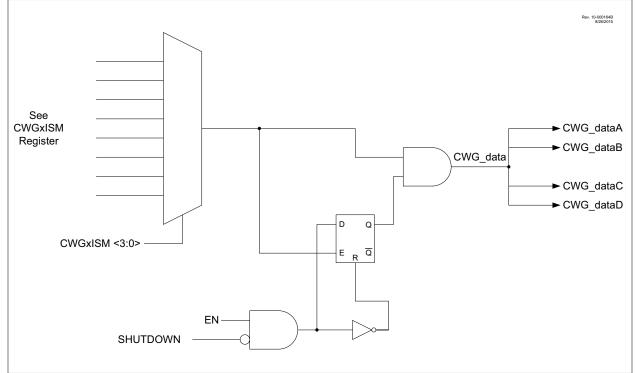
25.1.4 TIMER MODE

In Timer mode, the Timer0 module will increment every instruction cycle as long as there is a valid clock signal and the T0CKPS bits of the T0CON1 register (Register 25-2) are set to '0000'. When a prescaler is added, the timer will increment at the rate based on the prescaler value.

25.1.5 ASYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is set (T0ASYNC = '1'), the counter increments with each rising edge of the input source (or output of the prescaler, if used). Asynchronous mode allows the counter to continue operation during Sleep mode provided that the clock also continues to operate during Sleep.

25.1.6 SYNCHRONOUS MODE


When the T0ASYNC bit of the T0CON1 register is clear (T0ASYNC = 0), the counter clock is synchronized to the system oscillator (Fosc/4). When operating in Synchronous mode, the counter clock frequency cannot exceed Fosc/4.

30.1.4 STEERING MODES

In Steering modes, the data input can be steered to any or all of the four CWG output pins. In Synchronous Steering mode, changes to steering selection registers take effect on the next rising input.

In Non-Synchronous mode, steering takes effect on the next instruction cycle. Additional details are provided in **Section 30.9 "CWG Steering Mode"**.

30.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWG1CLKCON register.

30.9 CWG Steering Mode

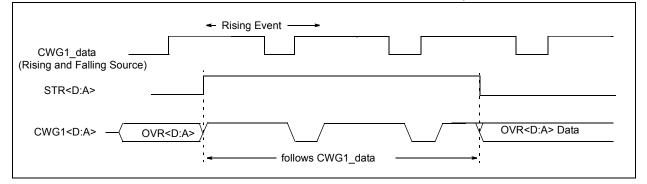
In Steering mode (MODE = 00x), the CWG allows any combination of the CWG1x pins to be the modulated signal. The same signal can be simultaneously available on multiple pins, or a fixed-value output can be presented.

When the respective STRx bit of CWG1OCON0 is '0', the corresponding pin is held at the level defined. When the respective STRx bit of CWG1OCON0 is '1', the pin is driven by the input data signal. The user can assign the input data signal to one, two, three, or all four output pins.

The POLx bits of the CWG1CON1 register control the signal polarity only when STRx = 1.

The CWG auto-shutdown operation also applies in Steering modes as described in **Section 30.10** "**Auto-Shutdown**". An auto-shutdown event will only affect pins that have STRx = 1.

30.9.1 STEERING SYNCHRONIZATION


Changing the MODE bits allows for two modes of steering, synchronous and asynchronous.

When MODE = 000, the steering event is asynchronous and will happen at the end of the instruction that writes to STRx (that is, immediately). In this case, the output signal at the output pin may be an incomplete waveform. This can be useful for immediately removing a signal from the pin.

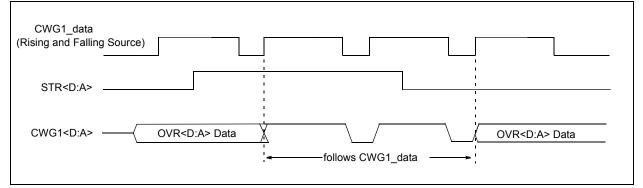

When MODE = 001, the steering update is synchronous and occurs at the beginning of the next rising edge of the input data signal. In this case, steering the output on/off will always produce a complete waveform.

Figure 30-10 and Figure 30-11 illustrate the timing of asynchronous and synchronous steering, respectively.

FIGURE 30-11: EXAMPLE OF STEERING EVENT (MODE<2:0> = 001)

30.13 Register Definitions: CWG Control

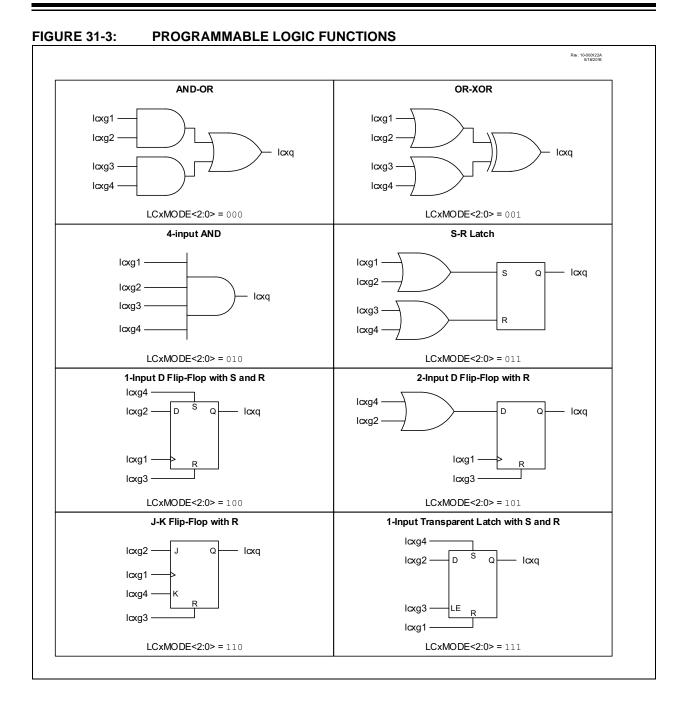
Long bit name prefixes for the CWG peripherals are shown in **Section 1.1 "Register and Bit Naming Conventions"**.

REGISTER 30-1: CWG1CON0: CWG1 CONTROL REGISTER 0

R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD ⁽¹⁾	—	—	—		MODE<2:0>	
bit 7							bit 0

Legend:		
HC = Bit is cleared by hard	ware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	EN: CWG1 Enable bit 1 = Module is enabled
	0 = Module is disabled
bit 6	LD: CWG1 Load Buffer bits ⁽¹⁾
	1 = Buffers to be loaded on the next rising/falling event0 = Buffers not loaded
bit 5-3	Unimplemented: Read as '0'
bit 2-0	MODE<2:0>: CWG1 Mode bits 111 = Reserved 110 = Reserved 101 = CWG outputs operate in Push-Pull mode 100 = CWG outputs operate in Half-Bridge mode 011 = CWG outputs operate in Reverse Full-Bridge mode 010 = CWG outputs operate in Forward Full-Bridge mode 001 = CWG outputs operate in Synchronous Steering mode 000 = CWG outputs operate in Steering mode


Note 1: This bit can only be set after EN = 1 and cannot be set in the same instruction that EN is set.

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	—	IN		POLD	POLC	POLB	POLA
bit 7							bit C
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	= Bit is set '0' = Bit is cleared q = Value depends on condition						
bit 7-6 Unimplemented: Read as '0'							
bit 5	IN: CWG Input Value bit						
bit 4	Unimplem	ented: Read as '	0'				
bit 3	POLD: CW	/G1D Output Pola	arity bit				
	1 = Signal	output is inverted	l polarity				
	0 = Signal	output is normal	polarity				
bit 2	POLC: CW	/G1C Output Pola	arity bit				
	0	output is inverted					
0 = Signal output is normal polarity							
bit 1 POLB: CWG1B Output Polarity bit							
		1 = Signal output is inverted polarity					
	0 = Signal	output is normal	polarity				
bit 0	POLA: CW	/G1A Output Pola	rity bit				
	1 = Signal	output is inverted	l polarity				

REGISTER 30-2: CWG1CON1: CWG1 CONTROL REGISTER 1

0 = Signal output is normal polarity

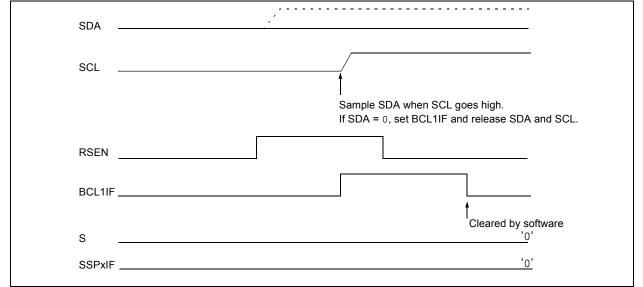
PIC16(L)F15356/75/76/85/86

32.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.


If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 32-36). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 32-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 32-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

REGISTER 32-2: SSPxCON1: SSPx CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPM	1<3:0>		
pit 7				-			bit	
ogondu								
_egend:		W - Writchlo hit			ad hit road as 'O'			
R = Readable bit		W = Writable bit	_	U = Unimplement				
u = Bit is unchang	gea	x = Bit is unknow		-n/n = Value at POR and BOR/Value at all other Resets				
1' = Bit is set		'0' = Bit is cleared	1	HS = Bit is set by	hardware	C = User cleared		
bit 7		ollision Detect bit (Tr 3UF register is written n			word (must be cleare	ed in software)		
bit 6	In SPI mode: 1 = A new byte Overflow c setting ove SSPxBUF 0 = No overflov In I ² C mode: 1 = A byte is m	eceived while the S leared in software).	SSPxBUF registe e mode. In Slave e, the overflow bit i ared in software).	mode, the user must s not set since each r	read the SSPxBUF, new reception (and tr	even if only transmi ansmission) is initiat	tting data, to avoid ed by writing to the	
bit 5	In both modes, v In <u>SPI mode:</u> 1 = Enables se 0 = Disables s In I ² C mode: 1 = Enables the	onous Serial Port Er when enabled, the fo erial port and configur erial port and config e serial port and config erial port and config	bllowing pins mus res SCK, SDO, SI ures these pins a igures the SDA ar	DI and SS as the sou as I/O port pins ad SCL pins as the so	rce of the serial port	pins ⁽²⁾		
bit 4	0 = Idle state for In I ² C Slave mod SCL release cor 1 = Enable clock	clock is a high leve clock is a low level <u>de:</u> htrol (low (clock stretch). (ode:		lata setup time.)				
bit 3-0	1111 = I ² C Slav 1110 = I ² C Slav 1101 = Reserve 1100 = Reserve 1001 = I ² C firmw 1010 = SPI Mas 1001 = Reserve 1000 = I ² C Mas 0111 = I ² C Slav 0110 = SPI Slav 0100 = SPI Slav 0101 = SPI Mas 0011 = SPI Mas 0010 = SPI Mas	ed ware controlled Mas ster mode, clock = F	ess with Start and ss with Start and ter mode (slave i osc/(4 * (SSPxAl osc / (4 * (SSPxAl ess ss K pin, <u>SS</u> pin coi X pin, SS pin coi 2_match/2 osc/64 osc/66	d Stop bit interrupts e Stop bit interrupts e dle) DD+1)) ⁽⁵⁾ (DD+1)) ⁽⁴⁾ ntrol disabled, <u>SS</u> ca	nabled	n		
2: Wh Rxy	Master mode, the ov	verflow bit is not set bins must be properl bins.	since each new r y configured as i	nput or output. Use	SSPxSSPPS, SSP>	CLKPPS, SSPxDA	TPPS, and	

- When enabled, the SDA and SCL pins must be configured as inputs. Use SSPxCLKPPS, SSPxDATPPS, and RxyPPS to select the pins.
 SSPxADD values of 0, 1 or 2 are not supported for I²C mode.
 SSPxADD value of '0' is not supported. Use SSPM = 0000 instead.

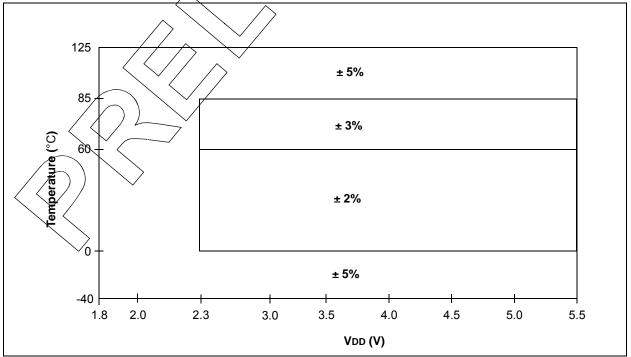
	REGISTER 32-4:	SSPxCON3: SSPx CONTROL REGISTER 3
--	----------------	-----------------------------------

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
ACKTIM	³⁾ PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN			
bit 7	<u>.</u>		<u> </u>		•		bit			
Legend:										
R = Readab	ole bit	W = Writable b	bit	U = Unimplem	ented bit, read as	ʻ0'				
u = Bit is ur	changed	x = Bit is unkn	own	-n/n = Value at	POR and BOR/V	alue at all other l	Resets			
'1' = Bit is s	et	'0' = Bit is clea	red							
			0	(2)						
bit 7		nowledge Time S			oth curr					
				edge sequence, set on 8 th falling edge of SCL clock ed on 9 TH rising edge of SCL clock						
bit 6		ondition Interrupt								
		errupt on detection								
		ction interrupts ar								
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C mode only)									
		errupt on detection ction interrupts ar		start conditions						
oit 4		Overwrite Enabl								
511 4	In SPI Slave n									
					shifted in ignoring					
		•			egister already se	et, SSPOV bit of	the SSPxCON			
	· · ·	ster is set, and the mode and SPI M	•	dated						
	In I ² C Slave m									
				nerated for a rec	eived address/da	ita byte, ignoring	the state of th			
		OV bit only if the xBUF is only upda)V is clear						
oit 3		Hold Time Selec								
		of 300 ns hold tin	•	• ·	of SCL					
		of 100 ns hold tin								
oit 2	SBCDE: Slave	e Mode Bus Colli	sion Detect Ena	ble bit (I ² C Slave	e mode only)					
		g edge of SCL, SI is set, and bus go		w when the moo	lule is outputting a	a high state, the E	3CL1IF bit of th			
		ave bus collision i collision i	•							
oit 1	AHEN: Addres	ss Hold Enable b	it (I ² C Slave mo	de only)						
	1 = Following the eighth falling edge of SCL for a matching received address byte; CKP bit of the register will be cleared and the SCL will be held low.						the SSPxCON			
		olding is disabled								
bit 0		Hold Enable bit (I			4a budau alawa 1					
		N1 register and S		or a received da	ta byte; slave ha	rdware clears the	e CKP bit of tr			
Note 1:	For daisy-chained S	SPI operation; allo	ws the user to ic	nore all but the	ast received byte	. SSPOV is still s	et when a new			
	byte is received and									
2:	This bit has no effect	ct in Slave modes	s that Start and S	Stop condition de	tection is explicit	y listed as enable	ed.			

- 2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.
- 3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

TABLE 37-8:	INTERNAL OSCILLATOR PARAMETERS ⁽¹⁾
-------------	---

Standar	Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
OS50	FHFOSC	Precision Calibrated HFINTOSC Frequency	_	4 8 12 16 32	_	MHz	(Note 2)			
OS51	FHFOSCLP	Low-Power Optimized HFINTOSC Frequency	_	1 2	_	MHz MHz				
OS52	FMFOSC	Internal Calibrated MFINTOSC Frequency	—	500	—	KHX				
OS53*	FLFOSC	Internal LFINTOSC Frequency		31 ,	\wedge	kHž				
OS54*	THFOSCST	HFINTOSC Wake-up from Sleep Start-up Time	_	11 50	20	μs μs	VREGPM = 0 VREGPM = 1			
OS56	TLFOSCST	LFINTOSC Wake-up from Sleep Start-up Time	$\langle \langle \rangle$	0.2	\sum	ms				


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, Vop and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

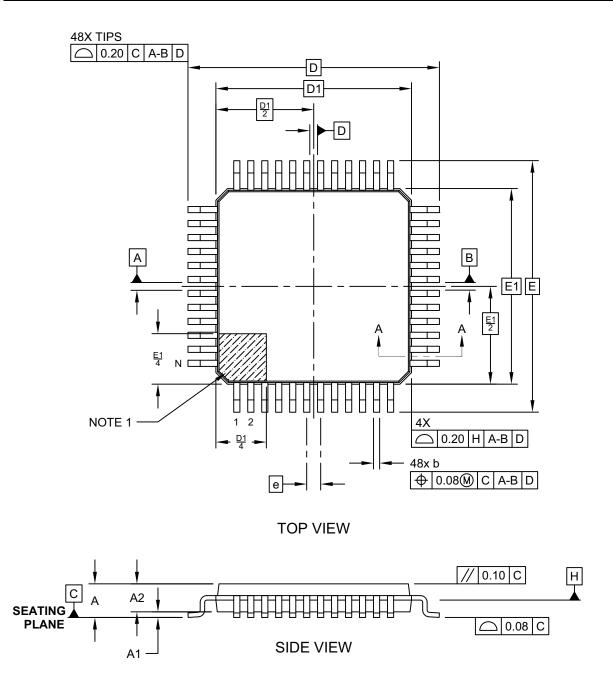

2: See Figure 37-6: Precision Calibrated HPINTOSC Frequency Accuracy Over Device VDD and Temperature.

FIGURE 37-6: PRECISION CALIBRATED HFINTOSC FREQUENCY ACCURACY OVER DEVICE

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2