

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15356t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/CLCIN0 ⁽¹⁾ /	RA0	TTL/ST	CMOS/OD	General purpose I/O.
IOCAU	ANA0	AN	_	ADC Channel A0 input.
	C1IN0-	AN	_	Comparator negative input.
	C2IN0-	AN	_	Comparator negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA0	TTL/ST	_	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/CLCIN1(1)/	RA1	TTL/ST	CMOS/OD	General purpose I/O.
IOCA1	ANA1	AN	_	ADC Channel A1 input.
	C1IN1-	AN	—	Comparator negative input.
	C2IN1-	AN	_	Comparator negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA1	TTL/ST	_	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DAC10011/IOCA2	ANA2	AN	_	ADC Channel A2 input.
	C1IN0+	AN	_	Comparator positive input.
	C2IN0+	AN	_	Comparator positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	_	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/DACREF+/	RA3	TTL/ST	CMOS/OD	General purpose I/O.
IUCA3	ANA3	AN	_	ADC Channel A3 input.
	C1IN1+	AN	_	Comparator positive input.
	VREF+	AN	_	External ADC and/or DAC positive reference input.
	IOCA3	TTL/ST	_	Interrupt-on-change input.
RA4/ANA4/C1IN1-/T0CKI ⁽¹⁾ /IOCA4	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	_	ADC Channel A4 input.
	C1IN1-	AN	_	Comparator negative input.
	T0CKI ⁽¹⁾	TTL/ST	_	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
RA5/ANA5/SS1 ⁽¹⁾ /T1G ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	_	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	T1G ⁽¹⁾	TTL/ST	—	Timer1 gate input.
	IOCA5	TTL/ST	—	Interrupt-on-change input.
Legend: AN = Analog input or outp TTL = TTL compatible input	ut CMOS = ut ST =	 CMOS co Schmitt Tr 	mpatible input or	output OD = Open-Drain CMOS levels I ² C = Schmitt Trigger input with I ² C

TABLE 1-4: PIC16(L)F15385/86 PINOUT DESCRIPTION

TTL = TTL compatible input HV = High Voltage

XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-7. 2:

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

read program and data memory.

The hardware stack is 16-levels deep and has Overflow and Underflow Reset capability. Direct,

Indirect, and Relative Addressing modes are available.

Two File Select Registers (FSRs) provide the ability to

3.0 ENHANCED MID-RANGE CPU

This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 48 instructions. Interrupt capability includes automatic context saving.

FIGURE 3-1: CORE DATA PATH DIAGRAM

Rev. 10-000055C 11/30/2016 15 Configuration Data Bus 15 8 Program Counter Flash MUX Program Memory 16-Level Stack RAM (15-bit) 14 Program Program Memory 12 RAM Addr Bus Read (PMR) Addr MUX Instruction Reg Indirect Direct Addr Addr 7 12 5 12 BSR Reg 15, FSR0 Reg 15 FSR1 Reg STATUS Reg 8 MUX Power-up Instruction Timer Decode and Power-on Control Reset ALU 8 Watchdog CLKIN Timer Brown-out CLKOUT Timing Reset W Reg Generation \boxtimes SOSCI sosco 🖂 囟 囟 Vdd Vss Internal Oscillator Block

© 2016 Microchip Technology Inc.

	BANK 56	``	BANK 57		BANK 58		BANK 59		BANK 60		BANK 61		BANK 62		BANK 63
1C00h	Core Register (Table 4-3)	1C80h	Core Register (Table 4-3)	1D00h	Core Register (Table 4-3)	1D80h	Core Register (Table 4-3)	1E00h	Core Register (Table 4-3)	1E80h	Core Register (Table 4-3)	1F00h	Core Register (Table 4-3)	1F80h	Core Register (Table 4-3)
1C0Bh		1C8Bh		1D0Bh		1D8Bh		1E0Bh		1E8Bh		1F0Bh		1F8Bh	
100Ch	_	108Ch	_	1DUCh		1D8Ch		1EUCh		1E8Ch		1FUCh		1F8Ch	
1CODn	_	108Dh	_					-							
1CUEN				1DUEN		1D8En		-							
		10000						-							
10100		1C900		10100		1D900		-							
1C11h		1C911		1D111		1D911		-							
1C12h		1C921		1D120		1D921		-							
1C14h		1C94h		1D13h		1D931		-							
1C15h		1C95h		1D15h		1D95h									
1C16h		1C96h	_	1D16h	_	1D96h	_								
1C17h	_	1C97h	_	1D17h	_	1D97h	_		CLC Controls		nnnPPS Controls		RxyPPS Controls		
1C18h		1C98h		1D18h	_	1D98h			(Os a Tabla 4 Ofan		(On a Table 4 Ofer		(Oss Table 4 Ofer		(See Table 4-9 for
1C19h	_	1C99h	_	1D19h	_	1D99h	_		(See Table 4-9 for register mapping		(See Table 4-9 for register mapping		(See Table 4-9 for register mapping		details)
1C1Ah	_	1C9Ah	_	1D1Ah	_	1D9Ah	_		details)		details)		details)		uotano)
1C1Bh	_	1C9Bh	_	1D1Bh	_	1D9Bh	_								
1C1Ch	_	1C9Ch	_	1D1Ch	_	1D9Ch	_								
1C1Dh	_	1C9Dh		1D1Dh	_	1D9Dh	_								
1C1Eh	_	1C9Eh		1D1Eh	_	1D9Eh									
1C1Fh	—	1C9Fh	—	1D1Fh	—	1D9Fh	—								
1C20h		1CA0h		1D20h		1DA0h									
	Unimplemented Read as '0'														
1C6Fh		1CEFh		1D6Fh		1DEFh		1E6Fh		1EEFh		1F6Fh		1FEFh	
1C70h	Common RAM	1CF0h	Common RAM	1D70h	Common RAM	1DF0h	Common RAM	1E70h	Common RAM	1EF0h	Common RAM	1F70h	Common RAM	1FF0h	Common RAM
	Accesses		Accesses		Accesses		Accesses								
1C7Fh	70h-7Fh	1CFFh	70h-7Fh	1D7Fh	70h-7Fh	1DFFh	70h-7Fh	1E7Fh	70h-7Fh	1EFFh	70h-7Fh	1F7Fh	70h-7Fh	1FFFh	70h-7Fh

TABLE 4-8: PIC16(L)F15356/75/76/85/86 MEMORY MAP, BANKS 56-63

Note 1: Unimplemented locations read as '0'.

2: The banks 32-55 have been omitted from the tables in the data sheet since the banks have unimplemented registers.

	FII. SFLCI		REGISTER	SUMMARI	BANKS U-					1	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62 (C	continued)										
1F4Eh	ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111
1F4Fh	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000
1F50h	ODCONC	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000
1F51h	SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
1F52h	INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
1F53h	IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000
1F54h	IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000
1F55h	IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000
1F56h 1F58h	_				Unimpler	nented				_	_
1F59h	ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
1F5Ah	WPUD ⁽¹⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	0000 0000	0000 0000
1F5Bh	ODCOND ⁽¹⁾	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000 0000	0000 0000
1F5Ch	SLRCOND ⁽¹⁾	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	1111 1111	1111 1111
1F5Dh	INLVLD ⁽¹⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	1111 1111	1111 1111
1F5Eh 	_				Unimpler	nented				_	_
1F64h	ANSELE ⁽¹⁾	_	_				ANSE2	ANSE1	ANSE0	111	uuu
1F65h	WPUE	_	_	_		WPUE3	WPUE2 ⁽¹⁾	WPUE1 ⁽¹⁾	WPUE0 ⁽¹⁾	0000	uuuu
1F66h	ODCONE ⁽¹⁾	_	_	_		_	ODCE2	ODCE1	ODCE0	000	000
1F67h	SLRCONE ⁽¹⁾	_	_	_		_	SLRE2	SLRE1	SLRE0	111	111
1F68h	INLVLE	_	_	_		INLVLE3	INLVLE2 ⁽¹⁾	INLVLE1 ⁽¹⁾	INLVLE0 ⁽¹⁾	1111	uuuu
1F69h	IOCEP	_	_	_	_	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾	0000	0000
1F6Ah	IOCEN	_	_	_	_	IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾	0000	0000
1F6Bh	IOCEF	_	_	_	_	IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾	0000	0000
1F6Ch 	_				Unimpler	nented				_	

SPECIAL EUNCTION DECISTED SUMMARY PANKS 0.62 (CONTINUED) TABLE A 44.

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Present only on PIC16(L)F15375/76/85/86.

8.14 Power Control (PCONx) Registers

The Power Control (PCONx) registers contain flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Timer Window Violation Reset
 (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)
- Memory Violation Reset (MEMV)

The PCON0 register bits are shown in Register 8-3. The PCON1 register bits are shown in Register 8-3.

Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-4).

Software should reset the bit to the inactive state after the restart (hardware will not reset the bit).

Software may also set any PCON bit to the active state, so that user code may be tested, but no reset action will be generated.

10.3 Interrupts During Sleep

Interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 11.0 "Power-Saving Operation Modes"** for more details.

10.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. Refer to Figure 10-3. This interrupt is enabled by setting the INTE bit of the PIE0 register. The INTEDG bit of the INTCON register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the PIR0 register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

10.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	_	—	—	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Read	lable bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is	unchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7-2	Unimpleme	nted: Read as '	0'				
bit 1	TMR2IE: TM	IR2 to PR2 Mate	ch Interrupt Er	nable bit			
	1 = Enable	s the Timer2 to	PR2 match int	terrupt			
	0 = Disable	es the Timer2 to	PR2 match in	terrupt			
bit 0	TMR1IE: Tin	ner1 Overflow Ir	nterrupt Enable	e bit			
	1 = Enable	s the Timer1 ov	erflow interrup	ot			
	0 = Enable	s the Timer1 ov	erflow interrup	ot			
Note:	Bit PEIE of the IN	NTCON register	must be				
	set to enable a	any peripheral	interrupt				
	controlled by regi	STERS PIE1-PIE/	· .				

REGISTER 10-6: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
_	—	—	_	—	—	CCP2IE	CCP1IE
bit 7							bit 0
·							
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is :	set	'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7-2	Unimplemen	ted: Read as '	0'.				
bit 1	CCP2IE: CCI	P2 Interrupt En	able bit				
	1 = CCP2 ir	nterrupt is enab	led				
	0 = CCP2 ir	nterrupt is disat	bled				
bit 0	CCP1IE: CCI	P1 Interrupt En	able bit				
	1 = CCP1 ir	nterrupt is enab	led				
	0 = CCP1 in	terrupt is disab	led				
r							
Note:	Bit PEIE of the IN	TCON register	must be				
	set to enable a	ny peripheral	interrupt				
	controlled by regis	ters PIE1-PIE7	· .				

REGISTER 10-8: PIE6: PERIPHERAL INTERRUPT ENABLE REGISTER 6

12.7 Register Definitions: Windowed Watchdog Timer Control

REGISTER 12-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0				
—	—			WDTPS<4:0>(1)			SWDTEN
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

1 Dit lo oot								
bit 7-6	Unimplemented: Read as '0'							
bit 5-1	WDTPS<4:0>: Watchdog Timer Prescale Select bits ⁽¹⁾							
	Bit Value = Prescale Rate							
	11111 = Reserved. Results in minimum interval (1:32)							
	•							
	•							
	10011 = Reserved. Results in minimum interval (1:32)							
	10010 = 1:8388608 (2 ²³) (Interval 256s nominal)							
	$10001 = 1:4194304 (2^{22})$ (Interval 128s nominal)							
	$10000 = 1:2097152 (2^{21}) (Interval 64s nominal)$							
	01111 = 1:1048576 (2 ²⁰) (Interval 32s nominal)							
	01110 = $1:524288 (2^{19})$ (Interval 16s nominal)							
	$01101 = 1:262144 (2^{18}) (Interval 8s nominal)$							
	01100 = 1:131072 (2'') (Interval 4s nominal)							
	01011 = 1.65536 (Interval 2s nominal) (Reset value)							
	01010 = 1.32768 (Interval 15 nominal)							
	01001 = 1.10304 (Interval 312 Instruminal) 01000 = 1.8102 (Interval 256 ms nominal)							
	0.1111 = 1.4096 (Interval 230 ms nominal)							
	0.0110 = 1.2048 (Interval 64 ms nominal)							
	00101 = 1:1024 (Interval 32 ms nominal)							
	00100 = 1:512 (Interval 16 ms nominal)							
	00011 = 1:256 (Interval 8 ms nominal)							
	00010 = 1:128 (Interval 4 ms nominal)							
	00001 = 1:64 (Interval 2 ms nominal)							
	00000 = 1:32 (Interval 1 ms nominal)							
bit 0	SWDTEN: Software Enable/Disable for Watchdog Timer bit							
	If WDTE < 1:0 > = 1x:							
	This bit is ignored.							
	lf WDTE < 1:0 > = 01:							
	1 = WDI is turned on							
	U = VU I I I S TURNED OF U							
	VVD							

- **Note 1:** Times are approximate. WDT time is based on 31 kHz LFINTOSC.
 - 2: When WDTCPS <4:0> in CONFIG3 = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3.
 - 3: When WDTCPS <4:0> in CONFIG3 \neq 11111, these bits are read-only.

14.4 PORTB Registers

14.4.1 DATA REGISTER

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 14-10). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., disable the output driver). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize PORTB.

Reading the PORTB register (Register 14-9) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

The PORT data latch LATB (Register 14-11) holds the output port data, and contains the latest value of a LATB or PORTB write.

14.4.2 DIRECTION CONTROL

The TRISB register (Register 14-10) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.4.3 OPEN-DRAIN CONTROL

The ODCONB register (Register 14-14) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I ² C; the I ² C
	module controls the pin and makes the pin open-drain.

14.4.4 SLEW RATE CONTROL

The SLRCONB register (Register 14-15) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.4.5 INPUT THRESHOLD CONTROL

The INLVLB register (Register 14-8) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

14.4.6 ANALOG CONTROL

The ANSELB register (Register 14-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with its TRIS bit clear and its ANSEL bit set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog								
	mode after Reset. To use any pins as								
	digital general purpose or peripheral								
	inputs, the corresponding ANSEL bits								
	must be initialized to '0' by user software.								

14.4.7 WEAK PULL-UP CONTROL

The WPUB register (Register 14-5) controls the individual weak pull-ups for each PORT pin.

14.4.8 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic or by enabling an analog output, such as the DAC. See **Section 15.0** "**Peripheral Pin Select (PPS) Module**" for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

REGISTER	16-2: PMD	1: PMD CON	FROL REGIS	STER 1			
R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
NCO1MD					TMR2MD	TMR1MD	TMR0MD
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is und	hanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets
'1' = Bit is set '0' = Bit is cleared				q = Value dep	ends on condit	ion	
bit 7 bit 6-3	NCO1MD: D 1 = NCO1 m 0 = NCO1 m	isable Numerica nodule disabled nodule enabled	ally Control Os	cillator bit			
bit 2	Unimplemented: Read as '0' TMR2MD: Disable Timer TMR2 bit 1 = Timer2 module disabled 0 = Timer2 module enabled						
bit 1	TMR1MD: D 1 = Timer1 r 0 = Timer1 r	isable Timer TM nodule disabled nodule enabled	IR1 bit				
bit 0	TMR0MD: D 1 = Timer0 r 0 = Timer0 r	isable Timer TM nodule disabled nodule enabled	IR0 bit				

REGISTER 17-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBP7	IOCBP6	IOCBP5	IOCBP4		—		—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	 IOCBP<7:4>: Interrupt-on-Change PORTB Positive Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin.
bit 3-0	Unimplemented: read as '0'

REGISTER 17-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **IOCBN<7:4>:** Interrupt-on-Change PORTB Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.
- bit 3-0 Unimplemented: read as '0'

19.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The main purpose of the temperature indicator module is to provide a temperature-dependent voltage that can be measured by the Analog-to-Digital Converter.

The circuit's range of operating temperature falls between -40°C and +125°C. The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately.

19.1 Module Operation

The temperature indicator module consists of a temperature-sensing circuit that provides a voltage to the device ADC. The analog voltage output, VTSENSE, varies inversely to the device temperature. The output of the temperature indicator is referred to as VOUT.

Figure 19-1 shows a simplified block diagram of the temperature indicator module.

FIGURE 19-1: TEMPERATURE INDICATOR BLOCK DIAGRAM

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 20.0 "Analog-to-Digital Converter (ADC) Module" for detailed information.

The ON/OFF bit for the module is located in the FVRCON register. See **Section 18.0** "**Fixed Voltage Reference (FVR)**" for more information. The circuit is enabled by setting the TSEN bit of the FVRCON register. When the module is disabled, the circuit draws no current.

The circuit operates in either High or Low range. Refer to **Section 19.5** "**Temperature Indicator Range**" for more details on the range settings.

19.2 Estimation of Temperature

This section describes how the sensor voltage can be used to estimate the temperature of the module. To use the sensor, the output voltage, VTSENSE, is measured and the corresponding temperature is determined. Equation 19-1 provides an estimate for the die temperature based on the VTSENSE value.

EQUATION 19-1: SENSOR TEMPERATURE

$$T_{SENSE} = V_{TSENSE} \times (-Mt) + T_{OFFSET}$$

Where:

Mt = 1/Mv, where Mv = sensor voltage sensitivity (V/°C). TOFFSET is the temperature difference between the theoretical temperature and the actual temperature.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	—	DAC1NSS	287	
DAC1CON1	_	—	_		DAC1R<4:0>					
CM1PSEL	_	—	_	_	PCH<2:0>					
CM2PSEL	—	_	_		PCH<2:0>				307	

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

22.1 NCO OPERATION

The NCO operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCO output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 22-1.

The NCO output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCO output is then distributed internally to other peripherals and can be optionally output to a pin. The accumulator overflow also generates an interrupt (NCO_overflow).

The NCO period changes in discrete steps to create an average frequency.

EQUATION 22-1: NCO OVERFLOW FREQUENCY

 $FOVERFLOW = \frac{NCO \ Clock \ Frequency \times Increment \ Value}{2^{20}}$

22.1.1 NCO CLOCK SOURCES

Clock sources available to the NCO include:

- HFINTOSC
- Fosc
- LC1_out
- LC2_out
- LC3_out
- LC4_out
- MFINTOSC (500 kHz)
- MFINTOSC (32 kHz)
- SOSC
- CLKR

The NCO clock source is selected by configuring the N1CKS<2:0> bits in the NCO1CLK register.

22.1.2 ACCUMULATOR

The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

- NCO1ACCL
- NCO1ACCH
- NCO1ACCU

22.1.3 ADDER

The NCO Adder is a full adder, which operates synchronously from the source clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

22.1.4 INCREMENT REGISTERS

The increment value is stored in three registers making up a 20-bit incrementer. In order of LSB to MSB they are:

- NCO1INCL
- NCO1INCH
- NCO1INCU

When the NCO module is enabled, the NCO1INCU and NCO1INCH registers should be written first, then the NCO1INCL register. Writing to the NCO1INCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCO clk signal.

The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCO module.

When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Note: The increment buffer registers are not useraccessible.

24.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero crossing threshold is the zero crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 24-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- Low EMI cycle switching

24.1 External Resistor Selection

The ZCD module requires a current limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 24-1 and Figure 24-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 24-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

FIGURE 24-1: EXTERNAL VOLTAGE

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG3D4T: (Gate 2 Data 4 T	rue (non-inve	rted) bit			
	1 = CLCIN3	(true) is gated i	nto CLCx Gat	e 2			
hit G	0 = CLCIN3	(true) is not gat	ed Into CLCX	Gale Z			
DILO		(invorted) is ga	tod into CLCx	Gate 2			
	0 = CLCIN3	(inverted) is no	t gated into CLOX	Cx Gate 2			
bit 5	LCxG3D3T:	Sate 2 Data 3 T	rue (non-inve	rted) bit			
	1 = CLCIN2 ((true) is gated i	nto CLCx Gate	e 2			
	0 = CLCIN2	(true) is not gat	ed into CLCx	Gate 2			
bit 4	LCxG3D3N:	Gate 2 Data 3 I	Negated (inver	rted) bit			
	1 = CLCIN2	(inverted) is ga	ted into CLCx	Gate 2			
hit 2	0 = CLCINZ((Inverted) is no		LOX Gale Z			
DIL 3	1 = CLCIN1/C	(true) is gated i	nto CLCx Gat				
	0 = CLCIN1	(true) is not gat	ed into CLCx	Gate 2			
bit 2	LCxG3D2N:	Gate 2 Data 2 I	Negated (inver	rted) bit			
	1 = CLCIN1 ((inverted) is ga	ted into CLCx	Gate 2			
	0 = CLCIN1 ((inverted) is no	t gated into Cl	Cx Gate 2			
bit 1	LCxG3D1T: (Gate 2 Data 1 T	rue (non-inve	rted) bit			
	1 = CLCINO((true) is gated i	nto CLCx Gate	e 2 Cata 2			
h it 0		(true) is not gat					
		(inverted) is as	ted into CLCv	Gate 2			
	0 = CLCINO((inverted) is ga	t gated into CLOX	_Cx Gate 2			
	-	, , ,	5				

REGISTER 31-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

REGISTER 31-11: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0		
—	—	—	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT		
bit 7							bit 0		
Legend:									
R = Readable bit W		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-4	Unimplement	ted: Read as '	o'						
bit 3	MLC4OUT: M	irror copy of LO	C4OUT bit						
bit 2	bit 2 MLC3OUT: Mirror copy of LC3OUT bit								
bit 1	MLC2OUT: M	irror copy of L	C2OUT bit						

bit 0 MLC10UT: Mirror copy of LC10UT bit

TABLE 31-4:	SUMMARY OF REGISTERS ASSOCIATED WITH CLCx (continued)
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CLC4GLS1	—		LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	414
CLC4GLS2	—		LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	415
CLC4GLS3	_	_	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	416
CLCIN0PPS	_	_			CLCINO	PPS<5:0>			241
CLCIN1PPS	-	_			CLCIN1	PPS<5:0>			241
CLCIN2PPS	_	_		CLCIN2PPS<5:0>					
CLCIN3PPS	_	_			CLCIN3	PPS<5:0>			241

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

REGISTER 33-7: SPxBRGH^(1, 2): BAUD RATE GENERATOR HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SPxBRG<15:8>									
bit 7							bit 0		
Legend:									

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 SPxBRG<15:8>: Upper eight bits of the Baud Rate Generator

Note 1: SPxBRGH value is ignored for all modes unless BAUDxCON<BRG16> is active.

2: Writing to SPxBRGH resets the BRG counter.