

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15375-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4: PIC16(L)F15385/86 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description		
RF5/ANF5	RF5	TTL/ST	CMOS/OD	General purpose I/O.		
	ANF5	AN	_	ADC Channel D0 input.		
RF6/ANF6	RF6	TTL/ST	CMOS/OD	General purpose I/O.		
	ANF6	AN	—	ADC Channel D0 input.		
RF7/ANF7	RF5	TTL/ST	CMOS/OD	General purpose I/O.		
	ANF5	AN	_	ADC Channel D0 input.		
VDD	Vdd	Power	_	Positive supply voltage input.		
Vss	Vss	Power	_	Ground reference.		
Legend: AN = Analog input or outp TTL = TTL compatible input			mpatible input or			

TTL = TTL compatible input

HV = High Voltage

XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-7.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for l^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the l^2C specific or SMBus input buffer thresholds. 4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 6											
						see Table 4-3 for	anacifica				
				CFUCOF	L REGISTERS,	See Table 4-5 101	specifics				
30Ch	CCPR1L	Capture/Compare/PV	VM Register 1 (LS	SB)						xxxx xxxx	uuuu uuuu
30Dh	CCPR1H	Capture/Compare/PV	VM Register 1 (M	SB)						xxxx xxxx	uuuu uuuu
30Eh	CCP1CON	EN	_	OUT	FMT		MOI	DE<3:0>		0-00 0000	0-00 0000
30Fh	CCP1CAP	_	—	—	—	—		CTS<2:0>		000	000
310h	CCPR2L Capture/Compare/PWM Register 2 (LSB)								xxxx xxxx	uuuu uuuu	
311h	CCPR2H	Capture/Compare/PWM Register 2 (MSB)							XXXX XXXX	uuuu uuuu	
312h	CCP2CON	EN	—	OUT	FMT	MODE<3:0>				0-00 0000	0-00 0000
313h	CCP2CAP	_	—	—	_	—		CTS<2:0>		000	000
314h	PWM3DCL	DC<1:	0>	—		—	—	_	_	xx	uu
315h	PWM3DCH				DC<9	9:0>				XXXX XXXX	uuuu uuuu
316h	PWM3CON	EN	—	OUT	POL	—	—	_	_	0-00	0-00
317h	—				Unimple	mented				—	
318h	PWM4DCL	DC<1:	0>	—		—	—	_		xx	uu
319h	PWM4DCH				DC<9	9:0>				XXXX XXXX	uuuu uuuu
31Ah	PWM4CON	EN	—	OUT	POL	—	_	—		0-00	0-00
31Bh	—				Unimple	mented				—	
31Ch	PWM5DCL	DC<1:	0>	—	_		_	_	_	xx	uu
31Dh	PWM5DCH		DC<9:0>						xxxx xxxx	uuuu uuuu	
31Eh	PWM5CON	EN	_	OUT	POL	—	_	_		0-00	0-00
31Fh	_				Unimple	mented				—	_

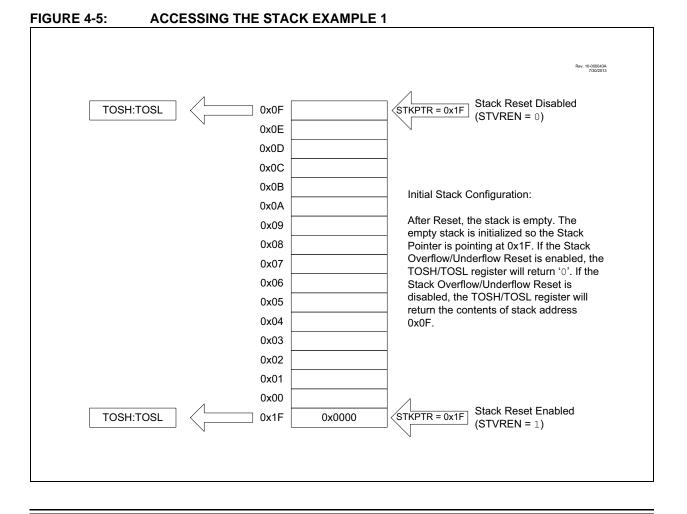
x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

4.5 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 4-5 through Figure 4-8). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

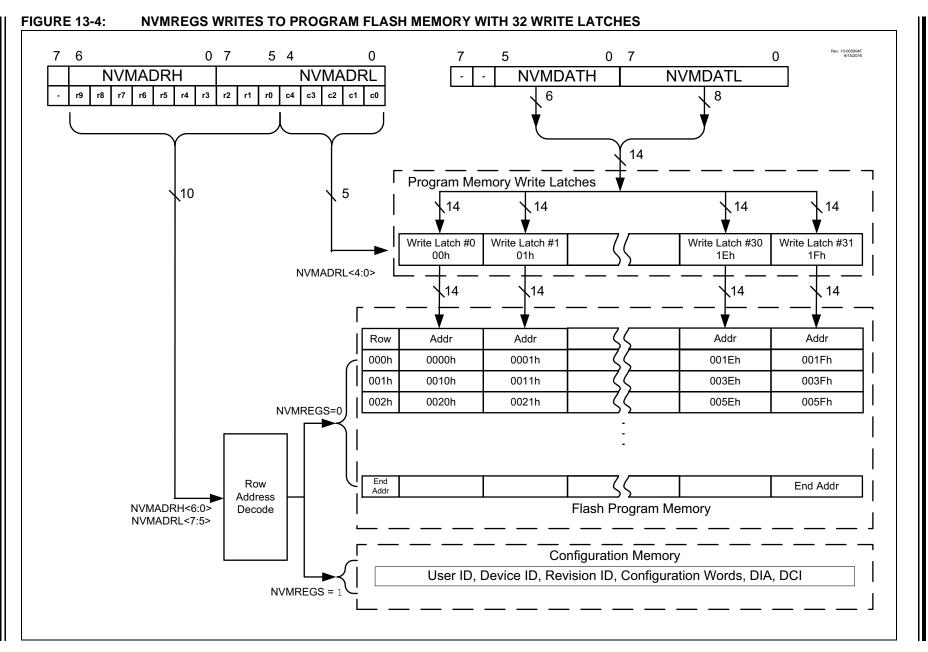

4.5.1 ACCESSING THE STACK

The stack is accessible through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. STKPTR can be monitored to obtain to value of stack memory left at any given time. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC value from the stack and then decrement the STKPTR.

Reference Figure 4-5 through Figure 4-8 for examples of accessing the stack.


PIC16(L)F15356/75/76/85/86

EXAMPLE 13-3: ERASING ONE ROW OF PROGRAM FLASH MEMORY (PFM)

		()
; 1.A valid ad		umes the following: e row is loaded in variables ADDRH:ADDRL common RAM (locations 0x70 - 0x7F)
BANKSEL	NVMADRL	
MOVF	ADDRL,W	
MOVWF	NVMADRL	; Load lower 8 bits of erase address boundary
MOVF	ADDRH,W	
MOVWF	NVMADRH	; Load upper 6 bits of erase address boundary
BCF	NVMCON1, NVMREGS	; Choose PFM memory area
BSF	NVMCON1, FREE	; Specify an erase operation
BSF	NVMCON1,WREN	; Enable writes
BCF	INTCON,GIE	; Disable interrupts during unlock sequence
;	REQ	UIRED UNLOCK SEQUENCE:
MOVLW	55h	; Load 55h to get ready for unlock sequence
MOVWF	NVMCON2	; First step is to load 55h into NVMCON2
MOVLW	AAh	; Second step is to load AAh into W
MOVWF	NVMCON2	; Third step is to load AAh into NVMCON2
BSF	NVMCON1,WR	; Final step is to set WR bit
;		
BSF	INTCON, GIE	; Re-enable interrupts, erase is complete
BCF	NVMCON1,WREN	; Disable writes

TABLE 13-2: NVM ORGANIZATION AND ACCESS INFORMATION

	Master Values		N	VMREG Acce	ess	FSR Access		
Memory Function	Program Counter (PC), ICSP™ Address	Memory Type	NVMREGS bit (NVMCON1)	NVMADR< 14:0>	Allowed Operations	FSR Address	FSR Programming Address	
Reset Vector	0000h		0	0000h		8000h		
Llear Momony	0001h		0	0001h		8001h		
User Memory	0003h		0	0003h		8003h		
INT Vector	0004h	PFM	0	0004h	Read Write	8004h	Read-0nly	
	0005h		0	0005h	White	8005h		
User Memory	1FFFh			1FFFh		9FFFh		
	3FFFh			3FFFh		BFFFh		
	8000h	DEM	PFM 1	1	0000h	Read		•
User ID	8003h	PEM	1	0003h	Write			
Reserved	8004h	—	-	0004h	_			
Rev ID	8005h		1	0005h	Deed Only	- No Access		
Device ID	8006h		1	0006h	Read-Only			
CONFIG1	8007h		1	0007h				
CONFIG2	8008h	PFM	1	0008h	_ .			
CONFIG3	8009h		1	0009h	Read Write			
CONFIG4	800Ah	1	1	000Ah	VVIILE			
CONFIG5	800Bh		1	000Bh				
DIA and DCI	8100h-82FFh	PFM and Hard coded	1	0100h- 02FFh	Read-Only	No	Access	

14.3 Register Definitions: PORTA

REGISTER 14-1: PORTA: PORTA REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
bit 7			•				bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 14-2: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register returns of actual I/O pin values.

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSC7 | ANSC6 | ANSC5 | ANSC4 | ANSC3 | ANSC2 | ANSC1 | ANSC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ANSC<7:0>: Analog Select between Analog or Digital Function on Pins RC<7:0>, respectively⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

REGISTER 14-21: WPUC: WEAK PULL-UP PORTC REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUC7 | WPUC6 | WPUC5 | WPUC4 | WPUC3 | WPUC2 | WPUC1 | WPUC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

VALUES					
Desired Input Pin	Value to Write to Register				
RA0	0x00				
RA1	0x01				
RA2	0x02				
RA3	0x03				
RA4	0x04				
RA5	0x05				
RA6	0x06				
RA7	0x07				
RB0	0x08				
RB1	0x09				
RB2	0x0A				
RB3	0x0B				
RB4	0x0C				
RB5	0x0D				
RB6	0x0E				
RB7	0x0F				
RC0	0x10				
RC1	0x11				
RC2	0x12				
RC3	0x13				
RC4	0x14				
RC5	0x15				
RC6	0x16				
RC7	0x17				
RD0 ⁽²⁾	0x18				
RD1 ⁽²⁾	0x19				
RD2 ⁽²⁾	0x1A				
RD3 ⁽²⁾	0x1B				
RD4 ⁽²⁾	0x1C				
RD5 ⁽²⁾	0x1D				
RD6 ⁽²⁾	0x1E				
RD7 ⁽²⁾	0x1F				
RE0 ⁽²⁾	0x20				
RE1 ⁽²⁾	0x21				
RE2 ⁽²⁾	0x22				
l	1				

TABLE 15-4: PPS INPUT REGISTER VALUES

Note 1: Only a few of the values in this column are valid for any given signal. For example, since the INT signal can only be mapped to PORTA or PORTB pins, only the register values 0x00-0x0F (corresponding to RA<7:0> and RB<7:0>) are valid values to write to the INTPPS register.

- 2: Present on PIC16(L)F15375/76/85/86 only.
- **3:** Present on PIC16(L)F15385/86 only.

TABLE 15-4: PPS INPUT REGISTER VALUES

Desired Input Pin	Value to Write to Register
RF0 ⁽³⁾	0x28
RF1 ⁽³⁾	0x29
RF2 ⁽³⁾	0x2A
RF3 ⁽³⁾	0x2B
RF4 ⁽³⁾	0x2C
RF5 ⁽³⁾	0x2D
RF6 ⁽³⁾	0x2E
RF7 ⁽³⁾	0x2F

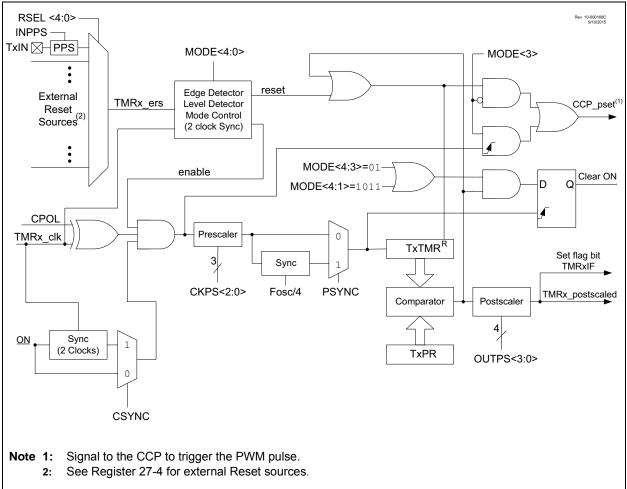
Note 1: Only a few of the values in this column are valid for any given signal. For example, since the INT signal can only be mapped to PORTA or PORTB pins, only the register values 0x00-0x0F (corresponding to RA<7:0> and RB<7:0>) are valid values to write to the INTPPS register.

- 2: Present on PIC16(L)F15375/76/85/86 only.
- **3:** Present on PIC16(L)F15385/86 only.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		_	_	ADPRE	F<1:0>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is uncl	hanged	x = Bit is unkno	own	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set	:	'0' = Bit is clea	red				
	loaded.	stified. Six Most	•				
bit 6-4	111 = ADCF 110 = Fosc/ 101 = Fosc/ 100 = Fosc/	/16 /4 RC (dedicated R(/32 /8	C oscillator)	ct bits			
bit 3-2	Unimpleme	nted: Read as '0	,				
bit 1-0	11 = VREF+ 10 = VREF+ 01 = Reserv	0>: ADC Positive is connected to i is connected to e ed is connected to N	nternal Fixed external VREF	Voltage Refere		dule ⁽¹⁾	

REGISTER 20-2: ADCON1: ADC CONTROL REGISTER 1

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Table 37-14 for details.


27.0 TIMER2 MODULE WITH HARDWARE LIMIT TIMER (HLT)

The Timer2 modules are 8-bit timers that can operate as free-running period counters or in conjunction with external signals that control start, run, freeze, and reset operation in One-Shot and Monostable modes of operation. Sophisticated waveform control such as pulse density modulation are possible by combining the operation of these timers with other internal peripherals such as the comparators and CCP modules. Features of the timer include:

- 8-bit timer register
- 8-bit period register

- · Selectable external hardware timer Resets
- Programmable prescaler (1:1 to 1:128)
- Programmable postscaler (1:1 to 1:16)
- · Selectable synchronous/asynchronous operation
- Alternate clock sources
- Interrupt-on-period
- · Three modes of operation:
 - Free Running Period
 - One-shot
 - Monostable

See Figure 27-1 for a block diagram of Timer2. See Figure 27-2 for the clock source block diagram.

FIGURE 27-1: TIMER2 BLOCK DIAGRAM

REGISTER 30-3: CWG1DBR: CWG1 RISING DEAD-BAND COUNTER REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			DBR	<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 DBR<5:0>: Rising Event Dead-Band Value for Counter bits

REGISTER 30-4: CWG1DBF: CWG1 FALLING DEAD-BAND COUNTER REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			DBF	<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 DBF<5:0>: Falling Event Dead-Band Value for Counter bits

© 2016 Microchip Technology Inc.

31.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) module provides programmable logic that operates outside the speed limitations of software execution. The logic cell selects from 40 input signals and, through the use of configurable gates, reduces the inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- I/O pins
- Internal clocks
- · Peripherals
- · Register bits

The output can be directed internally to peripherals and to an output pin.

The CLC modules available are shown in Table 31-1.

TABLE 31-1: AVAILABLE CLC MODULES

Device	CLC1	CLC2	CLC3	CLC4
PIC16(L)F15356/75/76/85/8 6	•	•	•	٠

Note:	The CLC1, CLC2, CLC3 and CLC4 are
	four separate module instances of the
	same CLC module design. Throughout
	this section, the lower case 'x' in register
	and bit names is a generic reference to
	the CLC number (which should be substi-
	tuted with 1, 2, 3, or 4 during code devel-
	opment). For example, the control register
	is generically described in this chapter as
	CLCxCON, but the actual device registers
	are CLC1CON, CLC2CON, CLC3CON
	and CLC4CON. Similarly, the LCxEN bit
	represents the LC1EN, LC2EN, LC3EN
	and LC4EN bits.

Refer to Figure 31-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
 - Transparent D with Set and Reset
 - Clocked J-K with Reset

31.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 31-3 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

TABLE 31-3: DATA GATING LOGIC

CLCxGLSy	LCxGyPOL	Gate Logic
0x55	1	4-input AND
0x55	0	4-input NAND
0xAA	1	4-input NOR
0xAA	0	4-input OR
0x00	0	Logic 0
0x00	1	Logic 1

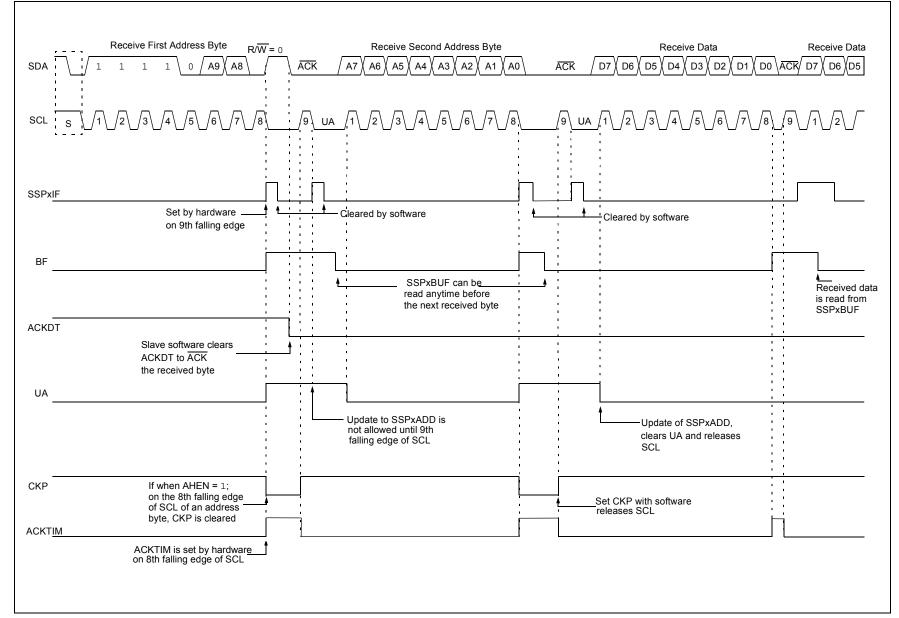
It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

- Gate 1: CLCxGLS0 (Register 31-7)
- Gate 2: CLCxGLS1 (Register 31-8)
- Gate 3: CLCxGLS2 (Register 31-9)
- Gate 4: CLCxGLS3 (Register 31-10)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register. Data gating is indicated in the right side of Figure 31-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

31.1.3 LOGIC FUNCTION


There are eight available logic functions including:

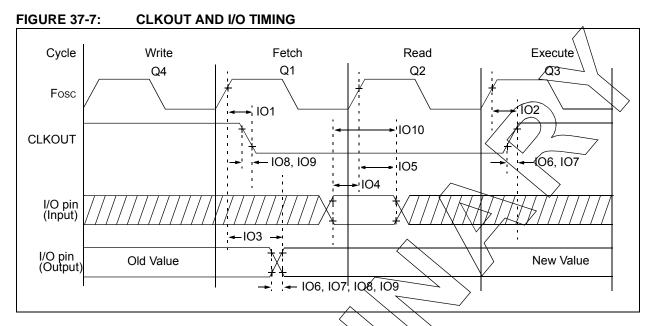
- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- · Transparent Latch with Set and Reset

Logic functions are shown in Figure 31-2. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

31.1.4 OUTPUT POLARITY

The last stage in the Configurable Logic Cell is the output polarity. Setting the LCxPOL bit of the CLCxPOL register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

FIGURE 32-21: I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)


PIC16(L)F15356/75/76/85/86

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
CLKREN	_	—	CLKRI	DC<1:0>	(CLKRDIV<2:0>			
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	CLKREN: Re	ference Clock	Module Enable	e bit					
	1 = Reference clock module enabled								
	0 = Referen	ce clock modul	le is disabled						
bit 6-5	Unimplemen	ted: Read as '	כי						
bit 4-3	CLKRDC<1:0>: Reference Clock Duty Cycle bits ⁽¹⁾								
	11 = Clock outputs duty cycle of 75%								
	10 = Clock outputs duty cycle of 50%								
	01 = Clock outputs duty cycle of 25% 00 = Clock outputs duty cycle of 0%								
bit 2-0		0>: Reference		bits					
	111 = Base clock value divided by 128								
	110 = Base clock value divided by 64 101 = Base clock value divided by 32								
	100 = Base clock value divided by 32								
		lock value divid							
		lock value divid	•						
		lock value divid	led by 2						
	000 = Base c	lock value							

REGISTER 34-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

Note 1: Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.

PIC16(L)F15356/75/76/85/86

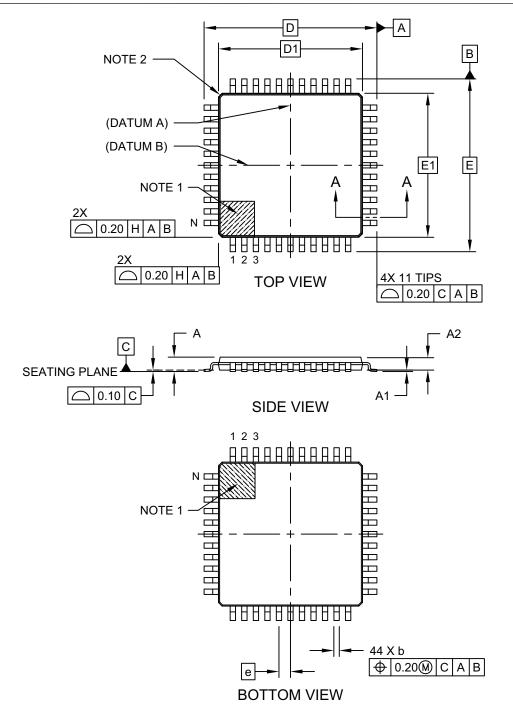
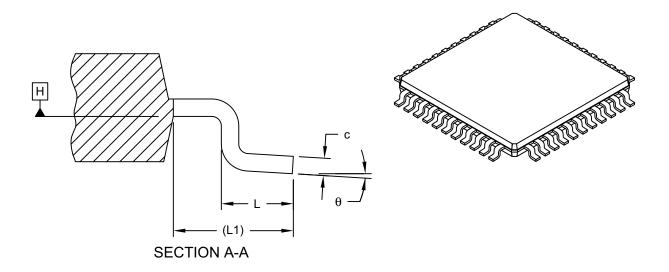


TABLE 37-10:	I/O AND CLKOUT TIMING SPECIFICATIONS
--------------	--------------------------------------

Standar	Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
IO1*	T _{CLKOUTH}	CLKOUT rising edge delay (rising edge Fosc (Q1 cycle) to falling edge CLKOUT	> -	—	70	ns		
IO2*	T _{CLKOUTL}	CLKOUT falling edge delay (rising edge Fosc (Q3 cycle) to rising edge CLKOUT	—	_	72	ns		
IO3*	T _{IO_VALID}	Port output valid time (rising edge Fose (Q1 cycle) to port valid)	—	50	70	ns		
104*	T _{IO_SETUP}	Port input setup time (Setup time before rising edge Fosc – Q2 cycle)	20	-	—	ns		
IO5*	T _{IO_HOLD}	Port input hold time (Hold time after rising edge Fosc – Q2 cycle)	50	-	—	ns		
106*	TIOR_SLREN	Port I/O rise time, slew rate enabled	_	25		ns	VDD = 3.0V	
107*	TIOR SLADIS	Port I/O rise time, slew rate disabled	_	5		ns	VDD = 3.0V	
108*	FIOR SLREN	Port I/O fall time, slew rate enabled	_	25		ns	VDD = 3.0V	
109*/ /	TIOF_SLRDIS	Port I/O fall time, slew rate disabled	_	5		ns	VDD = 3.0V	
	FINT	INT pin high or low time to trigger an interrupt	25	—	—	ns		
IO11*	V.OC	Interrupt-on-Change minimum high or low time to trigger interrupt	25			ns		
*These parameters are characterized but not tested.								

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

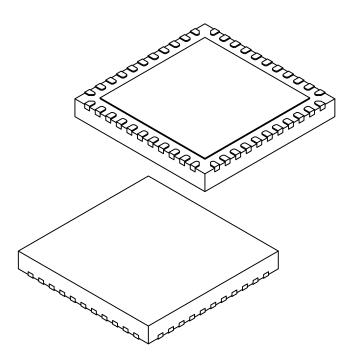
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	N		44			
Lead Pitch	е		0.80 BSC			
Overall Height	Α	-	-	1.20		
Standoff	A1	0.05 - 0.15				
Molded Package Thickness	A2	0.95 1.00 1.05				
Overall Width	E	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Width	b	0.30	0.37	0.45		
Lead Thickness	С	0.09 - 0.20				
Lead Length	L	0.45 0.60 0.75				
Footprint	L1	1.00 REF				
Foot Angle	θ	0° 3.5° 7°				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N	44				
Pitch	е		0.65 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00 0.02 0.05				
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.25 6.45 6.60				
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20 0.30 0.35				
Terminal Length	L	0.30 0.40 0.50				
Terminal-to-Exposed-Pad	К	0.20				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoq, KEELoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-1167-3