

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15375-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Digital Peripherals (Cont.)

- I/O Pins:
 - Individually programmable pull-ups
 - Slew rate control
 - Interrupt-on-change with edge-select
 - Input level selection control (ST or TTL)
- Digital open-drain enable
- Peripheral Pin Select (PPS):
 - Enables pin mapping of digital I/O

Analog Peripherals

- Analog-to-Digital Converter (ADC):
 - 10-bit with up to 43 external channels
 - Operates in Sleep
- Two Comparators:
 - FVR, DAC and external input pin available on inverting and noninverting input
 - Software selectable hysteresis
 - Outputs available internally to other modules, or externally through PPS
- 5-Bit Digital-to-Analog Converter (DAC):
 - 5-bit resolution, rail-to-rail
 - Positive Reference Selection
 - Unbuffered I/O pin output
 - Internal connections to ADCs and comparators
- Voltage Reference:
 - Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels
- Zero-Cross Detect module:
 - AC high voltage zero-crossing detection for simplifying TRIAC control
 - Synchronized switching control and timing

Flexible Oscillator Structure

- High-Precision Internal Oscillator:
- Software selectable frequency range up to 32 MHz, ±1% typical
- x2/x4 PLL with Internal and External Sources
- Low-Power Internal 32 kHz Oscillator (LFINTOSC)
- External 32 kHz Crystal Oscillator (SOSC)
- External Oscillator Block with:
 - Three crystal/resonator modes up to 20 MHz
 - Three external clock modes up to 32 MHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if primary clock stops
- Oscillator Start-up Timer (OST):
 - Ensures stability of crystal oscillator resources

PIC16(L)F15356/75/76/85/86

TABLE 4	4-11: SPECI	AL FUNCTION	REGISTER	SUMMARY	BANKS 0-	63						
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 0												
	CPU CORE REGISTERS; see Table 4-10 for specifics											
00Ch	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	uuuu uuuu	
00Dh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu	
00Eh	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu	
00Fh	PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	uuuu uuuu	
010h	PORTE	—	—	—	—	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	xxxx	uuuu	
011h	PORTF ⁽²⁾	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	XXXX XXXX	uuuu uuuu	
012h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111	
013h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111	
014h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111	
015h	TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111	
016h	TRISE	—	—	—	—	_(3)	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	1111	1111	
017h	TRISF ⁽²⁾	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	1111 1111	1111 1111	
018h	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX XXXX	uuuu uuuu	
019h	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX XXXX	uuuu uuuu	
01Ah	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX XXXX	uuuu uuuu	
01Bh	LATD ⁽¹⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX XXXX	uuuu uuuu	
01Ch	LATE	—	_	—		—	LATE2 ⁽¹⁾	LATE1 ⁽¹⁾	LATE0 ⁽¹⁾	xxx	uuu	
01Dh	LATF ⁽²⁾	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	XXXX XXXX	uuuu uuuu	
01Eh	_				Unimple	mented				—	_	
01Fh	_				Unimple	mented				_	_	

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Present only in PIC16(L)F15375/76/85/86.

2: Present only in PIC16(L)F15385/86.

3: Unimplemented, read as '1'.

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 21-59	Bank 21-59											
CPU CORE REGISTERS; see Table 4-3 for specifics												
x0Ch/ x8Ch Unimplemented										_	_	
Legend:	x = unknown, u :	= unchanged, q = dep	pends on condition	n, - = unimplemer	nted, read as '0',	r = reserved. Sh	aded locations u	inimplemented, r	read as '0'.			

PIC16(L)F15356/75/76/85/86

SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM

© 2016 Microchip Technology Inc

Preliminary

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON1	—		NOSC<2:0>			NDIV<3:0>				
OSCCON2	—		COSC<2:0>			CDIV<3:0>				
OSCCON3	CSWHOLD	SOSCPWR	_	ORDY	NOSCR	—	—	—	136	
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	124	
STATUS	—	—	_	TO	PD	Z	DC	С	54	
WDTCON0	—	—			WDTPS<4:0)>		SWDTEN	175	
WDTCON1	—	V	VDTCS<2:0>		—	WI	NDOW<2:0>	>	176	
WDTPSL				PSCN	T<7:0>				177	
WDTPSH			PSCNT<15:8>							
WDTTMR			WDTTM	R<4:0>		STATE	PSCNT	<17:16>	177	

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	-	FCMEN		CSWEN	_		CLKOUTEN	100
CONFIG1	7:0	_	F	RSTOSC<2:0	>	—	FEXTOSC<2:0>			102

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

PIC16(L)F15356/75/76/85/86

© 2016 Microchip Technology Inc.

13.3.8 WRERR BIT

The WRERR bit can be used to determine if a write error occurred.

WRERR will be set if one of the following conditions occurs:

- If WR is set while the NVMADRH:NMVADRL points to a write-protected address
- A Reset occurs while a self-write operation was in progress
- An unlock sequence was interrupted

The WRERR bit is normally set by hardware, but can be set by the user for test purposes. Once set, WRERR must be cleared in software.

Free	LWLO	Actions for PFM when WR = 1	Comments
1	x	Erase the 32-word row of NVMADRH:NVMADRL location. See Section 13.3.3 "NVMREG Erase of PFM"	 If WP is enabled, WR is cleared and WRERR is set All 32 words are erased NVMDATH:NVMDATL is ignored
0	1	Copy NVMDATH:NVMDATL to the write latch corresponding to NVMADR LSBs. See Section 13.3.3 "NVMREG Erase of PFM"	Write protection is ignoredNo memory access occurs
0	0	Write the write-latch data to PFM row. See Sec- tion 13.3.3 "NVMREG Erase of PFM"	 If WP is enabled, WR is cleared and WRERR is set Write latches are reset to 3FFh NVMDATH:NVMDATL is ignored

TABLE 13-4: ACTIONS FOR PFM WHEN WR = 1

14.7 Register Definitions: PORTC

REGISTER 14-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0		
bit 7	•					•	bit 0		
Legend:									
R = Readable b	it	W = Writable b	oit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	red						

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is \geq VIH 0 = Port pin is \leq VIL

REGISTER 14-18: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 14-19: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register returns actual I/O pin values.

Note 1: Writes to PORTC are actually written to corresponding LATC register. The actual I/O pin values are read from the PORTC register.

TABLE 14-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTE	—	—			RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	222
TRISE	—	—	-	-	_(2)	TRISE2 ⁽¹⁾	TRISE2 ⁽¹⁾	TRISE2 ⁽¹⁾	222
LATE ⁽¹⁾	—	—	_	_	_	LATE2	LATE2	LATE2	223
ANSELE ⁽¹⁾	—	—	_			ANSE2	ANSE1	ANSE0	217
WPUE	—	—	_	_	WPUE3	WPUE2 ⁽¹⁾	WPUE1 ⁽¹⁾	WPUE0 ⁽¹⁾	224
ODCONE ⁽¹⁾	—	—	_	_	_	ODCE2	ODCE1	ODCE0	224
SLRCONE	—	—			SLRE3	SLRE2 ⁽¹⁾	SLRE1 ⁽¹⁾	SLRE0 ⁽¹⁾	225
INLVLE	—	—	_	_	INLVLE3	INLVLE2 ⁽¹⁾	INLVLE1 ⁽¹⁾	INLVLE0 ⁽¹⁾	225

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: Present only in PIC16(L)F15375/76/85/86.

2: Unimplemented, read as '1'

TABLE 14-7: SUMMARY OF CONFIGURATION WORD WITH PORTE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8		_	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV		102
	7:0	BOREN <1:0>		LPBOREN	_	_	_	PWRTE	MCLRE	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTE.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
ADFM		ADCS<2:0>		—	—	ADPRE	F<1:0>		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	pit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	red						
bit 7 bit 6-4	ADFM: ADC 1 = Right jus loaded. 0 = Left justin loaded. ADCS<2:0>:	Result Format S tified. Six Most fied. Six Least ADC Conversio	Select bit Significant bit Significant bit	ts of ADRESH s of ADRESL	are set to '0' w are set to '0' w	when the conve	ersion result is ersion result is		
	ADCS(2.05) ADC Conversion Clock Select bits $111 = ADCRC (dedicated RC oscillator)$ $110 = Fosc/64$ $101 = Fosc/16$ $100 = Fosc/4$ $011 = ADCRC (dedicated RC oscillator)$ $010 = Fosc/32$ $001 = Fosc/8$ $000 = Fosc/2$								
bit 3-2	Unimplemen	ted: Read as 'o)'						
bit 1-0	ADPREF<1:0>: ADC Positive Voltage Reference Configuration bits 11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module ⁽¹⁾ 10 = VREF+ is connected to external VREF+ pin ⁽¹⁾ 01 = Reserved 00 = VREF+ is connected to VDD								

REGISTER 20-2: ADCON1: ADC CONTROL REGISTER 1

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Table 37-14 for details.

PIC16(L)F15356/75/76/85/86

24.7 Operation During Sleep

The ZCD current sources and interrupts are unaffected by Sleep.

24.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-on-Reset (POR). When the ZCDDIS Configuration bit is cleared, the ZCD circuit will be active at POR. When the ZCD Configuration bit is set, the EN bit of the ZCDxCON register must be set to enable the ZCD module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
T2CON	ON	CKPS<2:0> OUTPS<3:0>							355
T2TMR	Holding Register for the 8-bit TMR2 Register								
T2PR	TMR2 Period Register								
RxyPPS	— — — RxyPPS<4:0>								242
CWG1ISM	—	IS<3:0>							401
CLCxSELy	—	—	LCxDyS<5:0>						
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	200
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	211

TABLE 29-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWMx module.

* Page with Register information.

30.8 **Dead-Band Uncertainty**

When the rising and falling edges of the input source are asynchronous to the CWG clock, it creates uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 30-1 for more details.

EQUATION 30-1: **DEAD-BAND** UNCERTAINTY

MODE0 CWG1A CWG1B CWG1C CWG1D No delay CWG1DBR 🕂 No delay CWG1DBF CWG1_data Note 1: WGPOL{ABCD} = 0 2: The direction bit MODE<0> (Register 30-1) can be written any time during the PWM cycle, and takes effect at the next rising CWG1 data. 3: When changing directions, CWG1A and CWG1C switch at rising CWG1_data; modulated CWG1B and CWG1D are held inactive for the dead band duration shown; dead band affects only the first pulse after the direction change.

FIGURE 30-8: EXAMPLE OF PWM DIRECTION CHANGE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	146	
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF	160	
PIE5	CLC4IE	CLC4IE	CLC2IE	CLC1IE	_	—	_	TMR1GIE	152	
CLC1CON	LC1EN	_	LC10UT	LC10UT LC1INTP LC1INTN LC1MODE<2:0>			>	410		
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	411	
CLC1SEL0	_	_		LC1D1S<5:0>						
CLC1SEL1	_	_		LC1D2S<5:0>						
CLC1SEL2	_	_			LC1D	3S<5:0>			412	
CLC1SEL3	_	_			LC1D	4S<5:0>			412	
CLC1GLS0	_	_	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	413	
CLC1GLS1	_	_	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	414	
CLC1GLS2	_	_	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	415	
CLC1GLS3	_	_	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	416	
CLC2CON	LC2EN	_	LC2OUT	LC2INTP	LC2INTP LC2INTN LC2MODE<2:0>			>	410	
CLC2POL	LC2POL	_	_	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	411	
CLC2SEL0	_	_	LC2D1S<5:0>					412		
CLC2SEL1	_	_		LC2D2S<5:0>						
CLC2SEL2	_	_	LC2D3S<5:0>						412	
CLC2SEL3	_	_		LC2D4S<5:0>						
CLC2GLS0	_	_	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	413	
CLC2GLS1	—	_	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	414	
CLC2GLS2	—		LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	415	
CLC2GLS3	—	_	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	416	
CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN	LC3MODE<2:0>		410		
CLC3POL	LC3POL		—	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	411	
CLC3SEL0	—	_			LC3D	1S<5:0>			412	
CLC3SEL1	—				LC3D	2S<5:0>			412	
CLC3SEL2	—				LC3D	3S<5:0>			412	
CLC3SEL3	—	_			LC3D	4S<5:0>			412	
CLC3GLS0	_	_	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	413	
CLC3GLS1	_	_	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	414	
CLC3GLS2	—	_	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	415	
CLC3GLS3	—		LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	416	
CLC4CON	LC4EN		LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0	>	410	
CLC4POL	LC4POL	_	_	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	411	
CLC4SEL0	—	_			LC4D	1S<5:0>			412	
CLC4SEL1	—	_	LC4D2S<5:0>						412	
CLC4SEL2	_	_	LC4D3S<5:0>						412	
CLC4SEL3	_	_	LC4D4S<5:0>						412	
CLC4GLS0	_	_	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	413	

TABLE 31-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

32.5 I²C SLAVE MODE OPERATION

The MSSP Slave mode operates in one of four modes selected by the SSPM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

32.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 32-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 32-5) affects the address matching process. See **Section 32.5.9** "**SSP Mask Register**" for more information.

32.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

32.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb's of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCL is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

32.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 32-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register.

32.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 7-bit Addressing mode. Figure 32-14 and Figure 32-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes idle.

32.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address $0 \ge 0.00$. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 32-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

32.5.9 SSP MASK REGISTER

An SSP Mask (SSPxMSK) register (Register 32-5) is available in I²C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care". This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

32.8 Register Definitions: MSSPx Control

REGISTER 32-1: SSPxSTAT: SSPx STATUS REGISTER

R/W-0/0	R/W-0/0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0		
SMP	CKE ⁽¹⁾	D/A	P ⁽²⁾	S ⁽²⁾	R/W	UA	BF		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bit		U = Unimpleme	nted bit, read as '0	و ا			
u = Bit is unch	anged	x = Bit is unknov	vn	-n/n = Value at I	POR and BOR/Val	ue at all other Res	ets		
'1' = Bit is set		'0' = Bit is cleare	d	HS/HC = Hardw	vare set/clear				
bit 7	SMP: SPI Data	Input Sample bit							
	SPI Master mod	<u>le:</u> ampled at end of a	lata output timo						
	0 = Input data s	ampled at middle	of data output tin	ne					
	SPI Slave mode	<u>):</u>							
	SMP must be c	leared when SPI is	s used in Slave n	node					
	1 = Slew rate of	control disabled for	Standard Speed	d mode (100 kHz	and 1 MHz)				
	0 = Slew rate c	control enabled for	High-Speed mod	de (400 kHz)					
bit 6	CKE: SPI Clock	Edge Select bit (S	SPI mode only) ⁽¹)					
	<u>In SPI Master o</u> 1 = Transmit oc	<u>r Slave mode:</u> curs on transition t	from active to IdI	e clock state					
	0 = Transmit oc	curs on transition	from Idle to activ	e clock state					
	In I ² C mode onl	<u>V:</u> It logic so that thro	cholds are comp	liant with SMPus	specification				
	0 = Disable SM	Bus specific inputs			specification				
bit 5	D/A: Data/Addr	ess bit (I ² C mode o	only)						
	1 = Indicates the	at the last byte rec	eived or transmi	tted was data					
	0 = Indicates th	at the last byte rec	eived or transmi	tted was address					
bit 4	P: Stop bit ⁽²⁾								
	(I ² C mode only.	I his bit is cleared at a Stop bit has b	when the MSSF	f module is disabl	ed, SSPEN is clea	red.)			
	0 = Stop bit was	and detected last	een delected las		iteset)				
bit 3	S: Start bit (2)								
	(I ² C mode only.	This bit is cleared	when the MSSF	P module is disabl	ed, SSPEN is clea	red.)			
	1 = Indicates th	at a Start bit has b	een detected las	t (this bit is '0' on	Reset)				
h it 0	0 = Start bit was	s not detected last	² C mode entry						
DIT 2	This bit holds th	e bit information (i	ion following the	last address mat	ch. This bit is only v	valid from the addr	ress match to the		
	next Start bit, St	top bit, or not ACK	bit.						
	1 = Read	de:							
	0 = Write								
	In I ² C Master m	<u>iode:</u> s in progress							
	0 = Transmit is	s not in progress							
	OR-ing th	is bit with SEN, RS	SEN, PEN, RCEI	N or ACKEN will i	ndicate if the MSS	P is in IDLE mode			
bit 1	UA: Update Ad	dress bit (10-bit I ² 0	C mode only)						
	1 = Indicates th	at the user needs to be i	to update the ad	dress in the SSP	ADD register				
hit 0	BF. Ruffer Full	Status hit	upualou						
SILU	Receive (SPI ar	nd I ² C modes):							
	1 = Receive complete, SSPxBUF is full								
	0 = Receive not	t complete, SSPxB	UF is empty						
	1 = Data transm	nit in progress (doe	es not include the	e ACK and Stop b	its), SSPxBUF is fi	الد			
	0 = Data transm	nit complete (does	not include the A	$AC\overline{K}$ and Stop bits	s), SSPxBUF is em	pty			
Note 1: F	Polarity of clock state	is set by the CKP	bit of the SSPxC	CON register.					

2: This bit is cleared on Reset and when SSPEN is cleared.

33.4.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 33.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCxREG register. If the RXxIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 33.4.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RXxIF bit will be set when reception is complete. An interrupt will be generated if the RXxIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCxREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.