

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15375-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

												-,									
VO ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	ССР	WMd	CWG	dssw	ZCD	EUSART	CLC	CLKR	Interrupt	dn-Iluq	Basic
RA0	2	17	19	19	ANA0	—	C1IN0- C2IN0-		—	—	_		_		—	—	CLCIN0 ⁽¹⁾	-	IOCA0	Y	
RA1	3	18	20	20	ANA1	—	C1IN1- C2IN1-	-	-	—	-	_	—	-	—	-	CLCIN1 ⁽¹⁾	—	IOCA1	Y	_
RA2	4	19	21	21	ANA2	-	C1IN0+ C2IN0+	-	DAC1OUT1	—	-	_	-	-	—	—	-	-	IOCA2	Y	_
RA3	5	20	22	22	ANA3	VREF+	C1IN1+		DACREF+	_	_		_	_	_	_	_	_	IOCA3	Υ	
RA4	6	21	23	23	ANA4	_	_	_	—	T0CKI(1)	—		—	_	—	_	—	—	IOCA4	Υ	
RA5	7	22	24	24	ANA5	_	_	_	_	T1G ⁽¹⁾	_	_	_	SS1 ⁽¹⁾	_	_	_	—	IOCA5	Y	_
RA6	14	29	33	31	ANA6	—	_	-	—	_	—	_	—	_	—	—	—	_	IOCA6	Y	CLKOUT OSC1
RA7	13	28	32	30	ANA7	—	—	_	-	—	—	_	—	_	—	—	—	_	IOCA7	Y	CLKIN/ OSC2
RB0	33	8	9	8	ANB0	_	C2IN1+	_	_	_	—	_	CWG1 ⁽¹⁾	SS2 ⁽¹⁾	ZCD1	—	—	_	INT ⁽¹⁾ IOCB0	Y	_
RB1	34	9	10	9	ANB1	—	C1IN3- C2IN3-		—	—	—	_	—	SCL1 SCK1 ^(1,4)	—	—	—	—	IOCB1	Y	
RB2	34	10	11	10	ANB2	—	—		—	_	—		_	SDA1 SDI1 ^(1,4)	—	—	—	—	IOCB2	Y	
RB3	36	11	12	11	ANB3	—	C1IN2- C2IN2-		—	—	—		—		—	—	—	—	IOCB3	Y	
RB4	37	12	14	14	ANB4 ADACT (1)	—	_		—		_		_				—	—	IOCB4	Y	
RB5	38	13	15	15	ANB5	—	—	_	—	—	—	-	—	_	—	—	—	—	IOCB5	Y	
RB6	39	14	16	16	ANB6	-	—	-	_	—		-	-	_	—	TX2 CK2 ⁽¹⁾	CLCIN2 ⁽¹⁾	—	IOCB6	Y	ICSPCL
RB7	40	15	17	17	ANB7	—	—	_	DAC1OUT2	—	—	_	—	_	—	RX2 DT2 ⁽¹⁾	CLCIN3(1)	_	IOCB7	Y	ICSPDA
RC0	15	30	34	32	ANC0	—	—	—	—	SOSCO T1CKI ⁽¹⁾	—	—	-	—	—	—	—	—	IOCC0	Y	—
RC1	16	31	35	35	ANC1	—	_	_	_	SOSCI	CCP2 ⁽¹⁾	_	_	_			—	_	IOCC1	Υ	_
RC2	17	32	36	36	ANC2	—	_	_	_	—	CCP1 ⁽¹⁾	_	_	_	_	_	_	_	IOCC2	Υ	_

TABLE 4: 40/44-PIN ALLOCATION TABLE (PIC16(L)F15375, PIC16(L)F15376)

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, refer to these Microchip Application Notes, available at the corporate website (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro® Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

TABLE 4-11:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)
-------------	--

							,				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 5											
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
28Ch	T2TMR	Holding Register for t	ding Register for the 8-bit TMR2 Register								
28Dh	T2PR	TMR2 Period Registe	TMR2 Period Register								
28Eh	T2CON	ON		CKPS<2:0>			OUT	PS<3:0>		0000 0000	0000 0000
28Fh	T2HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			0000 0000	0000 0000
290h	T2CLKCON	_	—	—	_		CS	6<3:0>		0000	0000
291h	T2RST	_	— — — RSEL<3:0>								0000
292h 29Fh	_				_	-					

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

IADEE -		ALTONOTION	KE013TEK		DANKS 0-						
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 60 (C	Continued)										
1E2Bh	CLC3GLS1	LC3G2D4T	LC3G4D3N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	XXXX XXXX	uuuu uuuu
1E2Ch	CLC3GLS2	LC3G3D4T	LC3G4D3N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	XXXX XXXX	uuuu uuuu
1E2Dh	CLC3GLS3	LC3G4D4T	LC3G4D3N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	XXXX XXXX	uuuu uuuu
1E2Eh	CLC4CON	LC4EN	—	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:	0>	0-00 0000	0-00 0000
1E2Fh	CLC4POL	LC4POL	—	—	—	LC4G4POL	0 xxxx	0 uuuu			
1E30h	CLC4SEL0	—	—			LC4E	D1S<5:0>			xx xxxx	uu uuuu
1E31h	CLC4SEL1	—	—			LC4E	D2S<5:0>			xx xxxx	uu uuuu
1E32h	CLC4SEL2	—	—			LC4E		xx xxxx	uu uuuu		
1E33h	CLC4SEL3	—	—			LC4E	04S<5:0>			xx xxxx	uu uuuu
1E34h	CLC4GLS0	LC4G1D4T	LC4G4D3N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	XXXX XXXX	uuuu uuuu
1E35h	CLC4GLS1	LC4G2D4T	LC4G4D3N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	XXXX XXXX	uuuu uuuu
1E36h	CLC4GLS2	LC4G3D4T	LC4G4D3N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	XXXX XXXX	uuuu uuuu
1E37h	CLC4GLS3	LC4G4D4T	LC4G4D3N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	XXXX XXXX	uuuu uuuu
1E38h	RF0PPS ⁽¹⁾	_	—	—			RF0PPS<4:0	>		0 0000	u uuuu
1E39h	RF1PPS ⁽¹⁾	_	_	_			RF1PPS<4:0	>		0 0000	u uuuu
1E3Ah	RF2PPS ⁽¹⁾	_	_	_			RF2PPS<4:0	>		0 0000	u uuuu
1E3Bh	RF3PPS ⁽¹⁾	_	_	_			RF3PPS<4:0	>		0 0000	u uuuu
1E3Ch	RF4PPS ⁽¹⁾	_	_	_			RF4PPS<4:0	>		0 0000	u uuuu
1E3Dh	RF5PPS ⁽¹⁾	_	_	_			RF5PPS<4:0	>		0 0000	u uuuu
1E3Eh	RF6PPS ⁽¹⁾	_	_	_			RF6PPS<4:0	>		0 0000	u uuuu
1E3Fh	RF7PPS ⁽¹⁾	_	_	_			RF7PPS<4:0	>		0 0000	u uuuu
1E40h											
 1E4Fh	_				Unimpler	nented				_	—
1E50h	ANSELF ⁽¹⁾	ANSF7	ANSF6	ANSF5	ANSF4	ANSF3	ANSF2	ANSF1	ANSF0	1111 1111	1111 1111
1E51h	WPUF ⁽¹⁾	WPUF7	WPUF6	WPUF5	WPUF4	WPUF3	WPUF2	WPUF1	WPUF0	0000 0000	0000 0000
1E52h	ODCONF ⁽¹⁾	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCFCF0	0000 0000	0000 0000
1E53h	SLRCONF ⁽¹⁾	SLRF7	SLRF6	SLRF5	SLRF4	SLRF3	1111 1111	1111 1111			
1E54h	INLVLF ⁽¹⁾	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF0	1111 1111	1111 1111		
1E55h 1E6Fh	_				Unimpler		_	_			

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Present only on PIC16(L)F15385/86.

REGISTER	5-4: CO	NFIGURATION	WORD 4: M	EMORY						
		R/W-1	U-1	R/W-1	U-1	R/W-1	R/W-1			
		LVP		WRTSAF ⁽¹⁾	_	WRTC ⁽¹⁾	WRTB ⁽¹⁾			
		bit 13	12	11	10	9	bit 8			
R/W-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
WRTAPP ⁽¹⁾	—	—	SAFEN ⁽¹⁾	BBEN ⁽¹⁾	BBSIZE2	BBSIZE1	BBSIZE0			
REGISTER 5-4: CONFIGURATION WORD 4: MEMORY RW-1 U-1 RW-1 U-1 RW-1 U-1 RW-1 F LVP - WRTSAF(1) - WRTC(1) W WRTC(1) W WRTAPP(1) - - SAFEN(1) BBEN(2) BBSIZE1 BE bit 7 6 5 4 3 2 1 Legend: R R Readable bit P = Programmable bit x = Bit is unknown U = Unimplemented reada s '1' 0' = Bit is cleared '1' = Bit is set W = Writable bit n = Value when bla after Bulk Erase bit 13 LVP: Low Voltage Programming Enable bit n = Value when bla after Bulk Erase bit 13 LVP: Low Voltage programming enabled. MCLR/VPP pin function is MCLR. MCLRE Configura ignored. 0 = HV on MCLR/VPP must be used for programming. The LVP bit cannot be written (to zero) while operating from the LVP programming finded. 0 = HV on MCLR/VPP must be used for programming. The LVP bit cannot be written (to zero) while optication state. The LVP bit cannot be written (to zero) while optication state. The proconditioned (erased) state for this bit is critical. bit 12 Unimplemented: Read as '1'					bit 0					
Legena:				5						
R = Readable	e bit	P = Programn	hable bit	x = Bit is unki	nown	U = Unimplem read as '1'	iented bit,			
'0' = Bit is cle	ared	'1' = Bit is set		W = Writable	bit	n = Value whe after Bulk Eras	en blank or se			
bit 13	LVP: Low	Voltage Programm	ing Enable bit		upotion in MCL		iquration bit io			
		ed	ing enabled. M	ICLR/VPP pin it		R. MCLRE COM	Iguration bit is			
	0 = HV or	n MCLR/VPP must	be used for p	rogramming.						
	The LVP b	it cannot be writte	n (to zero) whi	le operating fro	m the LVP pro	ogramming interf	ace. The			
	purpose of	this rule is to prev	ent the user fro	om dropping ou	it of LVP mode	while programm	ning from LVP			
	mode, or a	ccidentally elimina	ating LVP mod	e from the conf	iguration state					
1.1.10	The precor	nditioned (erased)	state for this t	oit is critical.						
Dit 12	Unimplem	ented: Read as								
DIT 11	WRISAF:	Storage Area Flas	sn vvrite Prote	ction bit						
	1 = SAFr	NOT write-protecte	ed							
	Unimpleme	ented, if SAF is no	t supported in	the device fam	ilv and only ar	policable if SAFE	$\overline{\mathbf{N}} = 0$			
bit 10	Unimplem	ented: Read as '1								
bit 9	WRTC: Co	onfiguration Regist	er Write Prote	ction bit						
	1 = Confi	quration Register	NOT write-pro	tected						
	0 = Confi	guration Register	write-protected	t						
bit 8	WRTB: Bo	ot Block Write Pro	tection bit							
	1 = Boot	Block NOT write-p	protected							
	0 = Boot	Block write-protec	ted							
	Only applic	cable if BBEN = 0.								
bit 7	WRTAPP:	Application Block	Write Protection	on bit						
	1 = Appli0 = Appli	cation Block NOT	write-protected	u						
bit 6-5	Unimplem	ented: Read as '1	,							
bit 4	SAFEN: SA	AF Enable bit	-							
Sit 1	1 = SAF (disabled								
	<u>0 = SAF</u> e	enabled								
bit 3	BBEN: Bo	ot Block Enable bi	t							
	1 = Boot	Block disabled								
	0 = Boot	Block enabled								
bit 2-0	BBSIZE[2:0]: Boot Block Size Selection bits BBSIZE is used only when BBEN = 0									
	BBSIZE IS	can only be writte	en while RRFN	= 1: after BBF	$\overline{N} = 0.BBSI7$	is write-protected	d.			
	22012 010	sent only bo willio					~.			

Note 1: Bits are implemented as sticky bits. Once protection is enabled, it can only be reset through a Bulk Erase.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7	EXTOEN: Ex 1 = EXTOS 0 = EXTOS	ternal Oscillato C is explicitly e C could be ena	r Manual Requ nabled, operat ibled by some	uest Enable bit ing as specifie modules	(1) d by FEXTOSC	2		
bit 6 HFOEN: HFINTOSC Oscillator Manual Request Enable bit 1 = HFINTOSC is explicitly enabled, operating as specified by OSCFRQ 0 = HFINTOSC could be enabled by another module								
bit 5	MFOEN: MFI 1 = MFINTOS 0 = MFINTOS	INTOSC Oscilla SC is explicitly SC could be en	ator Manual Re enabled abled by anoth	equest Enable	bit			
bit 4	LFOEN: LFIN 1 = LFINTO 0 = LFINTO	NTOSC (31 kHz SC is explicitly SC could be er	z) Oscillator Ma enabled nabled by anot	anual Request her module	Enable bit			
bit 3	SOSCEN: Set 1 = Second 0 = Second	econdary (Time ary oscillator is ary oscillator co	r1) Oscillator N explicitly enab ould be enable	/lanual Reques bled, operating d by another m	st bit as specified by odule	SOSCPWR		
bit 2	ADOEN: FRC 1 = FRC is 0 0 = FRC con	C Oscillator Ma explicitly enable uld be enabled	nual Request I ed by another mc	Enable bit odule				
bit 1-0	Unimplemen	ted: Read as '	0'					

REGISTER 9-5: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	_	—	—	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Read	lable bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is	unchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7-2	Unimpleme	nted: Read as '	0'				
bit 1	TMR2IE: TM	IR2 to PR2 Mate	ch Interrupt Er	nable bit			
	1 = Enable	s the Timer2 to	PR2 match int	terrupt			
	0 = Disable	es the Timer2 to	PR2 match in	terrupt			
bit 0	TMR1IE: Tin	ner1 Overflow Ir	nterrupt Enable	e bit			
	1 = Enable	s the Timer1 ov	erflow interrup	ot			
	0 = Enable	s the Timer1 ov	erflow interrup	ot			
Note:	Bit PEIE of the IN	NTCON register	must be				
	set to enable a	any peripheral	interrupt				
	controlled by regi	STERS PIE1-PIE/	· .				

REGISTER 10-6: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

14.0 I/O PORTS

TABLE 14-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC	PORTD	PORTE	PORTF
PIC16(L)F15356	٠	٠	٠		٠	
PIC16(L)F15375/76	•	٠	•	٠	•	
PIC16(L)F15385/86	٠	٠	•	٠	•	٠

Each port has ten standard registers for its operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate)
- ODCONx registers (open-drain)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 14-1.

FIGURE 14-1: GENERIC I/O PORT OPERATION

14.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See **Section 15.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over the digital outputs and force the digital output driver to the high-impedance state.

15.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections.

All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 15-1.

FIGURE 15-1: SIMPLIFIED PPS BLOCK DIAGRAM

15.1 PPS Inputs

Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 15-1.

Note: The notation "xxx" in the register name is a place holder for the peripheral identifier. For example, CLC1PPS.

15.2 PPS Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals are (See Section 15.3 "Bidirectional Pins"):

- EUSART (synchronous operation)
- MSSP (I²C)

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 15-2.

Note: The notation "Rxy" is a place holder for the pin port and bit identifiers. For example, x and y for PORTA bit 0 would be A and 0, respectively, resulting in the pin PPS output selection register RA0PPS.

REGISTER	22-2: NCO	1CLK: NCO1	INPUT CLO	CK CONTRO	L REGISTER		
R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	N1PWS<2:0>(1,2)			N1CK	S<3:0>	
bit 7				·			bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 4	111 = NCC 110 = NCC 101 = NCC 100 = NCC 011 = NCC 010 = NCC 010 = NCC 010 = NCC 001 = NCC 000 = NCC 000 = NCC Unimplement NCC	21 output is active of output is active	re for 128 input re for 64 input re for 32 input re for 36 input re for 8 input c re for 4 input c re for 2 input c re for 1 input c	t clock periods clock periods clock periods clock periods lock periods lock periods lock periods lock periods			
bit 3-0	N1CKS<3:0 1011-1111 1010 = LC 1001 = LC 1000 = LC 0111 = LC 0110 = CL 0110 = CL 0101 = SO 0100 = MF 0011 = MF 0010 = LFI 0001 = HF 0000 = Fos	>: NCO1 Clock = Reserved 4_out 3_out 2_out 1_out KR SC INTOSC (32 kH INTOSC (500 kl INTOSC INTOSC INTOSC SC	z) Jource Select	bits			

Note 1: N1PWS applies only when operating in Pulse Frequency mode.

23.12 Register Definitions: Comparator Control

REGISTER 23-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
ON	OUT	—	POL	—	—	HYS	SYNC		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and B	OR/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	ON: Comparat 1 = Comparat 0 = Comparat	ator Enable bit or is enabled or is disabled a	and consumes	s no active pow	ver				
bit 6 OUT: Comparator Output bit $ \frac{If CxPOL = 1 (inverted polarity):}{1 = CxVP < CxVN} $ $ 0 = CxVP > CxVN $ $ \frac{If CxPOL = 0 (noninverted polarity):}{1 = CxVP > CxVN} $ $ 0 = CxVP < CxVN $ $ 0 = CxVP < CxVN $									
bit 5	Unimplemen	ted: Read as '	0'						
bit 4	POL: Compare 1 = Comparet 0 = Comparet	rator Output Po or output is inv or output is no	plarity Select b rerted t inverted	it					
bit 3-2	Unimplemen	ted: Read as '	0'						
bit 1	bit 1 HYS: Comparator Hysteresis Enable bit 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled								
 0 = Comparator hysteresis disabled bit 0 SYNC: Comparator Output Synchronous Mode bit 1 = Comparator output to Timer1 and I/O pin is synchronous to changes on Timer1 clock source. Output updated on the falling edge of Timer1 clock source. 0 = Comparator output to Timer1 and I/O pin is asynchronous 									

© 2016 Microchip Technology Inc.

FIGURE 27-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

REGISTER 28-2: CCPxCAP: CAPTURE INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x	R/W-0/x
—	—	—	—	—		CTS<2:0>	
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 CTS<2:0>: Capture Trigger Input Selection bits

CTS	CCP1.capture	CCP2.capture					
111	LC4_	LC4_out					
110	LC3	LC3_out					
101	LC2_	LC2_out					
100	LC1_	LC1_out					
011	IOC_in	IOC_interrupt					
010	C20	C2OUT					
001	C10	C1OUT					
000	CCP1PPS CCP2PPS						

REGISTER 28-3: CCPRxL REGISTER: CCPx REGISTER LOW BYTE

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CCPR | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0
CCPxMODE = Capture mode
CCPRxL<7:0>: Capture value of TMR1L
CCPxMODE = Compare mode
CCPRxL<7:0>: LS Byte compared to TMR1L
CCPxMODE = PWM modes when CCPxFMT = 0:
CCPRxL<7:0>: Pulse-width Least Significant eight bits
CCPxMODE = PWM modes when CCPxFMT = 1:
CCPRxL<7:6>: Pulse-width Least Significant two bits
CCPRxL<5:0>: Not used.

© 2016 Microchip Technology Inc.

FIGURE 30-12: CWG SHUTDOWN BLOCK DIAGRAM

PIC16(L)F15356/75/76/85/86

REGISTER 31-11: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT
bit 7							bit 0
Legend:							
R = Readable bit W = W		W = Writable	bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged x = Bit is unknown		iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared		ared					
bit 7-4 Unimplemented: Read as '0'			o'				
bit 3 MLC4OUT: Mirror copy of LC4OUT bit							
bit 2 MLC3OUT: Mirror copy of LC3OUT bit							
bit 1 MLC2OUT: Mirror copy of LC2OUT bit							

bit 0 MLC10UT: Mirror copy of LC10UT bit

33.1.2.3 Receive Interrupts

The RXxIF interrupt flag bit of the PIR3 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RXxIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RXxIF interrupts are enabled by setting all of the following bits:

- RXxIE, Interrupt Enable bit of the PIE3 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RXxIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

33.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCxSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCxREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCxSTA register which resets the EUSART. Clearing the CREN bit of the RCxSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note: If all receive characters in the receive FIFO have framing errors, repeated reads of the RCxREG will not clear the FERR bit.

33.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCxSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCxSTA register or by resetting the EUSART by clearing the SPEN bit of the RCxSTA register.

33.1.2.6 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.

33.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCxSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RXxIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

FIGURE 33-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

us – kister a anatrassik istrikasika kelasika kelasika zautra sister kelada siste aktore.

33.3.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXxSTA register. The Break character transmission is then initiated by a write to the TXxREG. The value of data written to TXxREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXxSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 33-9 for the timing of the Break character sequence.

33.3.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXxREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXxREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXxREG becomes empty, as indicated by the TXxIF, the next data byte can be written to TXxREG.

33.4.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note:	If the device is configured as a slave and
	the TX/CK function is on an analog pin, the
	corresponding ANSEL bit must be cleared.

33.4.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCxREG is read to access the FIFO. When this happens the OERR bit of the RCxSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCxREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

33.4.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.

33.4.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SPxBRGH, SPxBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- Interrupt flag bit RXxIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RXxIE was set.
- 9. Read the RCxSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCxREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

FIGURE 33-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

36.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 36-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine entry takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

36.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 36-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Prepost increment-decrement mode selection

TABLE 36-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-Out bit
С	Carry bit
DC	Digit Carry bit
Z	Zero bit
PD	Power-Down bit

40.1 Package Marking Information (Continued)

