

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

201010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15375t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB4/ANB4/ADACT ⁽¹⁾ /IOCB4	RB4	TTL/ST	CMOS/OD	General purpose I/O.
	ANB4	AN	_	ADC Channel B4 input.
	ADACT ⁽¹⁾	TTL/ST	_	ADC Auto-Conversion Trigger input.
	IOCB4	TTL/ST	_	Interrupt-on-change input.
RB5/ANB5/IOCB5	RB5	TTL/ST	CMOS/OD	General purpose I/O.
	ANB5	AN	—	ADC Channel B5 input.
	IOCB5	TTL/ST	—	Interrupt-on-change input.
RB6/ANB6/CLCIN2 ⁽¹⁾ /TX2/CK2 ⁽¹⁾ / IOCB6/ICSPCLK	RB6	TTL/ST	CMOS/OD	General purpose I/O.
ICCB0/ICSF CER	ANB6	AN	—	ADC Channel B6 input.
	CLCIN2 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	TX2	TTL/ST	—	EUSART2 Asynchronous mode receiver data input.
	CK2 ⁽¹⁾	TTL/ST	CMOS/OD	EUSART2 Synchronous mode clock input/output.
	IOCB6	TTL/ST	—	Interrupt-on-change input.
	ICSPCLK	ST	—	In-Circuit Serial Programming™ and debugging clock input.
RB7/ANB7/DAC1OUT2/CLCIN3 ⁽¹⁾ / RX2/DT2 ⁽¹⁾ /IOCB7/ICSPDAT	RB7	TTL/ST	CMOS/OD	General purpose I/O.
KAZID IZ: MOCDINCSFDAI	ANB7	AN	—	ADC Channel B7 input.
	DAC10UT2	—	AN	Digital-to-Analog Converter output.
	CLCIN3 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	RX2	TTL/ST	—	EUSART2 Asynchronous mode receiver data input.
	DT2	TTL/ST	CMOS/OD	EUSART2 Synchronous mode data input/output.
	IOCB7	TTL/ST	—	Interrupt-on-change input.
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming™ and debugging data input/out- put.
RC0/ANC0/T1CKI ⁽¹⁾ /IOCC0/SOSCO	RC0	TTL/ST	CMOS/OD	General purpose I/O.
	ANC0	AN	—	ADC Channel C0 input.
	T1CKI ⁽¹⁾	TTL/ST	—	Timer1 external digital clock input.
	IOCC0	TTL/ST	—	Interrupt-on-change input.
	SOSCO	—	AN	32.768 kHz secondary oscillator crystal driver output.
RC1/ANC1/CCP2 ⁽¹⁾ /IOCC1/SOSCI	RC1	TTL/ST	CMOS/OD	General purpose I/O.
	ANC1	AN	_	ADC Channel C1 input.
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM2 (default input location for capture function).
	IOCC1	TTL/ST	_	Interrupt-on-change input.
	SOSCI	AN	_	32.768 kHz secondary oscillator crystal driver input.

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

Note

XTAL = Crystal levels 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

OD

l²C

= Open-Drain

= Schmitt Trigger input with I²C

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-6.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

HV = High Voltage

3.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 10.5 "Automatic Context Saving"** for more information.

3.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 4.5 "Stack**" for more details.

3.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. See **Section 4.6** "**Indirect Addressing**" for more details.

3.4 Instruction Set

There are 48 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 36.0 "Instruction Set Summary**" for more details.

IADLE 4	ABLE 4-11. SPECIAL FUNCTION REGISTER SUMMART BANKS 0-03 (CONTINUED)												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR		
Bank 1													
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics						
08Ch 09Ah	- Unimplemented										-		
09Bh	ADRESL	ADC Result Register L	_OW							xxxx xxxx	uuuu uuuu		
09Ch	ADRESH	ADC Result Register H	High							xxxx xxxx	uuuu uuuu		
09Dh	ADCON0			CHS<5:	0>			GO/DONE	ADON	0000 0000	0000 0000		
09Eh	ADCON1	ADFM		ADCS<2:0>		—	_	ADPF	REF<1:0>	000000	000000		
09Fh	ADACT	—	_	—	_		ADA	CT<3:0>		0000	0000		

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR				
Bank 14			1												
				CPU COP	RE REGISTERS;	see Table 4-3 for	r specifics								
70Ch	PIR0	_	—	TMR0IF	IOCIF	—	_	—	INTF	000	000				
70Dh	PIR1	OSFIF	CSWIF	—	-	_	-	—	ADIF	0000	0000				
70Eh	PIR2	_	ZCDIF	_	-	_	_	C2IF	C1IF	-000	-000				
70Fh	PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	0000 0000	0000 0000				
710h	PIR4	_	_	_	_	_	_	TMR2IF	TMR1IF	00	00				
711h	PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF	00000	00000				
712h	PIR6	_	_	_	_	_	_	CCP2IF	CCP1IF	00	00				
713h	PIR7	_	_	NVMIF	NCO1IF	_	_	_	CWG1IF	000	000				
714h	_			•	Unimple	mented				_	_				
715h	_				Unimple	mented				_	_				
716h	PIE0	—	—	TMR0IE	IOCIE	—	—	—	INTE	000	000				
717h	PIE1	OSFIE	CSWIE	_	_	_	_	_	ADIE	0000	0000				
718h	PIE2	_	ZCDIE	—	-	_	-	C2IE	C1IE	-000	-000				
719h	PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	0000 0000	0000 000				
71Ah	PIE4	_	_	_	_	_	—	TMR2IE	TMR1IE	00	0				
71Bh	PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	_	_		TMR1GIE	00000	0000				
71Ch	PIE6	_	_	—	_	_	_	CCP2IE	CCP1IE	00	0				
71Dh	PIE7		—	NVMIE	NCO1IE	_	—	—	CWG1IE	000	00				
71Eh	—				Unimple	mented				—	_				
71Fh	_														

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 60												
				CPU COF	RE REGISTERS;	see Table 4-3 fo	specifics					
1E0Ch	_				Unimpler	mented				—	_	
1E0Dh	_				Unimpler	nented				_	_	
1E0Eh	_				Unimpler	nented				—	_	
1E0Fh	CLCDATA	—	—	—	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	xxxx	uuuu	
1E10h	CLCCON	LC1EN	—	LC1OUT	LC1INTP	LC1INTN		LC1MODE<2:0)>	0-00 0000	0-00 0000	
1E11h	CLC1POL	LC1POL	—	—	—	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu	
1E12h	CLC1SEL0		_				xx xxxx	uu uuuu				
1E13h	CLC1SEL1		_			xx xxxx	uu uuu					
1E14h	CLC1SEL2		_		LC1D3S<5:0>							
1E15h	CLC1SEL3		_		xx xxxx	uu uuu						
1E16h	CLC1GLS0	LC1G1D4T	LC1G4D3N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuu	
1E17h	CLC1GLS1	LC1G2D4T	LC1G4D3N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuu	
1E18h	CLC1GLS2	LC1G3D4T	LC1G4D3N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuu	
1E19h	CLC1GLS3	LC1G4D4T	LC1G4D3N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuu	
1E1Ah	CLC2CON	LC2EN	_	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0)>	0-00 0000	0-00 000	
1E1Bh	CLC2POL	LC2POL	_	—	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuu	
1E1Ch	CLC2SEL0		_			LC2	01S<5:0>			xx xxxx	uu uuu	
1E1Dh	CLC2SEL1	_	_			LC2)2S<5:0>			xx xxxx	uu uuu	
1E1Eh	CLC2SEL2	_	_			LC2	03S<5:0>			xx xxxx	uu uuu	
1E1Fh	CLC2SEL3	_	_			LC2	04S<5:0>			xx xxxx	uu uuu	
1E20h	CLC2GLS0	LC2G1D4T	LC2G4D3N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xxxx xxxx	uuuu uuu	
1E21h	CLC2GLS1	LC2G2D4T	LC2G4D3N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	นนนน นนนา	
1E22h	CLC2GLS2	LC2G3D4T	LC2G4D3N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	uuuu uuu	
1E23h	CLC2GLS3	LC2G4D4T	LC2G4D3N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	xxxx xxxx	uuuu uuu	
1E24h	CLC3CON	LC3EN	—	LC3OUT	LC3INTP	LC3INTN		LC3MODE		0-00 0000	0-00 000	
1E25h	CLC3POL	LC3POL	_	—	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuu	
1E26h	CLC3SEL0	_				LC3	01S<5:0>			xx xxxx	uu uuu	
1E27h	CLC3SEL1	_				LC3)2S<5:0>			xx xxxx	uu uuu	
1E28h	CLC3SEL2	_				LC3	03S<5:0>			xx xxxx	uu uuu	
1E29h	CLC3SEL3	_	_			LC3	04S<5:0>			xx xxxx	uu uuu	
1E2Ah	CLC3GLS0	LC3G1D4T	LC3G4D3N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	xxxx xxxx	uuuu uuu	

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62											
				CPU COF	RE REGISTERS;	see Table 4-3 fo	or specifics				
1F0Ch	_				Unimple	mented				_	_
1F0Dh	_				Unimple	mented				_	_
1F0Eh	—				Unimple	mented				—	
1F0Fh	—				Unimple	mented				—	_
1F10h	RA0PPS	—	—	—			RA0PPS<4:0	>		00 0000	uu uuuu
1F11h	RA1PPS	—	—	—				00 0000	uu uuuu		
1F12h	RA2PPS	_	_	_				00 0000	uu uuui		
1F13h	RA3PPS	—	—	—			RA3PPS<4:0	>		00 0000	uu uuuu
1F14h	RA4PPS	—	—	—			RA4PPS<4:0	>		00 0000	uu uuu
1F15h	RA5PPS	—	—	—			00 0000	uu uuu			
1F16h	RA6PPS	—	—	—			00 0000	uu uuu			
1F17h	RA7PPS	_	—	—			00 0000	uu uuu			
1F18h	RB0PPS	_	—	—			00 0000	uu uuu			
1F19h	RB1PPS	_	—	—			00 0000	uu uuu			
1F1Ah	RB2PPS	—	—	—			RB2PPS<4:0	>		00 0000	uu uuu
1F1Bh	RB3PPS	—	—	—			RB3PPS<4:0	>		00 0000	uu uuuu
1F1Ch	RB4PPS	—	—	—			RB4PPS<4:0	>		00 0000	uu uuu
1F1Dh	RB5PPS	—	—	—			RB5PPS<4:0	>		00 0000	uu uuuu
1F1Eh	RB6PPS	—	—	—			RB6PPS<4:0	>		00 0000	uu uuuu
1F1Fh	RB7PPS	—	—	—			RB7PPS<4:0	>		00 0000	uu uuuu
1F20h	RC0PPS	—	—	—			RC0PPS<4:0	>		00 0000	uu uuu
1F21h	RC1PPS	—	—	—			RC1PPS<4:0	>		00 0000	uu uuuu
1F22h	RC2PPS	_	—	—			RC2PPS<4:0	>		00 0000	uu uuu
1F23h	RC3PPS	_	—	—			RC3PPS<4:0	>		00 0000	uu uuu
1F24h	RC4PPS	_	—	—			RC4PPS<4:0	>		00 0000	uu uuuu
1F25h	RC5PPS	_	—	—			00 0000	uu uuuu			
1F26h	RC6PPS	_	—	—			RC6PPS<4:0	>		00 0000	uu uuuu
1F27h	RC7PPS	—	—	—			RC7PPS<4:0	>		00 0000	uu uuu
1F28h	RD0PPS ⁽¹⁾	—	—	—			RD0PPS<4:0	>		00 0000	uu uuu
1F29h	RD1PPS ⁽¹⁾	_	_				RD1PPS<4:0	>		00 0000	uu uuu

SPECIAL EUNCTION DECISTED SUMMARY PANKS 0.62 (CONTINUED) A 44.

Legend:x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.Note1:Present only on PIC16(L)F15375/76/85/86.

8.13 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 8-3 and Table 8-4 show the Reset conditions of these registers.

STOVF	STKUNF	RWDT	RMCLR	I.R.	POR	BOR	10	DA	MEMV	Condition
0	0	1	1	1	0	x	1	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	u	Illegal, TO is set on POR
0	0	1	1	1	0	x	x	0	u	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	u	Brown-out Reset
u	u	0	u	u	u	u	0	u	u	WWDT Reset
u	u	u	u	u	u	u	0	0	u	WWDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	u	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	1	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	u	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)
u	u	u	u	u	u	u	u	u	0	Memory violation Reset

TABLE 8-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 8-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON0 Register	PCON1 Register
Power-on Reset	0000h	1 1000	0011 110x	1-
MCLR Reset during normal operation	0000h	u uuuu	uuuu Ouuu	1-
MCLR Reset during Sleep	0000h	1 Ouuu	uuuu Ouuu	u-
WWDT Timeout Reset	0000h	0 uuuu	uuu0 uuuu	u-
WWDT Wake-up from Sleep	PC + 1	0 Ouuu	uuuu uuuu	u-
WWDT Window Violation	0000h	u uuuu	uu0u uuuu	u-
Brown-out Reset	0000h	1 1000	0011 11u0	u-
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uuuu uuuu	u-
RESET Instruction Executed	0000h	u uuuu	uuuu u0uu	u-
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	luuu uuuu	u-
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	uluu uuuu	u-
Memory Violation Reset (MEMV = 0)	0	-uuu uuuu	uuuu uuuu	0-

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

8.15 Register Definitions: Power Control

REGISTER 8-2: PCON0: POWER CONTROL REGISTER 0

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:									
HC = Bit is clo	eared by hardv	vare	HS = Bit is set by hardware						
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read as '0'						
u = Bit is uncl	hanged	x = Bit is unknown	-m/n = Value at POR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition						
bit 7	1 = A Stack	tack Overflow Flag bit Overflow occurred Overflow has not occurre	ed or cleared by firmware						
bit 6	1 = A Stack	tack Underflow Flag bit Underflow occurred Underflow has not occurr	red or cleared by firmware						
bit 5	1 = A WDT 0 = A WDT	Window Violation Reset h	g bit as not occurred or set to '1' by firmware as occurred (a CLRWDT instruction was executed either without window (cleared by hardware)						
bit 4	1 = A Watch		it occurred or set to '1' by firmware urred (cleared by hardware)						
bit 3	1 = A MCLR	CLR Reset Flag bit Reset has not occurred of Reset has occurred (clea							
bit 2	1 = A RESET		executed or set to '1' by firmware ecuted (cleared by hardware)						
bit 1	1 = No Pow	r-on Reset Status bit er-on Reset occurred r-on Reset occurred (must	t be set in software after a Power-on Reset occurs)						
bit 0	1 = No Brow	•	t be set in software after a Power-on Reset or Brown-out Reset						

PIC16(L)F15356/75/76/85/86

REGISTER 9-7: OSCTUNE: HFINTOSC TUNING REGISTER

U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
—	—		HFTUN<5:0>								
bit 7							bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 U	nimplemented: Read as '0'.
01	FTUN<5:0>: HFINTOSC Frequency Tuning bits 1 1111 = Maximum frequency 1 1110 =
	 0 0001 = 0 0000 = Center frequency. Oscillator module is running at the calibrated frequency (default value). 1 1111 = 0 0001 = 0 0000 = Minimum frequency.

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0	
_	_	NVMIF	NCO1IF	—	_	—	CWG1IF	
bit 7							bit 0	
Legend:								
R = Readable I	oit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardware set				
bit 7-6	Unimplemen	ted: Read as '	0'					
bit 5	5 NVMIF: Nonvolatile Memory (NVM) Interrupt Flag bit							
	1 = The requested NVM operation has completed0 = NVM interrupt not asserted							
bit 4	NCO1IF: Numerically Controlled Oscillator (NCO) Interrupt Flag bit 1 = The NCO has rolled over 0 = No NCO interrupt event has occurred							

REGISTER 10-17: PIR7: PERIPHERAL INTERRUPT REQUEST REGISTER 7

bit 3-1	Unimplemented: Read as '0'
bit 0	CWG1IF: CWG1 Interrupt Flag bit

- 1 = CWG1 has gone into shutdown
 - 0 = CWG1 is operating normally, or interrupt cleared

Note:	Interrupt flag bits are set when an interrupt				
	condition occurs, regardless of the state of				
	its corresponding enable bit or the Global				
	Enable bit, GIE, of the INTCON register.				
	User software should ensure the				
	appropriate interrupt flag bits are clear				
	prior to enabling an interrupt.				

Legend:							
bit 7							bit 0
SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0
R/W-1/1							

REGISTER 14-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRA<7:0>:** PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 14-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLA<7:0>: PORTA Input Level Select bits

For RA<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

© 2016 Microchip Technology Inc.

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRB7 | SLRB6 | SLRB5 | SLRB4 | SLRB3 | SLRB2 | SLRB1 | SLRB0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRB<7:0>:** PORTB Slew Rate Enable bits For RB<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

0 = Port pin slews at maximum rate

REGISTER 14-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | INLVLB3 | INLVLB2 | INLVLB1 | INLVLB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLB<7:0>: PORTB Input Level Select bits For RB<7:0> pins, respectively

 $\ensuremath{\mathtt{1}}$ = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	206
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	206
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	207
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	207
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	208
ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	208
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	209
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	209

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

© 2016 Microchip Technology Inc.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	_		ADAC1	-<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 20-3: ADACT: A/D AUTO-CONVERSION TRIGGER

bit 7-4 Unimplemented: Read as '0'

bit 3-0 ADACT<3:0>: Auto-Conversion Trigger Selection bits⁽¹⁾ (see Table 20-2)

Note 1: This is a rising edge sensitive input for all sources.

REGISTER 23-3: CMxNSEL: COMPARATOR Cx NEGATIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	_	_	—		NCH<2:0>	
bit 7							bit 0

Legend:

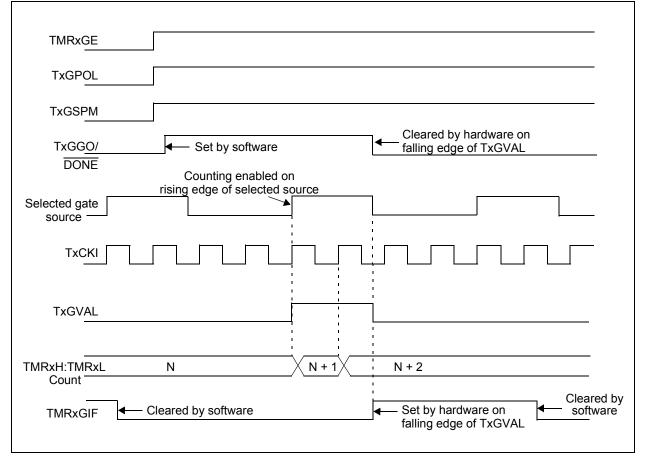
Logonan		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	Unimplemented: Read as '0'
bit 2-0	NCH<2:0>: Comparator Negative Input Channel Select bits
	111 = CxVN connects to AVss
	110 = CxVN connects to FVR Buffer 2
	101 = CxVN unconnected
	100 = CxVN unconnected

- 100 = CxVN unconnected
- 011 = CxVN connects to CxIN3- pin
- 010 = CxVN connects to CxIN2- pin
- 001 = CxVN connects to CxIN1- pin
- 000 = CxVN connects to CxIN0- pin

REGISTER 23-4: CMxPSEL: COMPARATOR Cx POSITIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	—	—	—		PCH<2:0>	
bit 7				•			bit 0


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-3 Unimplemented: Read as '0'
- bit 2-0 PCH<2:0>: Comparator Positive Input Channel Select bits
 - 111 = CxVP connects to AVss
 - 110 = CxVP connects to FVR Buffer 2
 - 101 = CxVP connects to DAC output
 - 100 = CxVP unconnected
 - 011 = CxVP unconnected
 - 010 = CxVP unconnected
 - 001 = CxVP connects to CxIN1+ pin
 - 000 = CxVP connects to CxIN0+ pin

PIC16(L)F15356/75/76/85/86

FIGURE 26-4:	TIMER1 GATE TOGGLE MODE
TMRxGE	
TxGPOL	
TxGT <u>M</u>	
Selected gate input	
TxCKI	
TxGVAL	
TMRxH:TMRxL Count	$N \qquad \qquad$

FIGURE 26-5: TIMER1 GATE SINGLE-PULSE MODE

28.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

The Capture/Compare/PWM modules available are shown in Table 28-1.

TABLE 28-1: AVAILABLE CCP MODULE

Device	CCP1	CCP2
PIC16(L)F15356/75/76/85/86	•	•

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

32.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 32-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

32.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

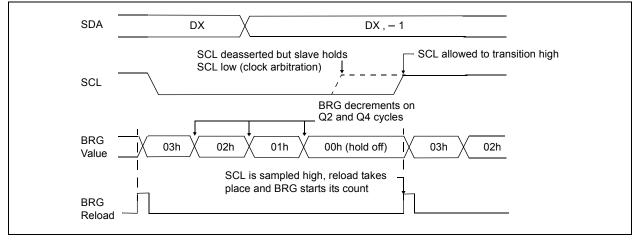
The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition generated
- · Stop condition generated
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

32.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.


In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 32.7** "**Baud Rate Generator**" for more detail.

32.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 32-25).

FIGURE 32-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

32.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,							
	writing to the lower five bits of SSPxCON2							
	is disabled until the Start condition is							
	complete.							

TABLE 37-9: P	LL SPECIFICATIONS
---------------	-------------------

Standard Operating Conditions (unless otherwise stated) VDD $\ge 2.5V$							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
PLL01	FPLLIN	PLL Input Frequency Range	4	_	8	MHz	
PLL02	FPLLOUT	PLL Output Frequency Range	16	—	32	MHz	Note 1
PLL03	TPLLST	PLL Lock Time from Start-up	—	200 /	$\langle - \rangle$	μs_	-
PLL04	FPLLJIT	PLL Output Frequency Stability (Jitter)	-0.25	\	0.25	-%	
*	These p	arameters are characterized but not tested.	•	•		•	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The output frequency of the PLL must meet the Fosc requirements listed in Parameter D002.