

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K × 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15376-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB3/ANB3/C1IN2-/C2IN2-/IOCB3	RB3	TTL/ST	CMOS/OD	General purpose I/O.
	ANB3	AN	_	ADC Channel B3 input.
	C1IN2-	AN	_	Comparator 1 negative input.
	C2IN2-	AN	_	Comparator 2 negative input.
	IOCB3	TTL/ST	_	Interrupt-on-change input.
RB4/ANB4/ADACT ⁽¹⁾ /IOCB4	RB4	TTL/ST	CMOS/OD	General purpose I/O.
	ANB4	AN	_	ADC Channel B4 input.
	ADACT ⁽¹⁾	TTL/ST	_	ADC Auto-Conversion Trigger input.
	IOCB4	TTL/ST	_	Interrupt-on-change input.
RB5/ANB5/T1G ⁽¹⁾ /IOCB5	RB5	TTL/ST	CMOS/OD	General purpose I/O.
	ANB5	AN	_	ADC Channel B5 input.
	T1G ⁽¹⁾	ST	_	Timer1 Gate input.
	IOCB5	TTL/ST	_	Interrupt-on-change input.
RB6/ANB6/CLCIN2 ⁽¹⁾ /IOCB6/TX2/	RB6	TTL/ST	CMOS/OD	General purpose I/O.
CKZ MOOF OLK	ANB6	AN	_	ADC Channel B6 input.
	CLCIN2 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCB6	TTL/ST	_	Interrupt-on-change input.
	TX2	—	CMOS	EUSART2 asynchronous.
	CK2 ⁽³⁾	TTL/ST	CMOS/OD	EUSART2 synchronous mode clock input/output.
	ICSPCLK	ST	—	In-Circuit Serial Programming [™] and debugging clock input.
RB7/ANB7/RX2/DT2/CLCIN3 ⁽¹⁾ /	RB7	TTL/ST	CMOS/OD	General purpose I/O.
IOGB/IDACTOOTZ/ICSPDAT	ANB7	AN	—	ADC Channel B7 input.
	CLCIN3 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	IOCB7	TTL/ST	—	Interrupt-on-change input.
	RX2 ⁽¹⁾	TTL/ST	—	EUSART2 Asynchronous mode receiver data input.
	DT2 ⁽³⁾	TTL/ST	CMOS/OD	EUSART2 Synchronous mode data input/output.
	DAC1OUT2	—	AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming™ and debugging data input/ output.
RC0/ANC0/T1CKI ⁽¹⁾ /IOCC0/SOSCO	RC0	TTL/ST	CMOS/OD	General purpose I/O.
	ANC0	AN	_	ADC Channel C0 input.
	T1CKI ⁽¹⁾	TTL/ST	_	Timer1 external digital clock input.
	IOCC0	TTL/ST	_	Interrupt-on-change input.
	SOSCO	_	AN	32.768 kHz secondary oscillator crystal driver output.
Legend: AN = Analog input or out	out CMOS =	= CMOS co	mpatible input or o	output OD = Open-Drain

TABLE 1-2: PIC16(L)F15356 PINOUT DESCRIPTION (CONTINUED)

1:

Note

Schmitt Trigger input of output
 Schmitt Trigger input with CMOS levels
 Crystal levels

 $\begin{aligned} HV &= \text{Airadeg input of output} & \text{Since on the comparison of the comparison o$

2: options as described in Table 15-3. This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and

3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Name	Function	Input Type	Output Type	Description
RB4/ANB4/ADACT ⁽¹⁾ /IOCB4	RB4	TTL/ST	CMOS/OD	General purpose I/O.
	ANB4	AN	_	ADC Channel B4 input.
	ADACT ⁽¹⁾	TTL/ST	_	ADC Auto-Conversion Trigger input.
	IOCB4	TTL/ST	_	Interrupt-on-change input.
RB5/ANB5/IOCB5	RB5	TTL/ST	CMOS/OD	General purpose I/O.
	ANB5	AN	_	ADC Channel B5 input.
	IOCB5	TTL/ST	_	Interrupt-on-change input.
RB6/ANB6/CLCIN2 ⁽¹⁾ /TX2/CK2 ⁽¹⁾ /	RB6	TTL/ST	CMOS/OD	General purpose I/O.
IUCB0/ICSPCLK	ANB6	AN	_	ADC Channel B6 input.
	CLCIN2 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	TX2	TTL/ST	_	EUSART2 Asynchronous mode receiver data input.
	CK2 ⁽¹⁾	TTL/ST	CMOS/OD	EUSART2 Synchronous mode clock input/output.
	IOCB6	TTL/ST	—	Interrupt-on-change input.
	ICSPCLK	ST	—	In-Circuit Serial Programming™ and debugging clock input.
RB7/ANB7/DAC1OUT2/CLCIN3 ⁽¹⁾ /	RB7	TTL/ST	CMOS/OD	General purpose I/O.
KAZIDTZ //IOCB//ICSPDAT	ANB7	AN	—	ADC Channel B7 input.
	DAC10UT2	—	AN	Digital-to-Analog Converter output.
	CLCIN3 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	RX2	TTL/ST	—	EUSART2 Asynchronous mode receiver data input.
	DT2	TTL/ST	CMOS/OD	EUSART2 Synchronous mode data input/output.
	IOCB7	TTL/ST	—	Interrupt-on-change input.
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming [™] and debugging data input/out- put.
RC0/ANC0/T1CKI ⁽¹⁾ /IOCC0/SOSCO	RC0	TTL/ST	CMOS/OD	General purpose I/O.
	ANC0	AN	—	ADC Channel C0 input.
	T1CKI ⁽¹⁾	TTL/ST	—	Timer1 external digital clock input.
	IOCC0	TTL/ST	—	Interrupt-on-change input.
	SOSCO	—	AN	32.768 kHz secondary oscillator crystal driver output.
RC1/ANC1/CCP2 ⁽¹⁾ /IOCC1/SOSCI	RC1	TTL/ST	CMOS/OD	General purpose I/O.
	ANC1	AN	—	ADC Channel C1 input.
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM2 (default input location for capture function).
	IOCC1	TTL/ST		Interrupt-on-change input.
	SOSCI	AN		32.768 kHz secondary oscillator crystal driver input.

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

Note

XTAL = Crystal levels 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

OD

l²C

= Open-Drain

= Schmitt Trigger input with I²C

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-6.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

HV = High Voltage

2.0 GUIDELINES FOR GETTING STARTED WITH PIC16(L)F15356/75/76/85/86 MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC16(L)F15356/75/76/85/86 family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

 All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
 MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP[™] Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins (VDD and VSS) is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-25V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

PIC16(L)F15356/75/76/85/86

IADLL -	-11. OI LO		NEO101 EIX		DANKO V-	03 (00141114						
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 4												
	CPU CORE REGISTERS; see Table 4-3 for specifics											
20Ch	TMR1L	Holding Register for t	ding Register for the Least Significant Byte of the 16-bit TMR1 Register 0000 0000 uuuuu									
20Dh	TMR1H	Holding Register for th	e Most Significant	Byte of the 16-bit	TMR1 Register					0000 0000	uuuu uuuu	
20Eh	T1CON	—	_	CKPS	6<1:0>	_	SYNC	RD16	ON	00 -000	uu -u0u	
20Fh	T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	-	0000 0x	uuuu ux	
210h	T1GATE	-	_	—			GSS<4:0>			0 0000	u uuuu	
211h	T1CLK	—	_	_	—		C	S<3:0>		0000	uuuu	
212h 21Fh	212h Unimplemented										_	

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

IADLE 4												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 16												
	CPU CORE REGISTERS; see Table 4-3 for specifics											
80Ch	WDTCON0	—	—			WDTPS<4:0>			SWDTEN	dd dddo	dd dddo	
80Dh	WDTCON1	—	- WDTCS<2:0> - WINDOW<2:0>							-ddd -ddd	-वेवेवे -वेवेवे	
80Eh	WDTPSL		PSCNT<7:0>								0000 0000	
80Fh	WDTPSH		PSCNT<15:8>									
810h	WDTTMR	-	WDTTMR<3:0> STATE PSCNT17 PSCNT16								xxxx x000	
811h	BORCON	SBOREN	_	— — — — — BORRDY					1 q	uu		
812h	VREGCON	—	_	—	—	—	—	VREGPM ⁽¹⁾	—	0-	0-	
813h	PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011 110q	qqqq qquu	
814h	PCON1	—	—	-	—	—	—	MEMV	—	1-	u-	
815h	—				Unimpler	mented				—	—	
816h	—				Unimpler	mented				—	—	
817h	—				Unimpler	mented				—	—	
818h	—				Unimpler	mented				—	—	
819h	_				Unimpler	mented				—	—	
81Ah	NVMADRL				NVMAD	R<7:0>				xxxx xxxx	uuuu uuuu	
81Bh	NVMADRH	—				NVMADR<14:8	>			-xxx xxxx	-uuu uuuu	
81Ch	NVMDATL		NVMDAT<7:0>							0000 0000	0000 0000	
81Dh	NVMDATH	_	_			NVMD	AT<13:8>			00 0000	00 0000	
81Eh	NVMCON1	_	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 q000	
81Fh	NVMCON2				NVMCON	12<7:0>				XXXX XXXX	uuuu uuuu	

x = unknown, u = unchanged, g = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Note 1: Present only on PIC16F15356/75/76/85/86.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62		I	1			1		1	1		
				CPU COF	RE REGISTERS;	see Table 4-3 fo	or specifics				
1F0Ch — Unimplemented										_	_
1F0Dh	_				Unimpler	mented				_	_
1F0Eh					Unimpler	mented				_	
1F0Fh	_				Unimpler	mented				_	_
1F10h	RA0PPS									00 0000	uu uuuu
1F11h	RA1PPS	_	_	_			RA1PPS<4:0	>		00 0000	uu uuuu
1F12h	RA2PPS	_	—	_			RA2PPS<4:0	>		00 0000	uu uuuu
1F13h	RA3PPS	—	—	_			RA3PPS<4:0	>		00 0000	uu uuuu
1F14h	RA4PPS	—	—	—			RA4PPS<4:0	>		00 0000	uu uuuu
1F15h	RA5PPS	—	_	_				00 0000	uu uuuu		
1F16h	RA6PPS	—	—	—			RA6PPS<4:0	>		00 0000	uu uuuu
1F17h	RA7PPS	_		_				00 0000	uu uuuu		
1F18h	RB0PPS	_	_	_		RB0PPS<4:0>					uu uuuu
1F19h	RB1PPS	_	_	_		RB1PPS<4:0>					uu uuuu
1F1Ah	RB2PPS	_					RB2PPS<4:0	>		00 0000	uu uuuu
1F1Bh	RB3PPS	—	—	_			RB3PPS<4:0	>		00 0000	uu uuuu
1F1Ch	RB4PPS	—	—	_			RB4PPS<4:0	>		00 0000	uu uuuu
1F1Dh	RB5PPS	_					RB5PPS<4:0	>		00 0000	uu uuuu
1F1Eh	RB6PPS	—	—	_			RB6PPS<4:0	>		00 0000	uu uuuu
1F1Fh	RB7PPS	—	—	—			RB7PPS<4:0	>		00 0000	uu uuuu
1F20h	RC0PPS	—	—	—			RC0PPS<4:0	>		00 0000	uu uuuu
1F21h	RC1PPS	—	—	—			RC1PPS<4:0	>		00 0000	uu uuuu
1F22h	RC2PPS	_	—				RC2PPS<4:0	>		00 0000	uu uuuu
1F23h	RC3PPS	_	—	_			RC3PPS<4:0	>		00 0000	uu uuuu
1F24h	RC4PPS	—		_			RC4PPS<4:0	>		00 0000	uu uuuu
1F25h	RC5PPS	—	_	_			RC5PPS<4:0	>		00 0000	uu uuuu
1F26h	RC6PPS	—	—	_			RC6PPS<4:0	>		00 0000	uu uuuu
1F27h	RC7PPS	—	—	_			RC7PPS<4:0	>		00 0000	uu uuuu
1F28h	RD0PPS ⁽¹⁾	—	_	_			RD0PPS<4:0	>		00 0000	uu uuuu
1F29h	RD1PPS ⁽¹⁾	_	_	_			RD1PPS<4:0	>		00 0000	uu uuuu

SPECIAL EUNCTION DECISTED SUMMARY PANKS 0.62 (CONTINUED) A 44.

Legend:x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.Note1:Present only on PIC16(L)F15375/76/85/86.

Changing the clock post-divider without changing the clock source (e.g., changing Fosc from 1 MHz to 2 MHz) is handled in the same manner as a clock source change, as described previously. The clock source will already be active, so the switch is relatively quick. CSWHOLD must be clear (CSWHOLD = 0) for the switch to complete.

The current COSC and CDIV are indicated in the OSCCON2 register up to the moment when the switch actually occurs, at which time OSCCON2 is updated and ORDY is set. NOSCR is cleared by hardware to indicate that the switch is complete.

9.3.2 PLL INPUT SWITCH

Switching between the PLL and any non-PLL source is managed as described above. The input to the PLL is established when NOSC selects the PLL, and maintained by the COSC setting.

When NOSC and COSC select the PLL with different input sources, the system continues to run using the COSC setting, and the new source is enabled per NOSC. When the new oscillator is ready (and CSWHOLD = 0), system operation is suspended while the PLL input is switched and the PLL acquires lock.

Note: If the PLL fails to lock, the FSCM will trigger.

9.3.3 CLOCK SWITCH AND SLEEP

If OSCCON1 is written with a new value and the device is put to Sleep before the switch completes, the switch will not take place and the device will enter Sleep mode.

When the device wakes from Sleep and the CSWHOLD bit is clear, the device will wake with the 'new' clock active, and the clock switch interrupt flag bit (CSWIF) will be set.

When the device wakes from Sleep and the CSWHOLD bit is set, the device will wake with the 'old' clock active and the new clock will be requested again.

PIC16(L)F15356/75/76/85/86

U-0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
_	ZCDIE	_	_	_	_	C2IE	C1IE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncl	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6	ZCDIE: Zero-	Cross Detectio	n (ZCD) Interr	rupt Enable bit			
	1 = Enables	the ZCD interru	ıpt				
	0 = Disables	the ZCD interr	upt				
bit 5-2	Unimplemen	ted: Read as '	0'				
bit 1	C2IE: Compa	rator C2 Interru	upt Enable bit				
	1 = Enables	the Comparato	r C2 interrupt				
h:+ 0		the Comparato	or C2 interrupt				
DITU	Cile: Compa	the Commerce	Ipt Enable bit				
	$\perp = \text{Enables}$	the Comparato	r C1 interrupt				
		the comparate					
Note: Bit	t PEIE of the IN	TCON register	must be				
se	t to enable ar	ny peripheral	interrupt				
CO	ntrolled by regis	ters PIE1-PIE7					

REGISTER 10-4: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON1	—		NOSC<2:0>			NDIV<	3:0>		135
OSCCON2	—		COSC<2:0>	OSC<2:0> CDIV<3:0>					135
OSCCON3	CSWHOLD	SOSCPWR	- ORDY NOSCR						136
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	124
STATUS	—	—	_	TO	PD	Z	DC	С	54
WDTCON0	—	—			WDTPS<4:0)>		SWDTEN	175
WDTCON1	—	V	VDTCS<2:0>		—	WI	NDOW<2:0>	>	176
WDTPSL				PSCNT<7:0>					
WDTPSH				PSCNT<15:8>					
WDTTMR			WDTTM	R<4:0>		STATE	PSCNT	<17:16>	177

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	-	FCMEN		CSWEN	-		CLKOUTEN	100
CONFIGT	7:0	_	F	RSTOSC<2:0	>	—	F	EXTOSC<2:0	>	102

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRA7 | SLRA6 | SLRA5 | SLRA4 | SLRA3 | SLRA2 | SLRA1 | SLRA0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

REGISTER 14-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRA<7:0>:** PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 14-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLA<7:0>: PORTA Input Level Select bits

For RA<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

© 2016 Microchip Technology Inc.

17.5 Register Definitions: Interrupt-on-Change Control

REGISTER 17-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1 ⁽¹⁾	IOCAP0 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: read as '0'

bit 5-0

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 17-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1 ⁽¹⁾	IOCAN0 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: read as '0'

IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

22.8 NCO Control Registers

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0		
N1EN	—	N1OUT	N1POL	—	—	—	N1PFM		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7 bit 6 bit 5	bit 7 N1EN: NCO1 Enable bit 1 = NCO1 module is enabled 0 = NCO1 module is disabled bit 6 Unimplemented: Read as '0' bit 5 N1OUT: NCO1 Output bit								
bit 4 N1POL: NCO1 Polarity bit 1 = NCO1 output signal is inverted 0 = NCO1 output signal is not inverted									
bit 3-1	Unimplemen	ted: Read as '	0'						
bit 0	N1PFM: NCO1 Pulse Frequency Mode bit 1 = NCO1 operates in Pulse Frequency mode 0 = NCO1 operates in Fixed Duty Cycle mode, divide by 2								

REGISTER 22-1: NCO1CON: NCO CONTROL REGISTER

© 2016 Microchip Technology Inc.

PIC16(L)F15356/75/76/85/86

REGISTER 2	25-2: T0CO	N1: TIMER0 (CONTROL R	EGISTER 1			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	T0CS<2:0>		TOASYNC		T0CKP	S<3:0>	
bit 7			•				bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
DIT 7-5	10CS<2:0>: 111 = LC1_o 110 = SOSC 101 = MFINT 100 = LFINT 011 = HFINT 010 = Fosc/4 001 = T0CKI 000 = T0CKI	Timero Clock S out OSC (500 kHz OSC OSC 4 PPS (Inverted) PPS (True))	līts			
bit 4	T0ASYNC: T 1 = The input 0 = The input	MR0 Input Asy It to the TMR0 of t to the TMR0 of	nchronization counter is not s ounter is sync	Enable bit synchronized hronized to Fe	to system clocks	3	
bit 3-0	TOCKPS<3:0 1111 = 1:327 1110 = 1:163 1101 = 1:819 1100 = 1:409 1011 = 1:202 1010 = 1:102 1001 = 1:512 1000 = 1:256 0111 = 1:126 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2	 >: Prescaler R 768 384 302 306 48 24 25 33 	ate Select bit				

PIC16(L)F15356/75/76/85/86

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	—	IN	_	POLD	POLC	POLB	POLA
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	IN: CWG Inpu	ut Value bit					
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	POLD: CWG	1D Output Pola	arity bit				
	1 = Signal ou	utput is inverted	l polarity				
	0 = Signal ou	itput is normal	polarity				
bit 2	POLC: CWG	1C Output Pola	arity bit				
	1 = Signal ou	Itput is inverted	l polarity				
	0 = Signal ot	itput is normal	polarity				
bit 1	POLB: CWG	1B Output Pola	rity bit				
	1 = Signal ou	utput is inverted	l polarity				
	0 = Signal ou	utput is normal	polarity				
bit 0	POLA: CWG	1A Output Pola	rity bit				
	1 = Signal ou	utput is inverted	l polarity				

REGISTER 30-2: CWG1CON1: CWG1 CONTROL REGISTER 1

0 = Signal output is normal polarity

© 2016 Microchip Technology Inc.

U-1	U-1	U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	—	AS4E	AS3E	AS2E	AS1E	AS0E
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4	AS4E: CLC2	Output bit					
	1 = LC2_out	shut-down is e	nabled				
	$0 = LC2_out$	shut-down is d	isabled				
bit 3	AS3E: Compa	arator C2 Outp	ut bit				
	1 = C2 outpu	t shut down is	enabled				
hit 0		rator C1 Outp					
		t abut down ia					
	1 = C1 output = 0 = C1 output = 0 = C1 output = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	t shut-down is	disabled				
bit 2	AS1E: TMR2	Postscale Out	put bit				
	1 = TMR2 Pc	stscale shut-d	own is enable	d			
	0 = TMR2 Pc	stscale shut-d	own is disable	d			
bit 0	AS0E: CWG1	Input Pin bit					
	1 = Input pin	selected by CV	WG1PPS shut	-down is enab	led		
	0 = Input pin	selected by CV	NG1PPS shut	-down is disab	led		

REGISTER 30-6: CWG1AS1: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 1

33.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

Note: Two identical EUSART modules are implemented on this device, EUSART1 and EUSART2. All references to EUSART1 apply to EUSART2 as well. The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- · 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 33-1 and Figure 33-2.

The EUSART transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

Configurable Logic Cell (CLC)

FIGURE 33-1: EUSART TRANSMIT BLOCK DIAGRAM

33.6 Register Definitions: EUSART Control

REGISTER 33-1: TXxSTA: TRANSMIT STATUS AND CONTROL REGISTER

DAAL /0						D 4/4	
R/W-/0	R/W-0/0		R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	1.X9	IXEN''	SYNC	SENDB	BRGH	IRMI	TX9D
bit /							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is ur	nchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7	CSRC: Clock <u>Asynchronou</u> Unused in thi <u>Synchronous</u> 1 = Master n 0 = Slave m	CSource Select <u>Is mode</u> : <u>is mode – value</u> <u>is mode</u> : mode (clock ge node (clock fron	t bit e ignored nerated interr n external sou	nally from BRG rce))		
bit 6	TX9: 9-bit Tra 1 = Selects 0 = Selects	ansmit Enable I 9-bit transmiss 8-bit transmiss	oit ion ion				
bit 5	TXEN: Trans 1 = Transmit 0 = Transmit	mit Enable bit ⁽¹ t enabled t disabled	1)				
bit 4	SYNC: EUSA 1 = Synchro 0 = Asynchro	ART Mode Sele nous mode onous mode	ect bit				
bit 3	SENDB: Sen Asynchronou 1 = Send SY bit; clear 0 = SYNCH Synchronous Unused in thi	Id Break Chara <u>Is mode</u> : 'NCH BREAK of red by hardware BREAK transm <u>is mode</u> : is mode – value	cter bit on next transr e upon comple iission disable e ignored	nission – Start etion ed or completed	bit, followed by	12 '0' bits, fol	llowed by Stop
bit 2	BRGH: High Asynchronou 1 = High spe 0 = Low spe Synchronous Unused in thi	Baud Rate Sel <u>is mode:</u> ed ed <u>; mode:</u> is mode – value	ect bit e ignored				
bit 1	TRMT: Trans 1 = TSR em 0 = TSR full	mit Shift Regist pty	ter Status bit				
bit 0	TX9D: Ninth Can be addre	bit of Transmit ess/data bit or a	Data a parity bit.				
Note 1: S	SREN/CREN over	rrides TXEN in	Sync mode.				

38.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Unless otherwise noted, all graphs apply to both the L and LF devices.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum", "Max.", "Minimum" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

Charts and graphs are not available at this time.