

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15376-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Digital Peripherals (Cont.)

- I/O Pins:
 - Individually programmable pull-ups
 - Slew rate control
 - Interrupt-on-change with edge-select
 - Input level selection control (ST or TTL)
- Digital open-drain enable
- Peripheral Pin Select (PPS):
 - Enables pin mapping of digital I/O

Analog Peripherals

- Analog-to-Digital Converter (ADC):
 - 10-bit with up to 43 external channels
 - Operates in Sleep
- Two Comparators:
 - FVR, DAC and external input pin available on inverting and noninverting input
 - Software selectable hysteresis
 - Outputs available internally to other modules, or externally through PPS
- 5-Bit Digital-to-Analog Converter (DAC):
 - 5-bit resolution, rail-to-rail
 - Positive Reference Selection
 - Unbuffered I/O pin output
 - Internal connections to ADCs and comparators
- Voltage Reference:
 - Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels
- Zero-Cross Detect module:
 - AC high voltage zero-crossing detection for simplifying TRIAC control
 - Synchronized switching control and timing

Flexible Oscillator Structure

- High-Precision Internal Oscillator:
- Software selectable frequency range up to 32 MHz, ±1% typical
- x2/x4 PLL with Internal and External Sources
- Low-Power Internal 32 kHz Oscillator (LFINTOSC)
- External 32 kHz Crystal Oscillator (SOSC)
- External Oscillator Block with:
 - Three crystal/resonator modes up to 20 MHz
 - Three external clock modes up to 32 MHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if primary clock stops
- Oscillator Start-up Timer (OST):
 - Ensures stability of crystal oscillator resources

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 4-3)	C80h	Core Registers (Table 4-3)	D00h	Core Registers (Table 4-3)	D80h	Core Registers (Table 4-3)	E00h	Core Registers (Table 4-3)	E80h	Core Registers (Table 4-3)	F00h	Core Registers (Table 4-3)	F80h	Core Registers (Table 4-3)
C0Bh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
COCh	Unimplemented Read as '0'	C8Ch	Unimplemented Read as '0'	D0Ch	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
C20h		CA0h													
	General Purpose Register 80 Bytes ⁽¹⁾		General Purpose Register 80 Bytes ⁽¹⁾												
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h CFFh	Accesses 70h – 7Fh	CF0h CFFh	Accesses 70h – 7Fh	D70h D7Fh	Accesses 70h – 7Fh	DF0h DFFh	Accesses 70h – 7Fh	E70h E7Fh	Accesses 70h – 7Fh	EF0h	Accesses 70h – 7Fh	F70h F7Fh	Accesses 70h – 7Fh	FF0h FFFh	Accesses 70h – 7Fh

TABLE 4-7: PIC16(L)F15356/75/76/85/86 MEMORY MAP, BANK 24-31

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Present only in PIC16(L)F15356/76/86.

	FII. SFLCI		REGISTER	SUMMART	BANKS U-					1	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62 (C	continued)										
1F4Eh	ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111
1F4Fh	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000
1F50h	ODCONC	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000
1F51h	SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
1F52h	INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
1F53h	IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000
1F54h	IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000
1F55h	IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000
1F56h 1F58h	_		Unimplemented							_	_
1F59h	ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
1F5Ah	WPUD ⁽¹⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	0000 0000	0000 0000
1F5Bh	ODCOND ⁽¹⁾	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000 0000	0000 0000
1F5Ch	SLRCOND ⁽¹⁾	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	1111 1111	1111 1111
1F5Dh	INLVLD ⁽¹⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	1111 1111	1111 1111
1F5Eh 	_				Unimpler	nented				_	_
1F64h	ANSELE ⁽¹⁾	_	_				ANSE2	ANSE1	ANSE0	111	uuu
1F65h	WPUE	_	_	_		WPUE3	WPUE2 ⁽¹⁾	WPUE1 ⁽¹⁾	WPUE0 ⁽¹⁾	0000	uuuu
1F66h	ODCONE ⁽¹⁾	_	_	_		_	ODCE2	ODCE1	ODCE0	000	000
1F67h	SLRCONE ⁽¹⁾	_	_	_		_	SLRE2	SLRE1	SLRE0	111	111
1F68h	INLVLE	_	_	_		INLVLE3	INLVLE2 ⁽¹⁾	INLVLE1 ⁽¹⁾	INLVLE0 ⁽¹⁾	1111	uuuu
1F69h	IOCEP	_	_	_	_	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾	0000	0000
1F6Ah	IOCEN	_	_	_	_	IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾	0000	0000
1F6Bh	IOCEF	_	_	_	_	IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾	0000	0000
1F6Ch 	_				Unimpler	nented				_	

SPECIAL EUNCTION DECISTED SUMMARY PANKS 0.62 (CONTINUED) TABLE A 44.

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Present only on PIC16(L)F15375/76/85/86.

8.1 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

8.2 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- · BOR is off when in Sleep
- BOR is controlled by software
- BOR is always off

Refer to Table 8-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 8-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	Х	Х	Active	Wait for release of BOR ⁽¹⁾ (BORRDY = 1)
1.0	v	Awake	Active	Waits for release of BOR (BORRDY = 1)
TO	X	Sleep	Disabled	Waits for BOR Reset release
0.1	1	х	Active	Waits for BOR Reset release (BORRDY = 1)
UI	0	х	Disabled	Paging immediately (POPPDV =)
00	х	х	Disabled	Begins inimediately (BORRDT = x)

TABLE 8-1: BOR OPERATING MODES

Note 1: In this specific case, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

8.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

8.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

TABLE 9-1. NU3C/CU3C BIT SETTINGS	TABLE 9-1:	NOSC/COSC BIT SETTINGS
-----------------------------------	------------	------------------------

NOSC<2:0>/ COSC<2:0>	Clock Source				
111	EXTOSC ⁽¹⁾				
110	HFINTOSC ⁽²⁾				
101	LFINTOSC				
100	SOSC				
011	Reserved (operates like NOSC = 110)				
010	EXTOSC with 4x PLL ⁽¹⁾				
001	HFINTOSC with 2x PLL ⁽¹⁾				
000	Reserved (it operates like NOSC = 110)				

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 5-1).

TABLE 9-2: NDIV/CDIV BIT SETTINGS

NDIV<3:0>/ CDIV<3:0>	Clock divider				
1111-1010	Reserved				
1001	512				
1000	256				
0111	128				
0110	64				
0101	32				
0100	16				
0011	8				
0010	4				
0001	2				
0000	1				

REGISTER 9-3: OSCCON3: OSCILLATOR CONTROL REGISTER 3

R/W/HC-0/0	R/W-0/0	U-0	R-0/0	R-0/0	U-0	U-0	U-0		
CSWHOLD	SOSCPWR	—	ORDY	NOSCR	—	—	—		
bit 7	bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	CSWHOLD: Clock Switch Hold bit
	 1 = Clock switch will hold (with interrupt) when the oscillator selected by NOSC is ready 0 = Clock switch may proceed when the oscillator selected by NOSC is ready; if this bit
	is clear at the time that NOSCR becomes '1', the switch will occur
bit 6	SOSCPWR: Secondary Oscillator Power Mode Select bit
	1 = Secondary oscillator operating in High-power mode
	0 = Secondary oscillator operating in Low-power mode
bit 5	Unimplemented: Read as '0'.
bit 4	ORDY: Oscillator Ready bit (read-only)
	1 = OSCCON1 = OSCCON2; the current system clock is the clock specified by NOSC
	0 = A clock switch is in progress
bit 3	NOSCR: New Oscillator is Ready bit (read-only)
	 1 = A clock switch is in progress and the oscillator selected by NOSC indicates a "ready" condition 0 = A clock switch is not in progress, or the NOSC-selected oscillator is not yet ready
bit 2-0	Unimplemented: Read as '0'

^{2:} HFINTOSC settings are configured with the HFFRQ bits of the OSCFRQ register (Register 9-6).

23.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 37-14 for more details.

23.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 23-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

26.11 Register Definitions: Timer1 Control

REGISTER 26-1: T1CON: TIMER1 CONTROL REGISTER

U-0	U-0	R/W-0/u	R/W-0/u	U-0	R/W-0/u	R/W-0/u	R/W-0/u
_	—	CKPS<1:0>		_	SYNC	RD16	ON
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-4	CKPS<1:0>:	Timer1 Input C	lock Prescale	Select bits			
	11 = 1:8 Pres	cale value					
	10 = 1:4 Pres	cale value					
	01 = 1:2 Pres	cale value					
hit 3		ted: Read as '	n'				
bit 2	SVNC: Timer	1 Synchronizat	o ion Control hit				
	When TMP1(Eccc/4				
	This bit is igno	ored. The time	uses the inter	nal clock and	no additional sv	nchronization	is performed.
	<u>ELSE</u>						
	0 = Synchror	nize external cl	ock input with	system clock			
	1 = Do not sy	nchronize exte	ernal clock inpu	ut			
bit 1	RD16: 16-bit	Read/Write Mc	de Enable bit				
	0 = Enables	register read/w	rite of Timer1 i	n two 8-bit ope	eration		
hit O		negister read/w			peration		
DILU							
	\perp = Enables 0 = Stops Tin	ner1 and clears	s Timer1 aste f	in-flon			
			s miller i gale i	inh linh			

FIGURE 27-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 28-2:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

TABLE 28-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

28.3.8 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

28.3.9 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

28.3.10 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

R/W/HS-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0		
SHUTDOWN ^(1, 2)	SHUTDOWN ^(1, 2) REN LSBD<1:0>		LSAC<1:0> —		_				
bit 7							bit 0		
Legend:									
HC = Bit is cleare	d by hardware			HS = Bit is se	et by hardware	•			
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'			
u = Bit is unchang	led	x = Bit is unk	nown	-n/n = Value a	at POR and BO	OR/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is cle	eared	q = Value dep	pends on conc	lition			
				(4 - 2)					
bit 7	SHUTDOWN	I: Auto-Shutdo	wn Event Sta	tus bit ^(1, 2)					
	1 = An Auto	-Shutdown sta	te is in effect	a d					
	0 = No Auto	-snutdown eve	ent nas occurr	ea					
bit 6	REN: Auto-F	Restart Enable	bit						
	1 = Auto-res 0 = Auto-res	start enabled							
bit 5-4	LSBD<1:0>:	CWG1B and	CWG1D Auto	-Shutdown Sta	te Control bits				
	11 =A logic '	1' is placed on	CWG1B/D w	hen an auto-sh	utdown event	is present			
	10 =A logic '	0 =A logic '0' is placed on CWG1B/D when an auto-shutdown event is present							
	01 =Pin is tri	-stated on CW	G1B/D when	an auto-shutdo	wn event is pr	esent			
	band in	iterval	e pin, includin	g polarity, is pla	ced on CWG I	B/D alter the re	equired dead-		
bit 3-2	LSAC<1:0>:	CWG1A and	CWG1C Auto	-Shutdown Sta	te Control bits				
	11 =A logic '	1' is placed on	CWG1A/C w	hen an auto-sh	utdown event	is present			
	10 =A logic '	0' is placed on	CWG1A/C w	hen an auto-sh	utdown event	is present			
	01 =Pin is tri	-stated on CW	G1A/C when	an auto-shutdo	wn event is pr	resent			
	band in	iterval	e pin, incluain	g polarity, is pla	ced on CwG1	A/C after the re	equirea aeaa-		
bit 1-0	Unimpleme	nted: Read as	'0'						
Note 1: This b	oit may be wri	tten while EN	= 0 (CWG10	CON0 register)	to place the	outputs into t	he shutdown		
config	uration.								

REGISTER 30-5: CWG1AS0: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 0

2: The outputs will remain in auto-shutdown state until the next rising edge of the input signal after this bit is cleared.

32.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

32.5.6.1 Normal Clock Stretching

Following an ACK if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

32.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPxADD.

32.5.6.3 Byte NACKing

When AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When DHEN bit of SSPxCON3 is set; CKP is cleared after the eighth falling edge of SCL for received data.

Stretching after the eighth falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

32.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 32-23).

FIGURE 32-23: CLOCK SYNCHRONIZATION TIMING

32.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 32-25).

FIGURE 32-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

32.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Because queuing of events is not allowed,								
writing to the lower five bits of SSPxCON2								
is disabled until the Start condition is complete								

REGISTER 32-7: SSPxBUF: MSSPx BUFFER REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SSPxBl	JF<7:0>			
bit 7							bit 0
l egend:							

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SSPxBUF<7:0>: MSSP Buffer bits

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH MSSPx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE		—		—	—	INTEDG	146
PIR1	OSFIF	CSWIF		—		—	_	ADIF	156
PIE1	OSFIE	CSWIE		—		—	_	ADIE	148
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	465
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		466
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	467
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	465
SSP1MSK				SSPMS	K<7:0>				469
SSP1ADD	SSPADD<7:0>								469
SSP1BUF	SSPBUF<7:0>								470
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	465
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		466
SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	467
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	465
SSP2MSK				SSPMS	K<7:0>				469
SSP2ADD				SSPAD	D<7:0>				469
SSP2BUF				SSPBU	F<7:0>				470
SSP1CLKPPS	-	—			SSP1CLK	PPS<5:0>			241
SSP1DATPPS	SSP1DATPPS<5:0>							241	
SSP1SSPPS	SSP1SSPPS<5:0>							241	
SSP2CLKPPS	SSP2CLKPPS<5:0>							241	
SSP2DATPPS	SSP2DATPPS<5:0>								241
SSP2SSPPS	_	—			SSP2SSP	PS<5:0>			241
RxyPPS	—		- RxyPPS<4:0>						

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSPx module

Note 1: When using designated I²C pins, the associated pin values in INLVLx will be ignored.

37.4 AC Characteristics

FIGURE 37-13: **CAPTURE/COMPARE/PWM TIMINGS (CCP)**

TABLE 37-19: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Sym.	Characteri	stic	Min.	Турт	Max	Units	Conditions	
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	$ \neq $	<u> </u>	ns		
			With Prescaler	20/	1	\checkmark	ns		
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	1	/	ns		
			With Prescaler	29	X	_	ns		
CC03*	TccP	CCPx Input Period		<u>3767 + 40</u> N		> -	ns	N = prescale value	

These parameters are characterized but not tested. Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	N		44		
Lead Pitch	е		0.80 BSC		
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95 1.00 1.05			
Overall Width	E	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	D1		10.00 BSC		
Lead Width	b	0.30 0.37 0.4			
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	θ	0°	3.5°	7°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2