

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15376-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4: PIC16(L)F15385/86 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RF5/ANF5	RF5	TTL/ST	CMOS/OD	General purpose I/O.
	ANF5	AN	_	ADC Channel D0 input.
RF6/ANF6	RF6	TTL/ST	CMOS/OD	General purpose I/O.
	ANF6	AN	—	ADC Channel D0 input.
RF7/ANF7	RF5	TTL/ST	CMOS/OD	General purpose I/O.
	ANF5	AN	_	ADC Channel D0 input.
VDD	Vdd	Power	_	Positive supply voltage input.
Vss	Vss	Power	_	Ground reference.
Legend: AN = Analog input or outp TTL = TTL compatible input			mpatible input or	

TTL = TTL compatible input

HV = High Voltage

XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-7.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for l^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the l^2C specific or SMBus input buffer thresholds. 4:

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 4-3)	C80h	Core Registers (Table 4-3)	D00h	Core Registers (Table 4-3)	D80h	Core Registers (Table 4-3)	E00h	Core Registers (Table 4-3)	E80h	Core Registers (Table 4-3)	F00h	Core Registers (Table 4-3)	F80h	Core Registers (Table 4-3)
C0Bh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
COCh	Unimplemented Read as '0'	C8Ch	Unimplemented Read as '0'	DOCh	Unimplemented Read as '0'		Unimplemented Read as '0'								
C1Fh		C9Fh													
C20h		CA0h													
	General Purpose Register 80 Bytes ⁽¹⁾		General Purpose Register 80 Bytes ⁽¹⁾												
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h	Accesses 70h – 7Fh	CF0h	Accesses 70h – 7Fh	D70h	Accesses 70h – 7Fh	DF0h	Accesses 70h – 7Fh	E70h	Accesses 70h – 7Fh	EF0h	Accesses 70h – 7Fh	F70h	Accesses 70h – 7Fh	FF0h	Accesses 70h – 7Fh

TABLE 4-7: PIC16(L)F15356/75/76/85/86 MEMORY MAP, BANK 24-31

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Present only in PIC16(L)F15356/76/86.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 15											
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
78Ch 	_		Unimplemented							—	_
796h	PMD0	SYSCMD	FVRMD	_	_	_	NVMMD	CLKRMD	IOCMD	00000	00000
797h	PMD1	NCO1MD	_	_	_	_	TMR2MD	TMR1MD	TMR0MD	0000	0000
798h	PMD2	_	DAC1MD	ADCMD	_	_	CMP2MD	CMP1MD	ZCDMD	-00000	-00000
799h	PMD3	_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	CCP2MD	CCP1MD	00 0000	00 0000
79Ah	PMD4	UART2MD	UART1MD	MSSP2MD	MSSP1MD			_	CWG1MD	00000	00000
79Bh	PMD5	_	_	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	_	0 000-	0 000-
79Ch	_		Unimplemented							—	_
79Dh	_	Unimplemented						—	_		
79Eh	_		Unimplemented							—	_
79Fh	_		Unimplemented							_	_

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62 (Continued)											
1F38h	ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1111 1111	1111 1111
1F39h	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	0000 0000	0000 0000
1F3Ah	ODCONA	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000 0000	0000 0000
1F3Bh	SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	1111 1111	1111 1111
1F3Ch	INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	1111 1111	1111 1111
1F3Dh	IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	0000 0000	0000 0000
1F3Eh	IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	0000 0000	0000 0000
1F3Fh	IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	0000 0000	0000 0000
1F40h	_				Unimple	mented				_	—
1F41h	_				Unimple	mented				_	_
1F42h	_				Unimple	mented				_	_
1F43h	ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111
1F44h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	0000 0000	0000 0000
1F45h	ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000 0000	0000 0000
1F46h	SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	1111 1111	1111 1111
1F47h	INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	1111 1111	1111 1111
1F48h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
1F49h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
1F4Ah	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
1F4Bh	_		Unimplemented							_	—
1F4Ch	_		Unimplemented							_	—
1F4Dh	_				Unimple	mented				_	_

DECISTED SUMMADY DANKS 0 62 (CONTINUED)

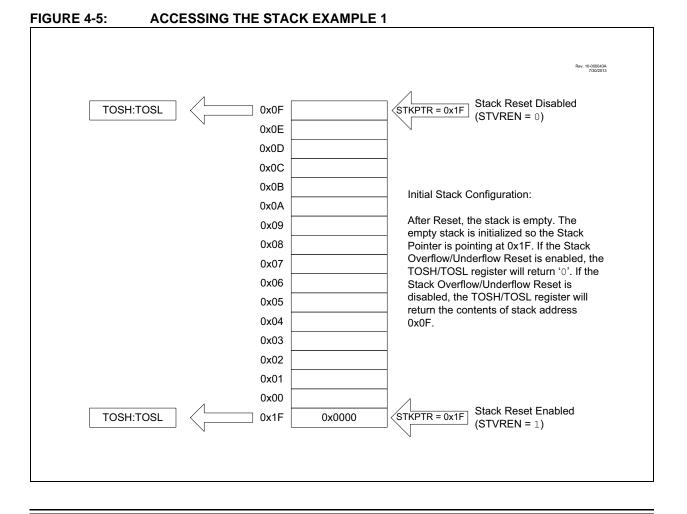
x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

4.5 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 4-5 through Figure 4-8). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.


4.5.1 ACCESSING THE STACK

The stack is accessible through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. STKPTR can be monitored to obtain to value of stack memory left at any given time. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC value from the stack and then decrement the STKPTR.

Reference Figure 4-5 through Figure 4-8 for examples of accessing the stack.

condition or the VDD level.

BOR IS ALWAYS OFF

When the BOREN bits of the Configuration Words are

programmed to '00', the BOR is off at all times. The

device start-up is not delayed by the BOR ready

8.2.4

8.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

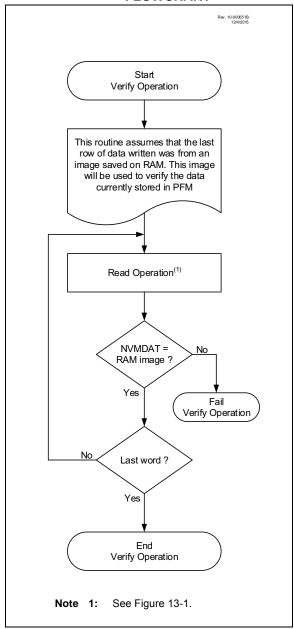
BOR protection is unchanged by Sleep.

FIGURE 8-2: BROWN-OUT SITUATIONS

VDD VBOR Internal T_{PWRT}(1) Reset VDD VBOR Internal < TPWR TPWRT(1) Reset VDD VBOR Internal T_{PWRT}(1) Reset Note 1: TPWRT delay only if PWRTE bit is programmed to '0'.

© 2016 Microchip Technology Inc.

FIGURE 10)-2: II	NTERRUPT LA	TENCY					
							Rev. 10-000269E 8/31/2016	
osc1 /	$OSC1 \wedge \wedge$							
CLKOUT \	CLKOUT							
INT pin _								
Fetch(PC - 1	PC	PC + 1		PC = 0x0004	PC = 0x0005	PC = 0x0006	
Execute(PC - 21	PC - 1	РС	NOP	NOP	PC = 0x0004	PC = 0x0005	
		Indeterminate Laten cy ⁽²⁾		Latency				
		may occur at any t errupt may occur a				ency can vary.		


	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4		
OSC1							
	(4)			1 1 1			
INT pin		, (1)	1 1	i 1	<u> </u>		
INTF	, (1) (5)	1	Interrupt Latency (2)				
GIE							
	— — — — — — - N FLOW						
PC	(PC	PC + 1	PC + 1	X 0004h	X 0005h		
Instruction Fetched	Inst (PC)	Inst (PC + 1)	—	Inst (0004h)	Inst (0005h)		
Instruction Executed ^{<}	Inst (PC – 1)	Inst (PC)	Forced NOP	Forced NOP	Inst (0004h)		
Note 1:	NTF flag is sampled here	e (every Q1).					
	2: Asynchronous interrupt latency = 3-5 Tcy. Synchronous latency = 3-4 Tcy, where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.						
3: F	3: For minimum width of INT pulse, refer to AC specifications in Section 37.0 "Electrical Specifications".						

4: INTF may be set any time during the Q4-Q1 cycles.

13.3.7 WRITE VERIFY

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full row then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 13-7: FLASH PROGRAM MEMORY VERIFY FLOWCHART

13.3.8 WRERR BIT

The WRERR bit can be used to determine if a write error occurred.

WRERR will be set if one of the following conditions occurs:

- If WR is set while the NVMADRH:NMVADRL points to a write-protected address
- A Reset occurs while a self-write operation was in progress
- An unlock sequence was interrupted

The WRERR bit is normally set by hardware, but can be set by the user for test purposes. Once set, WRERR must be cleared in software.

Free	LWLO	Actions for PFM when WR = 1	Comments
1	x	Erase the 32-word row of NVMADRH:NVMADRL location. See Section 13.3.3 "NVMREG Erase of PFM"	 If WP is enabled, WR is cleared and WRERR is set All 32 words are erased NVMDATH:NVMDATL is ignored
0	1	Copy NVMDATH:NVMDATL to the write latch corresponding to NVMADR LSBs. See Section 13.3.3 "NVMREG Erase of PFM"	Write protection is ignoredNo memory access occurs
0	0	Write the write-latch data to PFM row. See Sec- tion 13.3.3 "NVMREG Erase of PFM"	 If WP is enabled, WR is cleared and WRERR is set Write latches are reset to 3FFh NVMDATH:NVMDATL is ignored

TABLE 13-4: ACTIONS FOR PFM WHEN WR = 1

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			RxyPPS<4:0>	•	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
---------	----------------------------

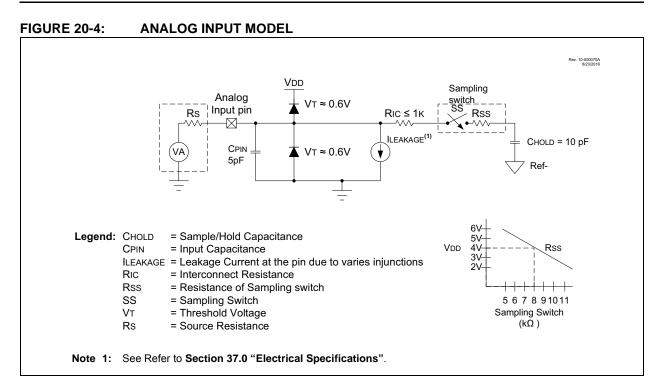
bit 4-0 **RxyPPS<4:0>:** Pin Rxy Output Source Selection bits See Table 15-5 through Table 15-7.

Note 1: TRIS control is overridden by the peripheral as required.

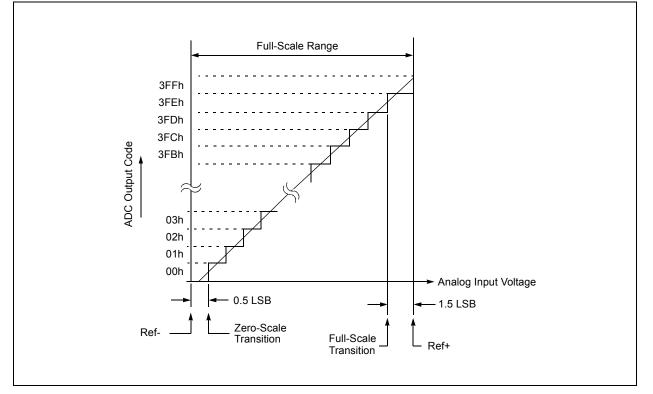
REGISTER 15-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0		
—	_		—	—	—	—	PPSLOCKED		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit


1= PPS is locked. PPS selections can not be changed.

0= PPS is not locked. PPS selections can be changed.

© 2016 Microchip Technology Inc.

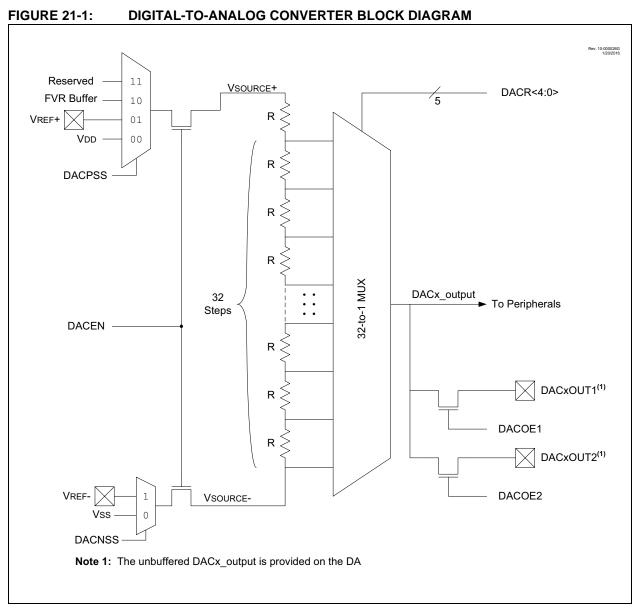
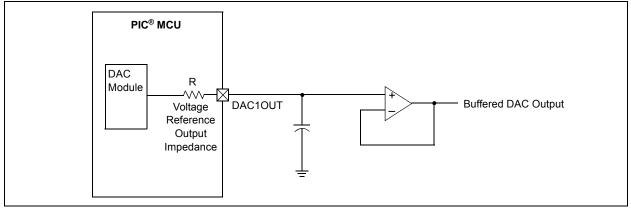


FIGURE 20-5: ADC TRANSFER FUNCTION



© 2016 Microchip Technology Inc.

DS40001866A-page 276

FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

© 2016 Microchip Technology Inc.

26.6.2 TIMER GATE SOURCE SELECTION

One of the several different external or internal signal sources may be chosen to gate the timer and allow the timer to increment. The gate input signal source can be selected based on the T1GATE register setting. See the T1GATE register (Register 26-4) description for a complete list of the available gate sources. The polarity for each available source is also selectable. Polarity selection is controlled by the GPOL bit of the T1GCON register.

26.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for the timer gate control. It can be used to supply an external source to the time gate circuitry.

26.6.2.2 Timer0 Overflow Gate Operation

When Timer0 overflows, or a period register match condition occurs (in 8-bit mode), a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

26.6.2.3 Comparator C1 Gate Operation

The output resulting from a Comparator 1 operation can be selected as a source for the timer gate control. The Comparator 1 output can be synchronized to the timer clock or left asynchronous. For more information see Section 23.4.1 "Comparator Output Synchronization".

26.6.2.4 Comparator C2 Gate Operation

The output resulting from a Comparator 2 operation can be selected as a source for the timer gate control. The Comparator 2 output can be synchronized to the timer clock or left asynchronous. For more information see Section 23.4.1 "Comparator Output Synchronization".

26.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a timer gate signal, as opposed to the duration of a single level pulse.

The timer gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 26-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the GTM bit of the T1GCON register. When the GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

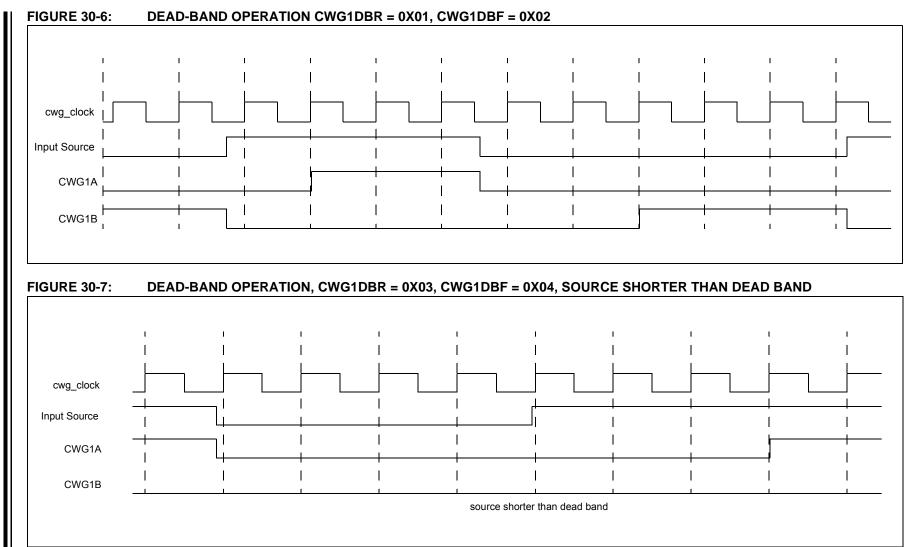
Note: Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation.

26.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the GSPM bit in the T1GCON register. Next, the GGO/DONE bit in the T1GCON register must be set. The timer will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment the timer until the GGO/DONE bit is once again set in software. See Figure 26-5 for timing details.

If the Single-Pulse Gate mode is disabled by clearing the GSPM bit in the T1GCON register, the GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the timer gate source to be measured. See Figure 26-6 for timing details.


26.6.5 TIMER1 GATE VALUE STATUS

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the GVAL bit in the T1GCON register. The GVAL bit is valid even when the timer gate is not enabled (GE bit is cleared).

26.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of GVAL occurs, the TMR1GIF flag bit in the PIR5 register will be set. If the TMR1GIE bit in the PIE5 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the timer gate is not enabled (TMR1GE bit is cleared).

30.12 Configuring the CWG

The following steps illustrate how to properly configure the CWG.

- 1. Ensure that the TRIS control bits corresponding to the desired CWG pins for your application are set so that the pins are configured as inputs.
- 2. Clear the EN bit, if not already cleared.
- 3. Set desired mode of operation with the MODE bits.
- Set desired dead-band times, if applicable to mode, with the CWG1DBR and CWG1DBF registers.
- 5. Setup the following controls in the CWG1AS0 and CWG1AS1 registers.
 - a. Select the desired shutdown source.
 - b. Select both output overrides to the desired levels (this is necessary even if not using autoshutdown because start-up will be from a shutdown state).
 - c. Set which pins will be affected by auto-shutdown with the CWG1AS1 register.
 - d. Set the SHUTDOWN bit and clear the REN bit.
- 6. Select the desired input source using the CWG1ISM register.
- 7. Configure the following controls.
 - a. Select desired clock source using the CWG1CLKCON register.
 - b. Select the desired output polarities using the CWG1CON1 register.
 - c. Set the output enables for the desired outputs.
- 8. Set the EN bit.
- Clear TRIS control bits corresponding to the desired output pins to configure these pins as outputs.
- If auto-restart is to be used, set the REN bit and the SHUTDOWN bit will be cleared automatically. Otherwise, clear the SHUTDOWN bit to start the CWG.

30.12.1 PIN OVERRIDE LEVELS

The levels driven to the output pins, while the shutdown input is true, are controlled by the LSBD and LSAC bits of the CWG1AS0 register. LSBD<1:0> controls the CWG1B and D override levels and LSAC<1:0> controls the CWG1A and C override levels. The control bit logic level corresponds to the output logic drive level while in the shutdown state. The polarity control does not affect the override level.

30.12.2 AUTO-SHUTDOWN RESTART

After an auto-shutdown event has occurred, there are two ways to resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the REN bit of the CWG1CON2 register. Waveforms of software controlled and automatic restarts are shown in Figure 30-13 and Figure 30-14.

30.12.2.1 Software Controlled Restart

When the REN bit of the CWG1AS0 register is cleared, the CWG must be restarted after an auto-shutdown event by software. Clearing the shutdown state requires all selected shutdown inputs to be low, otherwise the SHUTDOWN bit will remain set. The overrides will remain in effect until the first rising edge event after the SHUTDOWN bit is cleared. The CWG will then resume operation.

30.12.2.2 Auto-Restart

When the REN bit of the CWG1CON2 register is set, the CWG will restart from the auto-shutdown state automatically. The SHUTDOWN bit will clear automatically when all shutdown sources go low. The overrides will remain in effect until the first rising edge event after the SHUTDOWN bit is cleared. The CWG will then resume operation.

R/W-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0			
ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN			
bit 7							bit 0			
Legend: R = Readable	hit	W = Writable	hit	= Inimpler	nented bit, read	1 26 '0'				
u = Bit is unch		x = Bit is unk		•		R/Value at all o	thar Pasats			
(1) = Bit is unch	angeu	$(0)^{2} = Bit is cle$								
			arcu							
bit 7	ABDOVF: Au	ito-Baud Dete	ct Overflow bit							
	Asynchronou	<u>s mode</u> :								
		d timer overflo								
	0 = Auto-bau Synchronous	d timer did not	overflow							
	Don't care	<u>mode</u> .								
bit 6	RCIDL: Rece	ive Idle Flag b	it							
	Asynchronou	•								
	1 = Receiver									
	0 = Start bit h		ved and the re	ceiver is receiv	ing					
	Don't care	<u>moue</u> .								
bit 5	Unimplemen	ted: Read as	ʻ0'							
bit 4	SCKP: Clock/Transmit Polarity Select bit									
	Asynchronous mode:									
	 1 = Idle state for transmit (TX) is a low level 0 = Idle state for transmit (TX) is a high level 									
	<u>Synchronous mode</u> : 1 = Idle state for clock (CK) is a high level									
		for clock (CK) for clock (CK)	•							
bit 3		it Baud Rate (
bit o		ud Rate Gene								
		id Rate Generation								
bit 2	Unimplemen	ted: Read as	'0'							
bit 1	WUE: Wake-	up Enable bit								
	Asynchronous mode:									
				c pin – interrupt	generated on	falling edge; bit	cleared in			
		on following ri	sing eage. or rising edge (detected						
	Synchronous		or noning ougo							
	Unused in thi	s mode – valu	e ignored							
bit 0	ABDEN: Auto-Baud Detect Enable bit									
	Asynchronou	<u>s mode</u> :								
	(55h);				cter – requires	reception of a	SYNCH field			
			on completion at disabled or o							
	Synchronous			Simpleted						
		s mode – valu	e ianored							

REGISTER 33-3: BAUDxCON: BAUD RATE CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
	_	_		CLKRCLK<3:0>					
bit 7							bit (
Legend:									
R = Readat	ole bit	W = Writable	oit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is unchanged x = Bit is unknown				-n/n = Value a	at POR and BC	R/Value at all o	other Resets		
'1' = Bit is s	•	'0' = Bit is clea	ared						
bit 7-4	Unimpleme	nted: Read as ')'						
bit 3-0	CLKRCLK<	CLKRCLK<3:0>: CLKR Input bits							
		Clock Selection							
	1111 = Rese	erved							
	•								
	•								
	•								
	1011 = Rese								
	1010 = LC4_								
	1001 = LC3_								
	1000 = LC2_ 0111 = LC1								
	0110 = NCC								
	0101 = SOS								
		NTOSC (31.25 k	Hz)						
		NTOSC (500 kH							
	0010 = LFIN		,						
	0001 = HFIN	ITOSC							
	0000 = Foso	2							

TABLE 34-1:	SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK REFERENCE OUTPUT
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON	CLKREN	_	_	CLKRD	CLKRDC<1:0> CLKRDIV<2:0>				
CLKRCLK	—	—	_	—			502		
CLCxSELy	_	—		LCxDyS<5:0>					
RxyPPS	_	_	_	RxyPPS<4:0>					242
	Leavenuel and a second se								

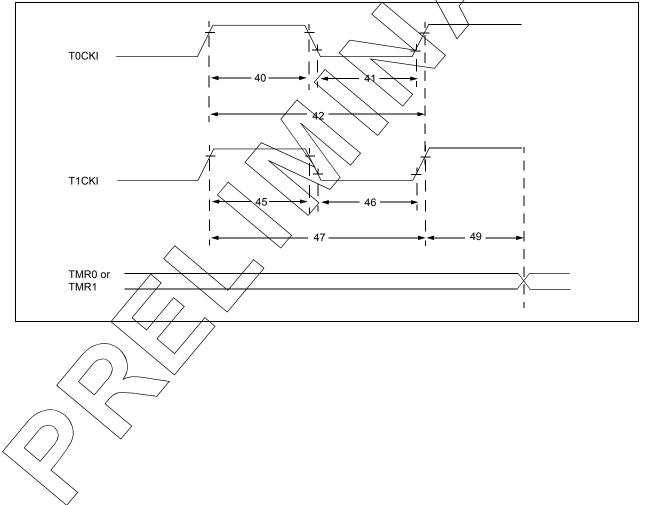

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.

TABLE 37-17: ZERO CROSS DETECT (ZCD) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristics	Min.	Тур†	Max.	Units	Comments		
ZC01	VPINZC	Voltage on Zero Cross Pin	—	0.75	—	V			
ZC02	IZCD_MAX	Maximum source or sink current	—	_	600	μΑ)			
ZC03	TRESPH	Response Time, Rising Edge	—	1		/us			
	TRESPL	Response Time, Falling Edge	_	1	_	μs			

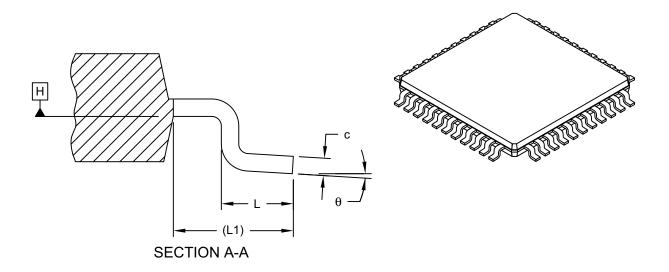

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 37-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	IILLIMETER	S		
Dimension	MIN	NOM	MAX		
Number of Leads	N		44		
Lead Pitch	е		0.80 BSC		
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95 1.00 1.0			
Overall Width	E	12.00 BSC			
Molded Package Width	E1		10.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45 0.60 0.75			
Footprint	Footprint L1				
Foot Angle	θ	0°	3.5°	7°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (12/2016)

Initial release of the document.