

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15376t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(
L)F1535
56/75/76
6/85/86

40/44-PIN ALLOCATION TABLE (PIC16(L)F15375, PIC16(L)F15376) (CONTINUED) TABLE 4:

									()			,	<i>,</i> ,	-							
I/O ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	ССР	MWA	CWG	ASSM	ZCD	EUSART	CLC	CLKR	Interrupt	Bull-up	Basic
RC3	18	33	37	37	ANC3	—	—	_	-	T2IN ⁽¹⁾		_	-	SCL1 SCK1 ^(1,4)	_	-	_	—	IOCC3	Y	
RC4	23	38	42	42	ANC4	—	—	_	_	—	_	_	—	SDA1 SDI1 ^(1,4)	—	-	_	_	IOCC4	Y	_
RC5	24	39	43	43	ANC5	_	_	_	_	_	_	_	_	_	_	_	_	_	IOCC5	Υ	—
RC6	25	40	44	44	ANC6	—	—	_	-	_	_	_	—	—	_	TX1 CK1 ⁽¹⁾	_	_	IOCC6	Y	_
RC7	26	1	1	1	ANC7	—	—			_		_	—	—	_	RX1 DT1 ⁽¹⁾	—	—	IOCC7	Y	
RD0	19	34	38	38	AND0	—	—	_	-	—		—	—	SCK2, SCL2 ^(1,4)	—	-	—	—	—	-	—
RD1	20	35	39	39	AND1	_	—	_	-	_	_	_	_	SDA2, SDI2 ^(1,4)	_	-	_	_	—	-	
RD2	21	36	40	40	AND2	_	_	_	_	_	_	_	_	_	_		—	_	_	—	—
RD3	22	37	41	41	AND3	_	—	_	_	_	_	—	_	_	_	_	_	_	_	—	- 1
RD4	27	2	2	2	AND4	-	—	-		_		—	—	_	—	—	—	-	_	_	—
RD5	28	3	3	3	AND5	_	—			—		—	—	—	—	—	—	_	—	-	—
RD6	29	4	4	4	AND6	_	—			—		—	—	_	—	—	—	_	—	_	—
RD7	30	5	5	5	AND7	-	—			—		—	_	—	—	—	_	_	—	—	—
RE0	8	23	25	25	ANE0	_	—	_	_	_	_	—	—	_	—	—	_	_	—	—	
RE1	9	24	26	26	ANE1	_	—	_	—	_	_	—	—	_	—	_	_	_	—	—	—
RE2	10	25	27	27	ANE2	—	—	_	—	—	_	—	—	—	—	—	—	—	—	—	—
RE3	1	16	18	18	—	-	—	—	—	—	—	—	—	—	—	_	—	—	IOCE3	Y	MCLR VPP
VDD	11	26	7	7	_		—	_	-	_	-	—	_	_	_	—	_		_	—	Vdd
VDD	32	7	28	28	—	-	—	_	-	—	_	—	—	—	_	—	—	_	—	-	Vdd
Vss	12	27	6	6	_	—	—	_	_	_	_	_	_	_	—	_	_	_	_	—	Vss
Vss	31	6	30	29	—	_	—	—	—	-	—	—	—	—	—	—	—	_	—	-	Vss

This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. 1: Note

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or 4: SMBUS input buffer thresholds.

Name	Function	Input Type	Output Type	Description
T ⁽²⁾	C1OUT	_	CMOS/OD	Comparator 1 output.
	C2OUT	_	CMOS/OD	Comparator 2 output.
	NCO10UT	_	CMOS/OD	Numerically Controller Oscillator output.
	TMR0	_	CMOS/OD	Timer0 output.
	CCP1	_	CMOS/OD	Capture/Compare/PWM1 output (compare/PWM functions
	CCP2	_	CMOS/OD	Capture/Compare/PWM2 output (compare/PWM functions
	PWM3OUT		CMOS/OD	PWM3 output.
	PWM4OUT	_	CMOS/OD	PWM4 output.
	PWM5OUT	_	CMOS/OD	PWM5 output.
	CWG1A	_	CMOS/OD	Complementary Waveform Generator 1 output A.
	CWG1B		CMOS/OD	Complementary Waveform Generator 1 output B.
	CWG1C	_	CMOS/OD	Complementary Waveform Generator 1 output C.
	CWG1D		CMOS/OD	Complementary Waveform Generator 1 output D.
	CWG2A		CMOS/OD	Complementary Waveform Generator 2 output A.
	CWG2B		CMOS/OD	Complementary Waveform Generator 2 output B.
	CWG2C		CMOS/OD	Complementary Waveform Generator 2 output C.
	CWG2D		CMOS/OD	Complementary Waveform Generator 2 output D.
	SDO1	-	CMOS/OD	MSSP1 SPI serial data output.
	SDO2	_	CMOS/OD	MSSP2 SPI serial data output.
	SCL1 ^(3,4)		CMOS/OD	MSSP1 SPI serial clock output.
	SCL2 ^(3,4)	_	CMOS/OD	MSSP2 SPI serial clock output.
	SDA1 ^(3,4)	_	CMOS/OD	MSSP1 I ² C serial data input/output.
	SDA2 ^(3,4)		CMOS/OD	MSSP2 I ² C serial data input/output.
	DT ⁽³⁾		CMOS/OD	EUSART Synchronous mode data output.
	CK1	_	CMOS/OD	EUSART1 Synchronous mode clock output.
	CK2		CMOS/OD	EUSART2 Synchronous mode clock output.
	TX1	_	CMOS/OD	EUSART1 Asynchronous mode transmitter data output.
	TX2		CMOS/OD	EUSART2 Asynchronous mode transmitter data output.
	CLC1OUT	_	CMOS/OD	Configurable Logic Cell 1 output.
	CLC2OUT		CMOS/OD	Configurable Logic Cell 2 output.
	CLC3OUT	_	CMOS/OD	Configurable Logic Cell 3 output.
	CLC4OUT	_	CMOS/OD	Configurable Logic Cell 4 output.
	CLKR		CMOS/OD	Clock Reference module output.

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

HV = High Voltage

Note

= Crystal levels XTAL This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.
 All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options

as described in Table 15-5, Table 15-6 and Table 15-6.

I²C

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

= Schmitt Trigger input with I²C

TABLE 4-2: MEMORY ACCESS PARTITION

			Part	tition				
REG	Address	<u>BBEN</u> = 1 SAFEN = 1	BBEN = 1 SAFEN = 0	<u>BBEN</u> = 0 SAFEN = 1	<u>BBEN</u> = 0 SAFEN = 0			
	00 0000h ••• Last Boot Block Memory Address		APPLICATION	BOOT BLOCK ⁽⁴⁾	BOOT BLOCK ⁽⁴⁾			
PFM	Last Boot Block Memory Address + 1 ⁽¹⁾ ••• Last Program Memory Address - 80h	APPLICATION BLOCK ⁽⁴⁾	BLOCK ⁽⁴⁾	APPLICATION	APPLICATION BLOCK ⁽⁴⁾			
	Last Program Memory Address - 7Fh ⁽²⁾ ••• Last Program Memory Address		SAF ⁽⁴⁾	BLOCK ⁽⁴⁾	SAF ⁽⁴⁾			
CONF IG								

Note 1: Last Boot Block Memory Address is based on BBSIZE<2:0> given in Table 5-1.

2: Last Program Memory Address is the Flash size given in Table 4-1.

3: Config Memory Address are the address locations of the Configuration Words given in Table 13-2.

4: Each memory block has a corresponding write protection fuse defined by the WRTAPP, WRTB and WRTC bits in the Configuration Word (Register 5-4).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR		
Bank 2					•	•			•				
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics						
10Ch	OCh _ Unimplemented												
118h			en importante										
119h	RC1REG	EUSART Receive Dat	a Register							0000 0000	0000 0000		
11Ah	TX1REG	EUSART Transmit Da	ta Register							0000 0000	0000 0000		
11Bh	SP1BRGL				SP1BR0	G<7:0>				0000 0000	0000 0000		
11Ch	SP1BRGH				SP1BRG	6<15:8>				0000 0000	0000 0000		
11Dh	RC1STA	SPEN	SPEN RX9 SREN CREN ADDEN FERR OERR RX9D								0000 0000		
11Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010		
11Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00		

CISTED SUMMADY DANKS A 62 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR			
Bank 62 (Co	ontinued)	•	•		•	•	-	•		•				
1F4Eh	ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111			
1F4Fh	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000			
1F50h	ODCONC	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000			
1F51h	SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111			
1F52h	INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111			
1F53h	IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000			
1F54h	IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000			
1F55h	IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000			
1F56h 1F58h	_		_	_										
1F59h	ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111			
1F5Ah	WPUD ⁽¹⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	0000 0000	0000 0000			
1F5Bh	ODCOND ⁽¹⁾	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000 0000	0000 0000			
1F5Ch	SLRCOND ⁽¹⁾	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	1111 1111	1111 1111			
1F5Dh	INLVLD ⁽¹⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	1111 1111	1111 1111			
1F5Eh 1F63h	_				Unimple	mented				-	_			
1F64h	ANSELE ⁽¹⁾	_	_	_	_	_	ANSE2	ANSE1	ANSE0	111	uuu			
1F65h	WPUE	_	_	_	_	WPUE3	WPUE2 ⁽¹⁾	WPUE1 ⁽¹⁾	WPUE0 ⁽¹⁾	0000	uuuu			
1F66h	ODCONE ⁽¹⁾	_	_	_	_	_	ODCE2	ODCE1	ODCE0	000	000			
1F67h	SLRCONE ⁽¹⁾	_	_	_	_	_	SLRE2	SLRE1	SLRE0	111	111			
1F68h	INLVLE	_	_	_	_	INLVLE3	INLVLE2 ⁽¹⁾	INLVLE1 ⁽¹⁾	INLVLE0 ⁽¹⁾	1111	uuuu			
1F69h	IOCEP	_	_	_	_	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾	0000	0000			
1F6Ah	IOCEN	—	_	_	_	IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾	0000	0000			
1F6Bh	IOCEF	_	_	_	_	IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾	0000	0000			
1F6Ch 1F6Fh	_		IOCEF3 IOCEF2 ⁽¹⁾ IOCEF1 ⁽¹⁾ IOCEF0 ⁽¹⁾											

SPECIAL EUNCTION DECISTED SUMMARY PANKS 0.62 (CONTINUED) TABLE A 44.

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Present only on PIC16(L)F15375/76/85/86.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 63		-									
				CPU CO	RE REGISTERS;	see Table 4-3 for	specifics				
							·				
1F8Ch	_				Unimple	mented				_	_
1FE3h											
1FE4h	STATUS_SHAD	—	—	—	_	_	Z	DC	С	xxx	uui
1FE5h	WREG_SHAD	Working Register Sha	Working Register Shadow								uuuu uuu
1FE6h	BSR_SHAD	_	_	—	Bank Select Reg	gister Shadow				x xxxx	u uuu
1FE7h	PCLATH_SHAD	_	Program Counter	Latch High Regi	ster Shadow					-xxx xxxx	uuuu uuu
1FE8h	FSR0L_SHAD	Indirect Data Memory	Address 0 Low Po	inter Shadow						XXXX XXXX	uuuu uuu
1FE9h	FSR0H_SHAD	Indirect Data Memory	Address 0 High Po	pinter Shadow						xxxx xxxx	uuuu uuu
1FEAh	FSR1L_SHAD	Indirect Data Memory	Address 1 Low Po	inter Shadow						XXXX XXXX	uuuu uuu
1FEBh	FSR1H_SHAD	Indirect Data Memory	Address 1 High Po	binter Shadow						XXXX XXXX	นนนน นนนเ
1FECh	_	Unimplemented								—	_
1FEDh	STKPTR	_	—	—	Current Stack P	ointer				1 1111	1 111
1FEEh	TOSL	Top of Stack Low byte			•					xxxx xxxx	uuuu uuu
1FEFh	TOSH	_	Top of Stack High	byte						-xxx xxxx	-uuu uuu

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

9.5 Register Definitions: Oscillator Control

REGISTER 9-1: OSCCON1: OSCILLATOR CONTROL REGISTER1

U-0	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q		
_	1	NOSC<2:0> ^{(2,3}	3)	NDIV<3:0> ^(2,3,4)					
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting

bit 7	Unimplemented: Read as '0'
bit 6-4	NOSC<2:0>: New Oscillator Source Request bits
	The setting requests a source oscillator and PLL combination per Table 9-1.
	POR value = RSTOSC (Register 5-1).
bit 3-0	NDIV<3:0>: New Divider Selection Request bits
	The setting determines the new postscaler division ratio per Table 9-1.

Note 1: The default value (f/f) is set equal to the RSTOSC Configuration bits.

- 2: If NOSC is written with a reserved value (Table 9-1), the operation is ignored and neither NOSC nor NDIV is written.
- 3: When CSWEN = 0, this register is read-only and cannot be changed from the POR value.
- 4: When NOSC = 110 (HFINTOSC 4 MHz), the NDIV bits will default to '0010' upon Reset; for all other NOSC settings the NDIV bits will default to '0000' upon Reset.

REGISTER 9-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-n/n ⁽²⁾						
—		COSC<2:0>			CDIV	<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '0'

- bit 6-4 **COSC<2:0>:** Current Oscillator Source Select bits (read-only)
 - Indicates the current source oscillator and PLL combination per Table 9-1.
- bit 3-0 **CDIV<3:0>:** Current Divider Select bits (read-only) Indicates the current postscaler division ratio per Table 9-1.

Note 1: The POR value is the value present when user code execution begins.

2: The Reset value (n/n) is the same as the NOSC/NDIV bits.

PIC16(L)F15356/75/76/85/86

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	_	—	_	INTEDG	146
PIE0	—		TMR0IE	IOCIE	—	_		INTE	147
PIE1	OSFIE	CSWIE	_		—	—	_	ADIE	148
PIE2	_	ZCDIE	_	_	_	_	C2IE	C1IE	149
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIE4	—	_	_	—	—	—	TMR2IE	TMR1IE	151
PIR0	—	_	TMR0IF	IOCIF	—	—		INTF	155
PIR1	OSFIF	CSWIF	_		_	_	_	ADIF	156
PIR2	—	ZCDIF		_	—	—	C2IF	C1IF	157
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
PIR4	_		_	_	—	_	TMR2IF	TMR1IF	159
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	255
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	255
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	256
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	257
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	257
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	258
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	259
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	259
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	259
IOCEP	—			_	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾	260
IOCEN	—	_	_	—	IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾	260
IOCEF	—			_	IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾	261
STATUS	_	_	_	TO	PD	Z	DC	С	54
VREGCON	_	_	_	_	_	—	VREGPM	_	168
CPUDOZE	IDLEN	DOZEN	ROI	DOE	_		DOZE<2:0>		169
WDTCON0	—	—		١	NDTPS<4:0	>		SWDTEN	175

TABLE 11-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: Present only in PIC16(L)F15375/76/85/86.

REGISTER 12-3: WDTPSL: WDT PRESCALE SELECT LOW BYTE REGISTER

D 0/0	D 0/0	D 0/0			D 0/0	D 0/0	D 0/0
R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCN [®]	T<7:0> (1)			
bit 7							bit C
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as	·'O'	
u = Bit is unchange	d	x = Bit is unknown		-n/n = Value at	POR and BOR/\	alue at all other	Resets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 PSCNT<7:0>: Prescale Select Low Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 12-4: WDTPSH: WDT PRESCALE SELECT HIGH BYTE REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	
PSCNT<15:8> ⁽¹⁾								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSCNT<15:8>**: Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 12-5: WDTTMR: WDT TIMER REGISTER

U-0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
—		WDTTMR<3:0>				PSCNT<17:16> ⁽¹⁾	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

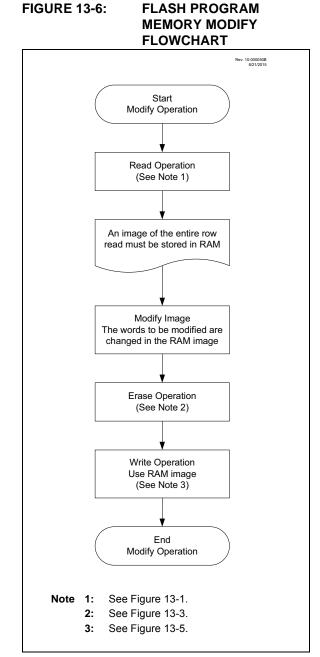
bit 7 Unimplemented: Read as '0'

bit 6-3 WDTTMR<3:0>: Watchdog Timer Value bits

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed

0 = WDT is not armed


bit 1-0 **PSCNT<17:16>**: Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

13.3.5 MODIFYING FLASH PROGRAM MEMORY

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

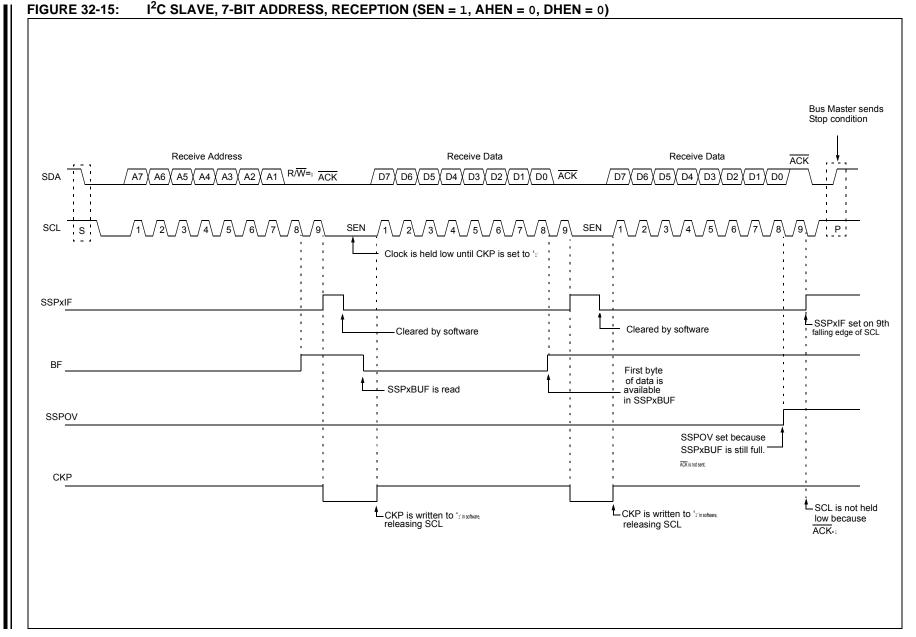
- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

27.4 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which are selected with the postscaler control bits, OUTPS<3:0> of the T2CON register. The interrupt is enabled by setting the TMR2IE interrupt enable bit of the PIE4 register. Interrupt timing is illustrated in Figure 27-3.

FIGURE 27-3: TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM

	Rev. 10-00 4	00205A /7/2016
CKPS	0b010	
PRx	1	
OUTPS	0b0001	
TMRx_clk		
TMRx		
TMRx_postscaled		
TMRxIF	(1) (2) (1)	
Note 1: 2:	Synchronization may take as many as 2 instruction cycles	


27.5 Operation Examples

Unless otherwise specified, the following notes apply to the following timing diagrams:

- Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits in the TxCON register are cleared).
- The diagrams illustrate any clock except Fosc/4 and show clock-sync delays of at least two full cycles for both ON and Timer2_ers. When using Fosc/4, the clock-sync delay is at least one instruction period for Timer2_ers; ON applies in the next instruction period.
- The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the PWM function of the CCP module as described in **Section 28.0** "**Capture/Compare/PWM Modules**". The signals are not a part of the Timer2 module.

27.5.1 SOFTWARE GATE MODE

This mode corresponds to legacy Timer2 operation. The timer increments with each clock input when ON = 1 and does not increment when ON = 0. When the TMRx count equals the PRx period count the timer resets on the next clock and continues counting from 0. Operation with the ON bit software controlled is illustrated in Figure 27-4. With PRx = 5, the counter advances until TMRx = 5, and goes to zero with the next clock.

PIC16(L)F15356/75/76/85/86

32.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

32.6.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

32.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCL1IF bit.

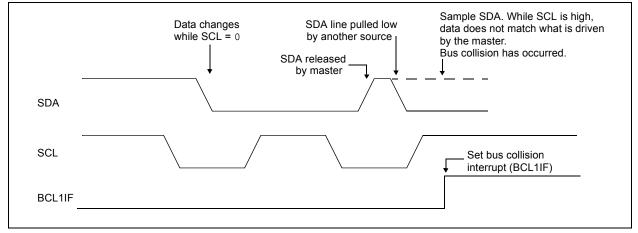
The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

32.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCL1IF and reset the I²C port to its Idle state (Figure 32-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

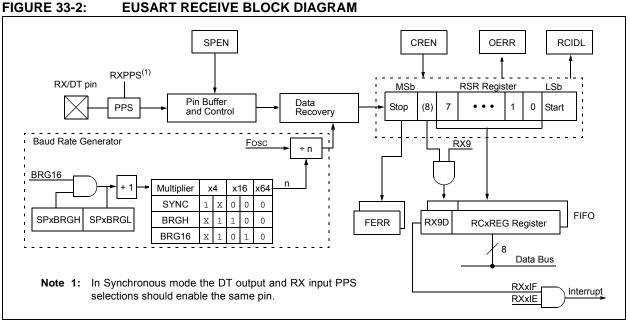

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 32-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE


PIC16(L)F15356/75/76/85/86

R/W-0/0	R/HS/HC-0	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0			
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7							bit (
Legend:										
•	la hit	M = Mritabla	hit		monted bit read					
R = Readabl		W = Writable		•	nented bit, read					
u = Bit is und	•	x = Bit is unk			at POR and BO		other Resets			
'1' = Bit is se	et	'0' = Bit is cle	eared	HC = Cleared	d by hardware	S = User set				
bit 7	1 = Enable in		•	• •	or 00h) is receiv	ed in the SSPx	SR			
bit 6	1 = Acknowle	cknowledge Si dge was not r dge was recei		mode only)						
bit 5	In Receive me	ode: itted when the	a bit (in I ² C moo user initiates a	• •	e sequence at	the end of a ree	ceive			
	0 = Acknowle	-								
bit 4		ACKEN: Acknowledge Sequence Enable bit (in I ² C Master mode only)								
	Automati		by hardware.	SDA and S	CL pins, and	transmit ACk	(DT data bi			
bit 3		Receive mode	(in I ² C Master for I ² C	mode only)						
bit 2	SCKMSSP R	elease Contro			y) atically cleared	by hardware.				
	0 = Stop cond	dition Idle								
bit 1	1 = Initiate R			•	er mode only) ins. Automatica	lly cleared by h	nardware.			
bit 0	In Master mo	<u>de:</u> art condition o	e/Stretch Enab n SDA and SC		atically cleared	by hardware.				
				ave transmit ar	nd slave receive	e (stretch enabl	ed)			
Note 1: F	or bits ACKEN, R	CEN. PEN. R	SEN, SEN: If t	he l ² C module	is not in the IDI	E mode, this b	bit may not b			

REGISTER 32-3: SSPxCON2: SSPx CONTROL REGISTER 2 (I²C MODE ONLY)⁽¹⁾

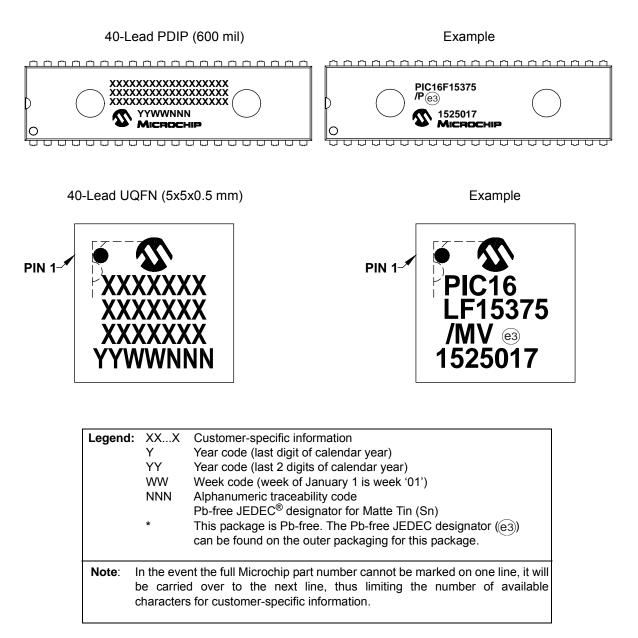
Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the IDLE mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

PIC16(L)F15356/75/76/85/86

The operation of the EUSART module is controlled through three registers:

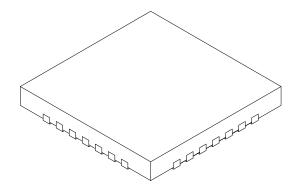
- Transmit Status and Control (TXxSTA)
- Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 33-1, Register 33-2 and Register 33-3, respectively.


The RX input pin is selected with the RXPPS. The CK input is selected with the TXPPS register. TX, CK, and DT output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
CLKREN	_	—	CLKRI	DC<1:0>	(CLKRDIV<2:0>				
bit 7							bit C			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	CLKREN: Re	ference Clock	Module Enable	e bit						
	1 = Referen	1 = Reference clock module enabled								
	0 = Referen	ce clock modul	le is disabled							
bit 6-5	Unimplemen	ted: Read as '	כי							
bit 4-3	CLKRDC<1:0>: Reference Clock Duty Cycle bits ⁽¹⁾									
	11 = Clock outputs duty cycle of 75%									
	10 = Clock outputs duty cycle of 50%									
	01 = Clock outputs duty cycle of 25% 00 = Clock outputs duty cycle of 0%									
bit 2-0		0>: Reference		bits						
		111 = Base clock value divided by 128								
	110 = Base clock value divided by 64									
	101 = Base clock value divided by 32 100 = Base clock value divided by 16									
		lock value divid								
		lock value divid	•							
		lock value divid	led by 2							
	000 = Base c	lock value								

REGISTER 34-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

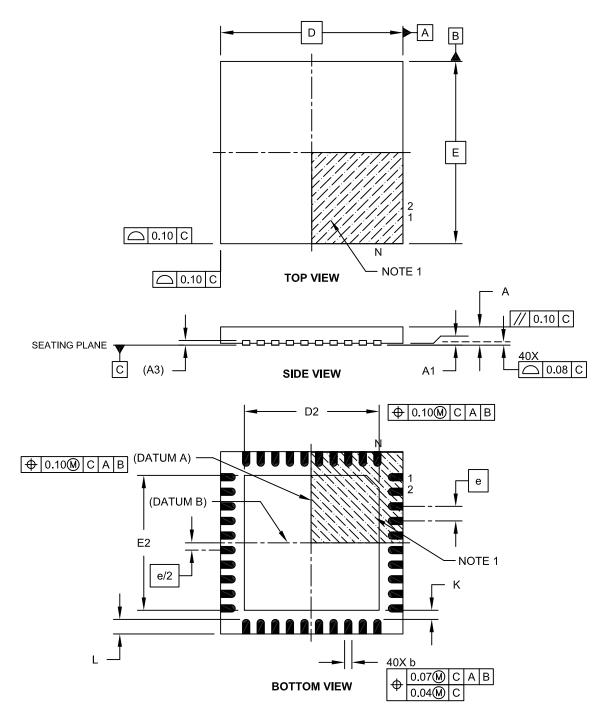

Note 1: Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.

40.1 Package Marking Information (Continued)

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		0.40 BSC		
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.127 REF		
Overall Width	Е		4.00 BSC		
Exposed Pad Width	E2	2.55	2.65	2.75	
Overall Length	D		4.00 BSC		
Exposed Pad Length	D2	2.55	2.65	2.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2