

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	44
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 43x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15385-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/CLCIN0 ⁽¹⁾ /	RA0	TTL/ST	CMOS/OD	General purpose I/O.
IOCAU	ANA0	AN	_	ADC Channel A0 input.
	C1IN0-	AN	_	Comparator negative input.
	C2IN0-	AN	_	Comparator negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA0	TTL/ST	_	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/CLCIN1(1)/	RA1	TTL/ST	CMOS/OD	General purpose I/O.
IOCA1	ANA1	AN	_	ADC Channel A1 input.
	C1IN1-	AN	—	Comparator negative input.
	C2IN1-	AN	_	Comparator negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA1	TTL/ST	_	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DAC10011/IOCA2	ANA2	AN	_	ADC Channel A2 input.
	C1IN0+	AN	_	Comparator positive input.
	C2IN0+	AN	_	Comparator positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	_	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/DACREF+/	RA3	TTL/ST	CMOS/OD	General purpose I/O.
IUCA3	ANA3	AN	_	ADC Channel A3 input.
	C1IN1+	AN	_	Comparator positive input.
	VREF+	AN	_	External ADC and/or DAC positive reference input.
	IOCA3	TTL/ST	_	Interrupt-on-change input.
RA4/ANA4/C1IN1-/T0CKI ⁽¹⁾ /IOCA4	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	_	ADC Channel A4 input.
	C1IN1-	AN	_	Comparator negative input.
	T0CKI ⁽¹⁾	TTL/ST	_	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
RA5/ANA5/SS1 ⁽¹⁾ /T1G ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	_	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	T1G ⁽¹⁾	TTL/ST	—	Timer1 gate input.
	IOCA5	TTL/ST	—	Interrupt-on-change input.
Legend: AN = Analog input or outp TTL = TTL compatible input	ut CMOS = ut ST =	 CMOS co Schmitt Tr 	mpatible input or	output OD = Open-Drain CMOS levels I ² C = Schmitt Trigger input with I ² C

TABLE 1-4: PIC16(L)F15385/86 PINOUT DESCRIPTION

TTL = TTL compatible input HV = High Voltage

XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-7. 2:

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

read program and data memory.

The hardware stack is 16-levels deep and has Overflow and Underflow Reset capability. Direct,

Indirect, and Relative Addressing modes are available.

Two File Select Registers (FSRs) provide the ability to

3.0 ENHANCED MID-RANGE CPU

This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 48 instructions. Interrupt capability includes automatic context saving.

FIGURE 3-1: CORE DATA PATH DIAGRAM

Rev. 10-000055C 11/30/2016 15 Configuration Data Bus 15 8 Program Counter Flash MUX Program Memory 16-Level Stack RAM (15-bit) 14 Program Program Memory 12 RAM Addr Bus Read (PMR) Addr MUX Instruction Reg Indirect Direct Addr Addr 7 12 5 12 BSR Reg 15, FSR0 Reg 15, FSR1 Reg STATUS Reg 8 MUX Power-up Instruction Timer Decode and Power-on Control Reset ALU 8 Watchdog CLKIN Timer Brown-out CLKOUT Timing Reset W Reg Generation \boxtimes SOSCI sosco 🖂 囟 囟 Vdd Vss Internal Oscillator Block

© 2016 Microchip Technology Inc.

The HIGH directive will set bit 7 if a label points to a location in the program memory. This applies to the assembly code Example 4-2 shown below.

EXAMPLE 4-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
RETLW	DATA0	;Index0	data
RETLW	DATA1	;Index1	data
RETLW	DATA2		
RETLW	DATA3		
my_functi	on		
; LO	rs of code		
MOVLW	LOW const	ants	
MOVWF	FSR1L		
MOVLW	HIGH cons	stants	
MOVWF	FSR1H		
MOVIW	0[FSR1]		
; THE PROG	RAM MEMORY	IS IN W	

4.2 Memory Access Partition (MAP)

User Flash is partitioned into:

- Application Block
- Boot Block, and
- Storage Area Flash (SAF) Block

The user can allocate the memory usage by setting the BBEN bit, selecting the size of the partition defined by BBSIZE[2:0] bits and enabling the Storage Area Flash by the SAFEN bit of the Configuration Word (see Register 5-4). Refer to Table 4-2 for the different user Flash memory partitions.

4.2.1 APPLICATION BLOCK

Default settings of the Configuration bits ($\overline{BBEN} = 1$ and $\overline{SAFEN} = 1$) assign all memory in the user Flash area to the Application Block.

4.2.2 BOOT BLOCK

If $\overline{\text{BBEN}} = 1$, the Boot Block is enabled and a specific address range is alloted as the Boot Block based on the value of the BBSIZE bits of Configuration Word (Register 5-4) and the sizes provided in Table 5-1.

4.2.3 STORAGE AREA FLASH

Storage Area Flash (SAF) is enabled by clearing the SAFEN bit of the Configuration Word in Register 5-4. If enabled, the SAF block is placed at the end of memory and spans 128 words. If the Storage Area Flash (SAF) is enabled, the SAF area is not available for program execution.

4.2.4 MEMORY WRITE PROTECTION

All the memory blocks have corresponding write protection fuses WRTAPP, WRTB and WRTC bits in the Configuration Word 4 (Register 5-4). If write-protected locations are written from NVMCON registers, memory is not changed and the WRERR bit defined in Register 12-5 is set as explained in **Section 13.3.8 "WRERR Bit**".

4.2.5 MEMORY VIOLATION

A Memory Execution Violation Reset occurs while executing an instruction that has been fetched from outside a valid execution area, clearing the MEMV bit. Refer to **Section 8.12 "Memory Execution Violation"** for the available valid program execution areas and the PCON1 register definition (Register 8-3) for MEMV bit conditions.

6.1 Microchip Unique identifier (MUI)

The PIC16(L)F15356/75/76/85/86 devices are individually encoded during final manufacturing with a Microchip Unique Identifier, or MUI. The MUI cannot be erased by a Bulk Erase command or any other useraccessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a required. It may also be used by the application manufacturer for a number of functions that require unverified unique identification, such as:

- · Tracking the device
- Unique serial number

The MUI consists of nine program words. When taken together, these fields form a unique identifier. The MUI is stored in nine read-only locations, located between 8100h to 8109h in the DIA space. Table 6-1 lists the addresses of the identifier words.

Note:	For applications that require verified unique
	identification, contact your Microchip Tech-
	nology sales office to create a Serialized
	Quick Turn Programming option.

6.2 External Unique Identifier (EUI)

The EUI data is stored at locations 810Ah to 8111h in the program memory region. This region is an optional space for placing application specific information. The data is coded per customer requirements during manufacturing. The EUI cannot be erased by a Bulk Erase command.

Note: Data is stored in this address range on receiving a request from the customer. The customer may contact the local sales representative or Field Applications Engineer, and provide them the unique identifier information that is required to be stored in this region.

6.3 Analog-to-Digital Conversion Data of the Temperature Sensor

The purpose of the temperature indicator module is to provide a temperature-dependent voltage that can be measured by an analog module. **Section 19.0 "Temperature Indicator Module**" explains the operation of the Temperature Indicator module and defines terms such as the low range and high range settings of the sensor.

The DIA table contains the internal ADC measurement values of the temperature sensor for low and high range at fixed points of reference. The values are measured during test and are unique to each device. The right-justified ADC readings are stored in the DIA memory region. The calibration data can be used to plot the approximate sensor output voltage, VTSENSE vs. Temperature curve.

- TSLR<3:1>: Address 8112h to 8114h store the measurements for the low range setting of the temperature sensor at VDD = 3V.
- TSHR<3:1>: Address 8115h to 8117h store the measurements for the high range setting of the temperature sensor at VDD = 3V.

The stored measurements are made by the device ADC using the internal VREF = 2.048V.

6.4 Fixed Voltage Reference Data

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- ADC positive reference
- Comparator positive input
- Digital-to-Analog Converter

For more information on the FVR, refer to **Section 18.0 "Fixed Voltage Reference (FVR)"**.

The DIA stores measured FVR voltages for this device in mV for the different buffer settings of 1x, 2x or 4x at program memory locations 8118h to 811Dh.

- FVRA1X stores the value of ADC FVR1 Output voltage for 1x setting (in mV)
- FVRA2X stores the value of ADC FVR1 Output Voltage for 2x setting (in mV)
- FVRA4X stores the value of ADC FVR1 Output Voltage for 4x setting (in mV)
- FVRC1X stores the value of Comparator FVR2 output voltage for 1x setting (in mV)
- FVRC2X stores the value of Comparator FVR2 output voltage for 2x setting (in mV)
- FVRC4X stores the value of Comparator FVR2 output voltage for 4x setting (in mV)

PIC16(L)F15356/75/76/85/86

© 2016 Microchip Technology Inc.

DS40001866A-page 133

14.2.6 ANALOG CONTROL

The ANSELA register (Register 14-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with its TRIS bit clear and its ANSEL bit set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog						
	mode after Reset. To use any pins as						
	digital general purpose or peripheral						
	inputs, the corresponding ANSEL bits						
	must be initialized to '0' by user software.						

14.2.7 WEAK PULL-UP CONTROL

The WPUA register (Register 14-5) controls the individual weak pull-ups for each PORT pin.

14.2.8 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic or by enabling an analog output, such as the DAC. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

-n/n = Value at POR and BOR/Value at all other Resets

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	
bit 7		•		•			bit 0	
Legend:	Legend:							
R = Readable bit W = Writable bit			U = Unimpler	mented bit, read	as '0'			

REGISTER 14-13: WPUB: WEAK PULL-UP PORTB REGISTER

x = Bit is unknown

'0' = Bit is cleared

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

1 = Pull-up enabled

u = Bit is unchanged

'1' = Bit is set

bit 7-0

0 = Pull-up disabled

REGISTER 14-14: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCB7 | ODCB6 | ODCB5 | ODCB4 | ODCB3 | ODCB2 | ODCB1 | ODCB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

ODCB<7:0>: PORTB Open-Drain Enable bits

For RB<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

© 2016 Microchip Technology Inc.

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1 ⁽¹⁾	IOCAF0 ⁽¹⁾
bit 7 bit C							bit 0
Legend:							
R = Readable	bit W = Writable bit U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unki	nown	-n/n = Value at POR and BOR/Value at all other Resets			ther Resets

REGISTER 17-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

bit 7-6 Unimplemented: read as '0'

'1' = Bit is set

bit 5-0

IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits

'0' = Bit is cleared

- 1 = An enabled change was detected on the associated pin.
 - Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

HS - Bit is set in hardware

0 = No change was detected, or the user cleared the detected change.

Note 1: If the debugger is enabled, these bits are not available for use.

REGISTER 17-12: IOCEF: INTERRUPT-ON-CHANGE PORTE FLAG REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	—	—		IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾
bit 7 bit 0							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Reset			ther Resets

bit 7-4	Unimplemented:	Read as '0'

'1' = Bit is set

bit 3

IOCEF<3:0>: Interrupt-on-Change PORTE Flag bit

'0' = Bit is cleared

1 = An enabled change was detected on the associated pin

Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.

HS - Bit is set in hardware

0 = No change was detected, or the user cleared the detected change

Note 1: Present only on PIC16(L)F15375/76/85/86.

© 2016 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	-	—	—	INTEDG	146
PIE0	—	—	TMR0IE	IOCIE	-	—	—	INTE	147
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	255
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	255
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	256
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	257
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	257
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	258
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	259
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	259
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	259
IOCEP	—	-	—	—	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾	260
IOCEN	—	—	—	—	IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾	260
IOCEF	_	_	—	_	IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾	261

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

Note 1: Present only in PIC16(L)F15375/76/85/86.

23.10 CWG1 Auto-shutdown Source

The output of the comparator module can be used as an auto-shutdown source for the CWG1 module. When the output of the comparator is active and the corresponding ASxE is enabled, the CWG operation will be suspended immediately (see **Section 30.10 "Auto-Shutdown"**).

23.11 Operation in Sleep Mode

The comparator module can operate during Sleep. The comparator clock source is based on the Timer1 clock source. If the Timer1 clock source is either the system clock (FOSC) or the instruction clock (FOSC/4), Timer1 will not operate during Sleep, and synchronized comparator outputs will not operate.

A comparator interrupt will wake the device from Sleep. The CxIE bits of the PIE2 register must be set to enable comparator interrupts.

Mada	MODE<4:0>		Output	Operation	Timer Control			
wode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop	
Free		000		Software gate (Figure 27-4)	ON = 1		ON = 0	
		001	Period Pulse	Hardware gate, active-high (Figure 27-5)	ON = 1 and TMRx_ers = 1	—	ON = 0 or TMRx_ers = 0	
		010		Hardware gate, active-low	ON = 1 and TMRx_ers = 0	—	ON = 0 or TMRx_ers = 1	
	0.0	011		Rising or falling edge Reset		TMRx_ers		
Period	00	100	Period	Rising edge Reset (Figure 27-6)	-	TMRx_ers ↑	ON = 0	
		101	Pulse	Falling edge Reset		TMRx_ers ↓		
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0	
		111	Reset	High level Reset (Figure 27-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1	
		000	One-shot	Software start (Figure 27-8)	ON = 1	_		
	01	001	Edge	Rising edge start (Figure 27-9)	ON = 1 and TMRx_ers ↑			
One-shot		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓			
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	-	ON = 0 or Next clock after TMRx = PRx (Note 2)	
		100	Edge	Rising edge start and Rising edge Reset (Figure 27-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑		
		101	triggered start and hardware Reset (Note 1)	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓		
		110		Rising edge start and Low level Reset (Figure 27-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0		
		111		Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1		
		000		Rese	rved			
		001	Edge	Rising edge start (Figure 27-12)	ON = 1 and TMRx_ers ↑	_	ON = 0 or	
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers		TMRx = PRx (Note 3)	
Reserved	10	100	Reserved					
Reserved		101		Rese	rved			
One-shot		110	Level triggered	High level start and Low level Reset (Figure 27-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or	
		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)	
Reserved	11	xxx	Reserved					

TABLE 27-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

REGISTER 27-4: T2RST: TIMER2 EXTERNAL RESET SIGNAL SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		RSEL	<3:0>	
bit 7							bit 0
Legend:	Legend:						
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-4	Unimplemented: Read as '0'
bit 3-0	RSEL<3:0>: Timer2 External Reset Signal Source Selection bits
	1111 = Reserved
	1101 = LC4_out
	1100 = LC3_out
	1011 = LC2_out
	1010 = LC1_out
	1001 = ZCD1_output
	1000 = C2OUT_sync
	0111 = C1OUT_sync
	0110 = PWM6_out
	0101 = PWM5_out
	0100 = PWM4_out
	0011 = PWM3_out
	0010 = CCP2_out
	0001 = CCP1_out
	0000 = T2INPPS

PIC16(L)F15356/75/76/85/86

REGISTER 28-4: CCPRxH REGISTER: CCPx REGISTER HIGH BYTE

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CCPRx | <15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

oits
bits
1

© 2016 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	_	_	_		INTEDG	146
PIR4	—	—	—	_	_	—	TMR2IF	TMR1IF	159
PIE4	—	—	—	_	_	_	TMR2IE	TMR1IE	151
CCP1CON	EN	—	OUT	FMT		MODE	<3:0>		366
CCP1CAP	—	—	—	_	_		CTS<2:0>		368
CCPR1L	Capture/Con	Capture/Compare/PWM Register 1 (LSB)						368	
CCPR1H	Capture/Compare/PWM Register 1 (MSB)						369		
CCP2CON	EN —		OUT	FMT	MODE<3:0>			366	
CCP2CAP	—	—	—	_	_		CTS<2:0>		368
CCPR2L	Capture/Con	Capture/Compare/PWM Register 1 (LSB)						368	
CCPR2H	Capture/Compare/PWM Register 1 (MSB)						368		
CCP1PPS	— — CCP1PPS<5:0>						241		
CCP2PPS	— — — CCP2PPS<5:0>					241			
RxyPPS	—	_	_			RxyPPS<4:0>	•		242
ADACT	—	—	—	_		ADAC	T<3:0>		280
CLCxSELy	_	_	_			LCxDyS<4:0>			412
CWG1ISM	_	_	_	_		IS<	3:0>		401

TABLE 28-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

Instruction Descriptions 36.3

ADDFSR	Add Literal to FSRn			
Syntax:	[label] ADDFSR FSRn, k			
Operands:	-32 ≤ k ≤ 31 n ∈ [0, 1]			
Operation:	$FSR(n) + k \rightarrow FSR(n)$			
Status Affected:	None			
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.			
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to			

ANDLW	AND literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \le k \le 255$			
Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	Z			
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.			

ADDLW	Add literal and W			
Syntax:	[<i>label</i>] ADDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	$(W) + k \to (W)$			
Status Affected:	C, DC, Z			
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.			

wrap-around.

ANDWF	AND W with f		
Syntax:	[<i>label</i>] ANDWF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(W) .AND. (f) \rightarrow (destination)		
Status Affected:	Z		
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.		

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) + (f) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>] ASRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in

register 'f'.

ADDWFC ADD W and CARRY bit to) f
-------------------------------	-----

Syntax:	[<i>label</i>] ADDWFC f {,d}					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(W) + (f) + (C) \rightarrow dest$					
Status Affected:	C, DC, Z					
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.					

PIC16(L)F15356/75/76/85/86

© 2016 Microchip Technology Inc.

DS40001866A-page 520

PIC16(L)F15356/75/76/85/86

TABLE 37-7: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Typt	Max.	Units	Conditions	
ECL Osc	ECL Oscillator							
OS1	F _{ECL}	Clock Frequency		\sum	> 500	kHz		
OS2	T _{ECL_DC}	Clock Duty Cycle	40	<u> </u>	60	%		
ECM Os	cillator		> /	\bigtriangledown				
OS3	F _{ECM}	Clock Frequency	\mathcal{X}	$\rangle -$	4	MHz		
OS4	T _{ECM_DC}	Clock Duty Cycle	40	—	60	%		
ECH Osc	cillator		\sim	•		•	•	
OS5	F _{ECH}	Clock Frequency	> -	—	32	MHz		
OS6	T _{ECH_DC}	Clock Duty Sycle	40	—	60	%		
LP Oscil	lator			•			•	
OS7	F _{LP}	Clock Frequency		_	100	kHz	Note 4	
XT Oscil	lator /							
OS8	F _{XT}			_	4	MHz	Note 4	
HS Oscillator								
OS9	F _{HS})	Clock Frequency		—	20	MHz	Note 4	
System Oscillator								
0S20	Fose	System Clock Frequency	—	—	32	MHz	(Note 2, Note 3)	
ØS21	FCY	Instruction Frequency	_	Fosc/4	—	MHz		
0\$22	/т _{сү}	Instruction Period	125	1/F _{CY}	_	ns		

These parameters are characterized but not tested.

Pata in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: The system clock frequency (Fosc) is selected by the "main clock switch controls" as described in Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)".

- 3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 37.2 "Standard Operating Conditions".
- 4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking the device with the external square wave, one of the EC mode selections must be used.

TABLE 37-23: SPI MODE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25*Tcy	_		ns	\sum
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20			ns	
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20	—		ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	- /	/ 1	ns	
SP74*	TscH2DIL, TscL2DIL	Hold time of SDI data input to SCK edge	100	-<		_ † \$\${₹	7
SP75*	TDOR	SDO data output rise time		10	25⁄	/ ns [~]	$3.0V \leq V\text{DD} \leq 5.5V$
			- <	25	\ 50 \	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP76*	TDOF	SDO data output fall time	_ `	10	25	ns	
SP77*	TssH2doZ	SS↑ to SDO output high-impedance	10	1	50	ns	
SP78*	TscR	SCK output rise time			_⁄25	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		(Master mode)	$\langle - \rangle$	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP79*	TSCF	SCK output fall time (Master mode)	<u> </u>	10	25	ns	
SP80*	TscH2doV,	SDO data output valid after SCK edge			50	ns	$3.0V \le V\text{DD} \le 5.5V$
	ISCL2DOV		$ \sim$	—	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP81*	TDOV2SCH, TDOV2SCL	SDO data output setup to SCK edge	TC	—		ns	
SP82*	TssL2DoV	SDO data output valid after SS edge	\sim –	_	50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 TCY + 40	_		ns	

These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensio	Dimension Limits			MAX		
Number of Pins	Ν	28				
Pitch	е		0.65 BSC			
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00 5.30 5.60				
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	_	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B