

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	44
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 43x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15386-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

© 2016 Microchip Technology Inc.

Name	Function	Input Type	Output Type	Description
RA6/ANA6/CLKOUT/IOCA6/OSC1	RA6	TTL/ST	CMOS/OD	General purpose I/O.
	ANA6	AN	_	ADC Channel A6 input.
	CLKOUT	_	CMOS/OD	Fosc/4 digital output (in non-crystal/resonator modes).
	IOCA6	TTL/ST	_	Interrupt-on-change input.
	OSC1	XTAL	_	External Crystal/Resonator (LP, XT, HS modes) driver input.
RA7/ANA7/CLKIN/IOCA7/OSC2	RA7	TTL/ST	CMOS/OD	General purpose I/O.
	ANA7	AN	—	ADC Channel A7 input.
	CLKIN	TTL/ST	_	External digital clock input.
	IOCA7	TTL/ST	_	Interrupt-on-change input.
	OSC2	_	XTAL	External Crystal/Resonator (LP, XT, HS modes) driver output.
$\frac{\text{RB0/ANB0/C2IN1+/ZCD1/\overline{SS2}^{(1)}}{\text{RB0/ANB0/C2IN1+/ZCD1/\overline{SS2}^{(1)}}$	RB0	TTL/ST	CMOS/OD	General purpose I/O.
CWG1 ¹ //INT ¹ //IOCB0	ANB0	AN	_	ADC Channel B0 input.
	C2IN1+	AN	_	Comparator positive input.
	ZCD1	AN	AN	Zero-cross detect input pin (with constant current sink/source).
	SS2 ⁽¹⁾	TTL/ST	_	MSSP2 SPI slave select input.
	CWG1 ⁽¹⁾	TTL/ST	_	Complementary Waveform Generator 1 input.
	INT ⁽¹⁾	TTL/ST	_	External interrupt request input.
	IOCB0	TTL/ST	_	Interrupt-on-change input.
RB1/ANB1/C1IN3-/C2IN3-/	RB1	TTL/ST	CMOS/OD	General purpose I/O.
SULT VSUKT VIUCBT	ANB1	AN	_	ADC Channel B1 input.
	C1IN3-	AN	_	Comparator negative input.
	C2IN3-	AN	_	Comparator negative input.
	SCL1 ⁽¹⁾	I ² C	OD	MSSP1 I ² C input/output.
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK1 is a PPS remappable input and output).
	IOCB1	TTL/ST	—	Interrupt-on-change input.
RB2/ANB2/SDA1 ⁽¹⁾ /SDI1 ⁽¹⁾ /IOCB2	RB2	TTL/ST	CMOS/OD	General purpose I/O.
	ANB2	AN	—	ADC Channel B2 input.
	SDA1 ⁽¹⁾	I ² C	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI serial data input (default input location, SDI1 is a PPS remappable input and output).
	IOCB2	TTL/ST	—	Interrupt-on-change input.
RB3/ANB3/C1IN2-/C2IN2-/IOCB3	RB3	TTL/ST	CMOS/OD	General purpose I/O.
	ANB3	AN	—	ADC Channel B3 input.
	C1IN2-	AN	_	Comparator negative input.
	C2IN2-	AN	_	Comparator negative input.
	IOCB3	TTL/ST	_	Interrupt-on-change input.

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION (CONTINUED)

TTL = TTL compatible input HV = High Voltage

= Schmitt Trigger input with CMOS levels

I²C = Schmitt Trigger input with I²C

Note

= Crystal levels XTAL This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 15-5, Table 15-6 and Table 15-6.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

	Bank 60		Bank 61		Bank 62		Bank 63	
1E3Fh	RE7PPS ⁽²⁾	1EBFh	—	1F3Fh	IOCAF	1FBFh	—	
1E40h	_	1EC0h	_	1F40h	_	1FC0h	_	
1E41h	_	1EC1h	_	1F41h	—	1FC1h	_	
1E42h	_	1EC2h	_	1F42h	_	1FC2h	_	
1E43h	_	1EC3h	ADACTPPS	1F43h	ANSELB	1FC3h	_	
1E44h	_	1EC4h	_	1F44h	WPUB	1FC4h	_	
1E45h	_	1EC5h	SSP1CLKPPS	1F45h	ODCONB	1FC5h	_	
1E46h	—	1EC6h	SSP1DATPPS	1F46h	SLRCONB	1FC6h	—	
1E47h	—	1EC7h	SSP1SSPPS	1F47h	INLVLB	1FC7h	—	
1E48h	—	1EC8h	SSP2CLKPPS	1F48h	IOCBP	1FC8h	—	
1E49h	—	1EC9h	SSP2DATPPS	1F49h	IOCBN	1FC9h	—	
1E4Ah	—	1ECAh	SSP2SSPPS	1F4Ah	IOCBF	1FCAh	—	
1E4Bh	—	1ECBh	RXDT1PPS	1F4Bh	—	1FCBh	—	
1E4Ch	—	1ECCh	TXCK1PPS	1F4Ch	—	1FCCh	—	
1E4Dh	—	1ECDh	RXD2TPPS	1F4Dh	—	1FCDh	—	
1E4Eh	—	1ECEh	TXCK2PPS	1F4Eh	ANSELC	1FCEh	—	
1E4Fh	_	1ECFh		1F4Fh	WPUC	1FCFh	_	
1E50h	ANSELF ⁽²⁾	1ED0h	_	1F50h	ODCONC	1FD0h	—	
1E51h	WPUF ⁽²⁾	1ED1h	_	1F51h	SLRCONC	1FD1h	_	
1E52h	ODCONF ⁽²⁾	1ED2h	_	1F52h	INLVLC	1FD2h	_	
1E53h	SLRCONF ⁽²⁾	1ED3h	_	1F53h	IOCCP	1FD3h	_	
1E54h	INLVLF ⁽²⁾	1ED4h	_	1F54h	IOCCN	1FD4h	—	
1E55h	—	1ED5h		1F55h	IOCCF	1FD5h	—	
1E56h	—	1ED6h	-	1F56h	—	1FD6h	—	
1E57h	—	1ED7h	—	1F57h	—	1FD7h	—	
1E58h	—	1ED8h	—	1F58h	—	1FD8h	—	
1E59h	-	1ED9h	—	1F59h	ANSELD ⁽¹⁾	1FD9h	—	
1E5Ah	—	1EDAh		1F5Ah	WPUD ⁽¹⁾	1FDAh	—	
1E5Bh	_	1EDBh	_	1F5Bh	ODCOND ⁽¹⁾	1FDBh	—	
1E5Ch	_	1EDCh	_	1F5Ch	SLRCOND ⁽¹⁾	1FDCh	_	
1E5Dh	—	1EDDh	—	1F5Dh	INLVLD ⁽¹⁾	1FDDh	—	
1E5Eh	—	1EDEh	_	1F5Eh	—	1FDEh	—	
1E5Fh	_	1EDFh	_	1F5Fh	—	1FDFh	—	
1E60h	—	1EE0h	_	1F60h	—	1FE0h	—	
1E61h	—	1EE1h	-	1F61h	—	1FE1h	—	
1E62h	—	1EE2h	—	1F62h	—	1FE2h	—	
1E63h	—	1EE3h	—	1F63h	—	1FE3h	BSR_ICDSHAD	
1E64h	—	1EE4h	—	1F64h	ANSELE ⁽¹⁾	1FE4h	STATUS_SHAD	
1E65h	—	1EE5h	—	1F65h	WPUE	1FE5h	WREG_SHAD	
1E66h	_	1EE6h	_	1F66h	ODCONE ⁽¹⁾	1FE6h	BSR_SHAD	
1E67h	—	1EE7h	_	1F67h	SLRCONE ⁽¹⁾	1FE7h	PCLATH_SHAD	
1E68h	—	1EE8h		1F68h	INLVLE	1FE8h	FSR0L_SHAD	
1E69h	—	1EE9h	—	1F69h	IOCEP	1FE9h	FSR0H_SHAD	
1E6Ah	—	1EEAh		1F6Ah	IOCEN	1FEAh	FSR1L_SHAD	
1E6Bh	_	1EEBh	_	1F6Bh	IOCEF	1FEBh	FSR1H_SHAD	
1E6Ch	—	1EECh	_	1F6Ch	-	1FECh	—	
1E6Dh	_	1EEDh	_	1F6Dh	—	1FEDh	STKPTR	
1E6Eh	_	1EEEh	_	1F6Eh	—	1FEEh	TOSL	
1E6Fh	_	1EEFh	—	1F6Fh	—	1FEFh	TOSH	

TABLE 4-9: PIC16(L)F15356/75/76/85/86 MEMORY MAP, BANKS 60, 61, 62, AND 63

Legend:

= Unimplemented data memory locations, read as '0'

Note 1: Present only on PIC16(L)F15375/76/85/86.

2: Present only on PIC16(L)F15385/86

	0.20				B/ III CO U						
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 14											
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
70Ch	PIR0	—	—	TMR0IF	IOCIF	—	_		INTF	000	000
70Dh	PIR1	OSFIF	CSWIF	_	_	_	—	—	ADIF	0000	0000
70Eh	PIR2	_	ZCDIF	_	—	_	—	C2IF	C1IF	-000	-000
70Fh	PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	0000 0000	0000 0000
710h	PIR4	_	_	—	_	_	—	TMR2IF	TMR1IF	00	00
711h	PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	—	—	TMR1GIF	00000	00000
712h	PIR6	_	_	—	—	-	—	CCP2IF	CCP1IF	00	00
713h	PIR7	_	_	NVMIF	NCO1IF	-	—	—	CWG1IF		000
714h	_				Unimple	mented				_	—
715h	—				Unimple	mented				—	—
716h	PIE0	—	—	TMR0IE	IOCIE	—	—	—	INTE	000	000
717h	PIE1	OSFIE	CSWIE	_	—	_	—	_	ADIE	0000	0000
718h	PIE2	—	ZCDIE	_	_	_	_	C2IE	C1IE	-000	-000
719h	PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	0000 0000	0000 0000
71Ah	PIE4	-	—	—	—	_	—	TMR2IE	TMR1IE	00	00
71Bh	PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	_	—	—	TMR1GIE	00000	00000
71Ch	PIE6	_	—		—	_	_	CCP2IE	CCP1IE	00	00
71Dh	PIE7			NVMIE	NCO1IE	_	—	—	CWG1IE	000	000
71Eh	_				Unimple	mented				_	_
71Fh	_				Unimple	mented				_	_

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

REGISTER 5-2:

CONFIGURATION WORD 2: SUPERVISORS

	•						
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	—
		bit 13					bit 8
R/P-1	R/P-1	R/P-1	U-1	U-1	U-1	R/P-1	R/P-1
BOREN1	BOREN0	LPBOREN	_	—	_	PWRTE	MCLRE
bit 7							bit 0
Legend:							
R = Readable bit		P = Programma	able bit	x = Bit is unkno	wn	U = Unimplemen '1'	ted bit, read as
'0' = Bit is cle	ared	'1' = Bit is set		W = Writable bi	t	n = Value when b Erase	lank or after Bulk
bit 13	DEBUG: Debu	ugger Enable bit					
	1 = Backgrour	nd debugger disa	bled				
hit 12	STVREN: Stac	k Overflow/Unde	erflow Reset En	able bit			
	1 = Stack Ove	erflow or Underflo	w will cause a f	Reset			
	0 = Stack Ove	erflow or Underflo	w will not cause	e a Reset			
bit 11	PPS1WAY: PP	SLOCK One-Wa	y Set Enable b	it	codictore romain	locked after one cl	par/sot ovelo
	0 = The PPSL	OCK bit can be	set and cleared	repeatedly (subj	ect to the unlock	sequence)	eal/set cycle
bit 10	ZCDDIS: Zero	-Cross Detect Di	sable bit				
	1 = ZCD disab	led. ZCD can be	enabled by set	ting the ZCDSEN	I bit of the ZCDC	CON register	
bit 9	BORV: Brown-	-out Reset Voltad	e Selection bit ⁽	1)			
2.1.0	1 = Brown-out	t Reset voltage (\ t Reset voltage ()	/BOR) set to low	ver trip point level	اد ا		
bit 8	Unimplement	ed: Read as '1'	bort, oot to hig				
bit 7-6	BOREN<1:0>	Brown-out Rese	et Enable bits				
	When enabled	l, Brown-out Res	et Voltage (Vво	R) is set by the B	ORV bit		
	11 = Brown-c	out Reset is enab	oled; SBOREN I	bit is ignored na. disabled in Sl	een [.] SBOREN h	nit is ignored	
	01 = Brown-c	out Reset is enab	led according to	o SBOREN			
	00 = Brown-c	out Reset is disat	bled				
bit 5	1 = UI PBOR	w-Power BOR E is disabled	nable bit				
	0 = ULPBOR	is enabled					
bit 4-2	Unimplement	ed: Read as '1'					
bit 1	PWRTE: Powe	er-up Timer Enab	le bit				
	1 = PWRT is c 0 = PWRT is c	disabled enabled					
bit 0	MCLRE: Maste	er Clear (MCLR)	Enable bit				
	If LVP = 1:						
	RE3 pin function $If I VP = 0$	on is MCLR (it wi	Il reset the devi	ce when driven lo	ow)		
	1 = <u>MCLR</u> pin	is MCLR (it will r	eset the device	when driven low)		
	0 = MCLR pin	may be used as	general purpos	e RE3 input			
Note 1: S	See Vbor parame	eter for specific tr	ip point voltage:	S.			

2: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM

© 2016 Microchip Technology Inc

Preliminary

EXAMPLE 13-3: ERASING ONE ROW OF PROGRAM FLASH MEMORY (PFM)

; This sample row erase routine assumes the following: ; 1.A valid address within the erase row is loaded in variables ADDRH:ADDRL ; 2.ADDRH and ADDRL are located in common RAM (locations 0x70 - 0x7F)									
BANKSEL MOVF MOVWF MOVF BCF BSF	NVMADRL ADDRL,W NVMADRL ADDRH,W NVMADRH NVMCON1,NVMREGS NVMCON1,FREE	<pre>; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Choose PFM memory area ; Specify an erase operation</pre>							
BSF BCF ;	NVMCON1,WREN INTCON,GIE REQU	; Enable writes ; Disable interrupts during unlock sequence IRED UNLOCK SEQUENCE:							
MOVLW MOVWF MOVLW MOVWF BSF	55h NVMCON2 AAh NVMCON2 NVMCON1,WR	<pre>; Load 55h to get ready for unlock sequence ; First step is to load 55h into NVMCON2 ; Second step is to load AAh into W ; Third step is to load AAh into NVMCON2 ; Final step is to set WR bit</pre>							
; BSF BCF	INTCON,GIE NVMCON1,WREN	; Re-enable interrupts, erase is complete ; Disable writes							

TABLE 13-2: NVM ORGANIZATION AND ACCESS INFORMATION

	Master Values		N	VMREG Acce	ess	FSR Access		
Memory Function	Program Counter (PC), ICSP™ Address	Memory Type	NVMREGS bit (NVMCON1)	NVMADR< 14:0>	Allowed Operations	FSR Address	FSR Programming Address	
Reset Vector	0000h		0	0000h		8000h		
Liser Memory	0001h		0	0001h		8001h		
User Memory	0003h		0	0003h	Devi	8003h		
INT Vector	0004h	PFM	0	0004h	Read Write	8004h	Read-0nly	
	0005h			0005h	Willo	8005h		
User Memory	1FFFh		0	1FFFh		9FFFh		
	3FFFh			3FFFh		BFFFh		
	8000h	DEM	1	0000h	Read			
UseriD	8003h	PEM	Ť	0003h	Write			
Reserved	8004h	—	-	0004h	—			
Rev ID	8005h		1	0005h	Deed Only			
Device ID	8006h		1	0006h	Read-Only	No	A	
CONFIG1	8007h		1	0007h		INO	Access	
CONFIG2	8008h	PFM	1	0008h				
CONFIG3	8009h		1	0009h	Read			
CONFIG4	800Ah		1	000Ah	Wille			
CONFIG5	800Bh		1	000Bh				
DIA and DCI	8100h-82FFh	PFM and Hard coded	1	0100h- 02FFh	Read-Only	No	Access	

Output Cinnel	Durand	Remappable to Pins of PORTx								
Name	RXYPPS Register Value		PI	C16(L)F15375	5/76					
Numo		PORTA	PORTB	PORTC	PORTD	PORTE				
CLKR	0x1B		•	•						
NCO10UT	0x1A	٠			•					
TMR0	0x19		•	•						
SDO2/SDA2	0x18		•		•					
SCK2/SCL2	0x17		•		•					
SDO1/SDA1	0x16		•	•						
SCK1/SCL1	0x15		•	•						
C2OUT	0x14	٠				•				
C10UT	0x13	٠			•					
DT2	0x12		•		•					
TX2/CK2	0x11		•		•					
DT1	0x10		•	•						
TX1/CK1	0x0F		•	•						
PWM6OUT	0x0E	٠			•					
PWM5OUT	0x0D	٠		•						
PWM4OUT	0x0C		•		•					
PWM3OUT	0x0B		•		•					
CCP2	0x0A		•	•						
CCP1	0x09		•	•						
CWG1D	0x08		•		•					
CWG1C	0x07		•		•					
CWG1B	0x06		•		•					
CWG1A	0x05		•	•						
CLC4OUT	0x04		•		•					
CLC3OUT	0x03		•		•					
CLC2OUT	0x02	٠		•						
CLC1OUT	0x01	•		•						

TABLE 15-6: PPS OUTPUT SIGNAL ROUTING OPTIONS (PIC16(L)F15375/76)

20.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 20-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

24.9 Register Definitions: ZCD Control

REGISTER 24-1: ZCDCON: ZERO-CROSS DETECTION CONTROL REGISTER

R/W-q/q	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0			
SEN		OUT	POL			INTP	INTN			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = value de	pends on Config	guration bits				
 bit 7 SEN: Zero-Cross Detection Enable bit 1 = Zero-cross detect is enabled. ZCD pin is forced to output to source and sink current. 0 = Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls. 										
bit 6	Unimplement	ted: Read as '	0'							
bit 5	OUT: Zero-Cross Detection Logic Level bit POL bit = 1: 1 = ZCD pin is sourcing current 0 = ZCD pin is sinking current POL bit = 0: 1 = ZCD pin is sinking current 0 = ZCD pin is sinking current 0 = ZCD pin is sinking current									
bit 4	POL: Zero-Cr 1 = ZCD logic 0 = ZCD logic	oss Detection c output is inve c output is not	Logic Output l rted inverted	Polarity bit						
bit 3-2	Unimplement	ted: Read as '	0'							
bit 1	INTP: Zero-Cross Positive Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCDx_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCDx output transition									
bit 0	INTN: Zero-C 1 = ZCDIF bit 0 = ZCDIF bit	ross Negative t is set on high t is unaffected	Edge Interrup -to-low ZCDx <u>-</u> by high-to-low	t Enable bit _output transiti / ZCDx_output	on transition					

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
ZCDxCON	EN	_	OUT	POL	_	_	INTP	INTN	314

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 24-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	—	100
CONFIG2	7:0	BOREN <1:0>		LPBOREN		_		PWRTE	MCLRE	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			GSS<4:0>		
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by						vare	
bit 7-5	Unimplemen	ted: Read as '	o'				
bit 4-0	GSS<4:0>: Ti	imer1 Gate Se	ect bits				
	11111-1000	1 = Reserved					
	10000 = LC4	_out					
	01111 = LC3	_out					
	01110 = LC2	_out					
	01101 = LC1	_out					
	00100 = ZCD	01_output					
	01011 = C2O	OUT_sync					
	01010 = C1C	OUT_sync					
	01001 = NCC	D1_out					
	01000 = PWN	M6_out					
	00111 = PW	M5_out					
	00110 = PW	M4_out					
	00101 = PW	M3_out					
	00100 = CCF	2_out					
	00011 = CCF	²¹ _out					
	00010 = IMF	R2_postscaled					
	00001 = 1me		tput				
	00000 = 11G	773					

REGISTER 26-4: T1GATE TIMER1 GATE SELECT REGISTER

27.5.7 EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE

In Edge-Triggered Hardware Limit One-Shot modes the timer starts on the first external signal edge after the ON bit is set and resets on all subsequent edges. Only the first edge after the ON bit is set is needed to start the timer. The counter will resume counting automatically two clocks after all subsequent external Reset edges. Edge triggers are as follows:

- Rising edge start and Reset (MODE<4:0> = 01100)
- Falling edge start and Reset (MODE<4:0> = 01101)

The timer resets and clears the ON bit when the timer value matches the PRx period value. External signal edges will have no effect until after software sets the ON bit. Figure 27-10 illustrates the rising edge hardware limit one-shot operation.

When this mode is used in conjunction with the CCP then the first starting edge trigger, and all subsequent Reset edges, will activate the PWM drive. The PWM drive will deactivate when the timer matches the CCPRx pulse-width value and stay deactivated until the timer halts at the PRx period match unless an external signal edge resets the timer before the match occurs.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PSYNC ^{(1, 2}	CKPOL ⁽³⁾	CKSYNC ^(4, 5)			MODE<4:0>(6, 7))			
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
u = Bit is unc	hanged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/\	/alue at all other	Resets		
'1' = Bit is set	t	'0' = Bit is cleare	ed						
bit 7	PSYNC: Timer	x Prescaler Syncl	nronization Ena	able bit ^(1, 2)					
	1 = TMRx Pre	escaler Output is s	synchronized to	Fosc/4					
	0 = IMRx Pre	escaler Output is r	not synchronize	ed to Fosc/4					
bit 6	CKPOL: Timer	rx Clock Polarity S	Selection bit(3)						
	1 = Failing ed 0 = Rising ed	ige of input clock (locks timer/pre	escaler					
bit 5	CKSYNC: Tim	erx Clock Synchro	nization Enabl	e bit(4, 5)					
bit o	1 = ON regist	er bit is synchroni	zed to TMR2	clk input					
	0 = ON regist	er bit is not synch	ronized to TMF	R2_clk input					
bit 4-0	bit 4-0 MODE<4:0>: Timerx Control Mode Selection bits ^(6, 7)								
	See Table 27-1								
Note 1:	Setting this bit ensu	ures that reading	TMRx will retur	n a valid value.					
2:	When this bit is '1',	Timer2 cannot op	perate in Sleep	mode.					
3:	3: CKPOL should not be changed while ON = 1.								
4:	Setting this bit ensu	ures glitch-free op	eration when th	ne ON is enabled	or disabled.				
5:	: When this bit is set then the timer operation will be delayed by two TMRx input clocks after the ON bit is set.					is set.			
6:	Unless otherwise in of TMRx).	ndicated, all modes	s start upon ON	I = 1 and stop upo	on ON = 0 (stops	occur without aff	ecting the value		

REGISTER 27-3: T2HLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

REGISTER 31-11: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set '0' = Bit		'0' = Bit is clea	ared				
bit 7-4	Unimplemented: Read as '0'						
bit 3	MLC4OUT: Mirror copy of LC4OUT bit						
bit 2	it 2 MLC3OUT: Mirror copy of LC3OUT bit						
bit 1 MLC2OUT: Mirror copy of LC2OUT bit							

bit 0 MLC10UT: Mirror copy of LC10UT bit

32.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 32-36). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 32-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 32-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

33.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VoL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 33-3 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

33.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 33-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXxREG register.

33.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXxSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXxIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

33.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXxREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXxREG until the Stop bit of the previous character has been transmitted. The pending character in the TXxREG is then transferred to the TSR in one TcY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXxREG.

33.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDxCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 33.4.1.2 "Clock Polarity"**.

33.1.1.4 Transmit Interrupt Flag

The TXxIF interrupt flag bit of the PIR3 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXxREG. In other words, the TXxIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXxREG. The TXxIF flag bit is not cleared immediately upon writing TXxREG. TXxIF becomes valid in the second instruction cycle following the write execution. Polling TXxIF immediately following the TXxREG write will return invalid results. The TXxIF bit is read-only, it cannot be set or cleared by software.

The TXxIF interrupt can be enabled by setting the TXxIE interrupt enable bit of the PIE3 register. However, the TXxIF flag bit will be set whenever the TXxREG is empty, regardless of the state of TXxIE enable bit.

To use interrupts when transmitting data, set the TXxIE bit only when there is more data to send. Clear the TXxIE interrupt enable bit upon writing the last character of the transmission to the TXxREG.

33.1.2.8 Asynchronous Reception Setup:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RXxIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RXxIE interrupt enable bit was also set.
- 8. Read the RCxSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

ASYNCHRONOUS RECEPTION

33.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RXxIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RXxIE interrupt enable bit was also set.
- 9. Read the RCxSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

RX/DT pin	Start bit bit 0 v bit 1 v v bit 7/8 Stop bit v bit v bit v bit 0 v v bit
Rcv Shift Reg → Rcv Buffer Reg.	Word 1 Word 2 S
Read Rcv Buffer Reg. RCxREG	
RXxIF (Interrupt Flag)	
OERR bit	
CREN	
Note: This cause	s timing diagram shows three words appearing on the RX input. The RCxREG (receive buffer) is read after the third word, sing the OERR (overrun) bit to be set.

FIGURE 33-5:

ΜΟΥΨΙ	Move W to INDFn				
Syntax:	[label] MOVWI ++FSRn [label] MOVWIFSRn [label] MOVWI FSRn++ [label] MOVWI FSRn [label] MOVWI k[FSRn]				
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31				
Operation:	$\label{eq:W} \begin{split} W &\rightarrow INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be} \\ \text{either:} \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \text{Unchanged} \end{split}$				
Status Affected:	None				

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation			
Syntax:	[label] NOP			
Operands:	None			
Operation:	No operation			
Status Affected:	None			
Description:	No operation.			
Words:	1			
Cycles:	1			
Example:	NOP			

RESET	Software Reset			
Syntax:	[label] RESET			
Operands:	None			
Operation:	Execute a device Reset. Resets the RI flag of the PCON register.			
Status Affected:	None			
Description:	This instruction provides a way to execute a hardware Reset by software.			

RETFIE	Return from Interrupt			
Syntax:	[label] RETFIE k			
Operands:	None			
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$			
Status Affected:	None			
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.			
Words:	1			
Cycles:	2			
Example:	RETFIE			
	After Interrupt PC = TOS GIE = 1			

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	Ν		40	
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	-	_	.700

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B