

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15356-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/CLCIN0 ⁽¹⁾ /	RA0	TTL/ST	CMOS/OD	General purpose I/O.
IOCAU	ANA0	AN	_	ADC Channel A0 input.
	C1IN0-	AN	_	Comparator negative input.
	C2IN0-	AN	_	Comparator negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA0	TTL/ST	_	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/CLCIN1(1)/	RA1	TTL/ST	CMOS/OD	General purpose I/O.
IOCA1	ANA1	AN	_	ADC Channel A1 input.
	C1IN1-	AN	—	Comparator negative input.
	C2IN1-	AN	_	Comparator negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA1	TTL/ST	_	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DAC10011/IOCA2	ANA2	AN	_	ADC Channel A2 input.
	C1IN0+	AN	_	Comparator positive input.
	C2IN0+	AN	_	Comparator positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	_	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/DACREF+/	RA3	TTL/ST	CMOS/OD	General purpose I/O.
IUCA3	ANA3	AN	_	ADC Channel A3 input.
	C1IN1+	AN	_	Comparator positive input.
	VREF+	AN	_	External ADC and/or DAC positive reference input.
	IOCA3	TTL/ST	_	Interrupt-on-change input.
RA4/ANA4/C1IN1-/T0CKI ⁽¹⁾ /IOCA4	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	_	ADC Channel A4 input.
	C1IN1-	AN	_	Comparator negative input.
	T0CKI ⁽¹⁾	TTL/ST	_	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
RA5/ANA5/SS1 ⁽¹⁾ /T1G ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	_	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	T1G ⁽¹⁾	TTL/ST	_	Timer1 gate input.
	IOCA5	TTL/ST	—	Interrupt-on-change input.
Legend: AN = Analog input or outp TTL = TTL compatible input	ut CMOS = ut ST =	 CMOS co Schmitt Tr 	mpatible input or	output OD = Open-Drain CMOS levels I ² C = Schmitt Trigger input with I ² C

TABLE 1-4: PIC16(L)F15385/86 PINOUT DESCRIPTION

TTL = TTL compatible input HV = High Voltage

XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-7. 2:

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

4.6.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0X2FEF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks. Refer to Figure 4-12 for the Linear Data Memory Map.

Note: The address range 0x2000 to 0x2FF0 represents the complete addressable Linear Data Memory up to Bank 50. The actual implemented Linear Data Memory will differ from one device to the other in a family. Confirm the memory limits on every device.

Unimplemented memory reads as $0 \ge 00$. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 4-12: LINEAR DATA MEMORY MAP

4.6.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire Program Flash Memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the Program Flash Memory cannot be accomplished via the FSR/INDF interface. All instructions that access Program Flash Memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 4-13: PROGRAM FLASH MEMORY MAP

FIGURE 10)-2: II	NTERRUPT LA	TENCY				
							Rev. 10-000269E 8/31/2016
$OSC1 \land \land$							
CLKOUT \							
INT pin _	INT pin						
Fetch(PC - 1	PC	PC + 1		PC = 0x0004	PC = 0x0005	PC = 0x0006
Execute (PC - 21	PC - 1	РС	NOP	NOP	PC = 0x0004	PC = 0x0005
		Indeterminate Laten cy ⁽²⁾		Latency			
Note 1: 2:	An interrupt Since an int	may occur at any t errupt may occur a	ime during the ir ny time during th	nterrupt window. ne interrupt wind	ow, the actual lat	ency can vary.	

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1					
	(4)			1 1 1	
INT pin		. (1)	1 1	i 1	<u> </u>
INTF	, (1) (5)	, , ,	Interrupt Latency (2)		
GIE					
PC	(PC	PC + 1	PC + 1	X 0004h	X0005h
Instruction Fetched	Inst (PC)	Inst (PC + 1)	—	Inst (0004h)	Inst (0005h)
Instruction Executed ^{<}	Inst (PC – 1)	Inst (PC)	Forced NOP	Forced NOP	Inst (0004h)
Note 1:	NTF flag is sampled here	e (every Q1).			
2: A L	Asynchronous interrupt la atency is the same whe	atency = 3-5 Tcy. Sy ther Inst (PC) is a sing	nchronous latency = 3 gle cycle or a 2-cycle in	-4 TCY, where TCY = struction.	instruction cycle time.
3: F	For minimum width of INT	pulse, refer to AC sp	ecifications in Section	37.0 "Electrical Spe	cifications".

4: INTF may be set any time during the Q4-Q1 cycles.

			-				
U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
—	—	NVMIE	NCO1IE	—	—	—	CWG1IE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7-6	Unimplemen	ted: Read as '	0'.				
bit 5	NVMIE: NVM	Interrupt Enab	le bit				
	1 = NVM tas	sk complete int	errupt enable	d			
1.11. A		errupt not enat					
DIT 4		O Interrupt Ena	idle dit				
	0 = NCO rol	llover interrupt	disabled				
bit 3-1	Unimplemen	ted: Read as '	0'.				
bit 0	CWG1IE: Cor	mplementary V	/aveform Ger	nerator (CWG)	2 Interrupt Enat	ole bit	
	1 = CWG1 i	nterrupt is enal	bled				
	0 = CWG1 ir	nterrupt disable	ed				
r							
Note: Bi	t PEIE of the IN	TCON register	must be				
se	et to enable an	ny peripheral	Interrupt				
	ina olieu by regis	ICISFICI-PIC/	•				

REGISTER 10-9: PIE7: PERIPHERAL INTERRUPT ENABLE REGISTER 7

	-R IU-13: PIK3:				I REGISTER		
R/W/HS-	-0/0 R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
RC2IF	F TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF
bit 7							bit (
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is	unchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is	set	'0' = Bit is clea	ared	HS = Hardwa	are clearable		
L:1 7					(1)		
DIT /	1 - The EUSA	ARIZ Receive I	nterrupt Flag	(Read-Only) b moty (contains	iti'''	to)	
	1 = The EUS 0 = The EUS	ART2 receive	buffer is empty	v (Contains	at least one by	le)	
bit 6	TX2IF: EUSA	RT2 Transmit	nterrupt Flag	, (Read-Only) b	it(2)		
	1 = The EUS	ART2 transmit	buffer contain	is at least one	unoccupied spa	ice	
	0 = The EUS	SART2 transmi	t buffer is cu	rrently full. Th	ne application fi	rmware shoul	d not write to
	TXxREG				(1)		
bit 5	RC1IF: EUSA	ART1 Receive I	nterrupt Flag	(read-only) bit	(') 	L- \	
	1 = The EUS 0 = The FUS	ART1 receive	buffer is not ei buffer is empty	mpty (contains v	at least one by	(e)	
bit 4	TX1IF: EUSA	RT1 Transmit	nterrupt Flag	, (read-onlv) bit	(2)		
	1 = The EUS	SART1 transmi	t buffer contai	ns at least one	unoccupied spa	ace	
	0 = The EU	SART1 transm	it buffer is cu	irrently full. Th	ne application f	irmware shoul	d not write to
	TXxREG	again, until m	ore room becc	omes available	in the transmit	buffer.	
bit 3	BCL2IF: MSS	SP2 Bus Collisi	on Interrupt Fl	lag bit			
	1 = A bus coll $0 = No bus coll$	lision was dete	cted (must be ected	cleared in som	(ware)		
bit 2	SSP2IF: Svn	chronous Seria	l Port (MSSP2	2) Interrupt Fla	a bit		
~~ _	1 = The Tran	smission/Rece	ption/Bus Cor	dition is comp	lete (must be cl	eared in softwa	are)
	0 = Waiting f	or the Transmis	ssion/Reception	on/Bus Conditi	on in progress		,
bit 1	BCL1IF: MSS	SP1 Bus Collisi	on Interrupt Fl	lag bit			
	1 = A bus co	llision was dete	cted (must be	e cleared in sof	ftware)		
		ollision was de	tected				
bit 0	SSP1IF: Synd	chronous Seria	I Port (MSSP1	I) Interrupt Fla	g bit lata (muat ha al	oarad in aaffuur	
	1 = The tran 0 = Waiting f	or the Transmis	sion/Receptic	on/Bus Conditi	on in progress	eared in sollwa	are)
Note 1.		a road only hit			firmuoro muot	road from DCv	
Note 1:	times to remove al	l bytes from the	e receive buffe	er.	inniware must	read from RCX	REG enough
2:	The TXxIF flag is a	a read-only bit,	indicating if th	ere is room in	the transmit but	fer. To clear th	e TX1IF flag,
	the firmware must	write enough d	ata to TXxRE	G to complete	ly fill all available	e bytes in the b	ouffer. The
	TXxIF flag does no	ot indicate trans	smit completio	n (use TRMT	for this purpose	instead).	
Note:	Interrupt flag bits a	re set when an	interrupt				
	condition occurs, r	egardless of the	e state of				
	its corresponding	enable bit or th	e Global				
	Enable bit, GIE, c	should encu	register.				
	appropriate interri	upt flag bits a	are clear				

prior to enabling an interrupt.

© 2016 Microchip Technology Inc.

11.4 Register Definitions: Voltage Regulator and DOZE Control

REGISTER 11-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER ⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	U-0	
	—	—	-	—		VREGPM	—	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable I	bit	U = Unimpler	 Unimplemented bit, read as '0' 			
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-2 Unimplemented: Read as '0'

bit 1

VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾
 - Draws lowest current in Sleep, slower wake-up
- Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up

bit 0 Unimplemented: Read as '1'. Maintain this bit set

Note 1: PIC16F15356/75/76/85/86 only.

2: See Section 37.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	200
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	200
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	201
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	201
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	202
ODCONA	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	202
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	203
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	203

TABLE 14-2:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
-------------	--

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

14.4 PORTB Registers

14.4.1 DATA REGISTER

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 14-10). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., disable the output driver). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize PORTB.

Reading the PORTB register (Register 14-9) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

The PORT data latch LATB (Register 14-11) holds the output port data, and contains the latest value of a LATB or PORTB write.

14.4.2 DIRECTION CONTROL

The TRISB register (Register 14-10) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.4.3 OPEN-DRAIN CONTROL

The ODCONB register (Register 14-14) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I ² C; the I ² C
	module controls the pin and makes the pin open-drain.

14.4.4 SLEW RATE CONTROL

The SLRCONB register (Register 14-15) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.4.5 INPUT THRESHOLD CONTROL

The INLVLB register (Register 14-8) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

14.4.6 ANALOG CONTROL

The ANSELB register (Register 14-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with its TRIS bit clear and its ANSEL bit set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

14.4.7 WEAK PULL-UP CONTROL

The WPUB register (Register 14-5) controls the individual weak pull-ups for each PORT pin.

14.4.8 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic or by enabling an analog output, such as the DAC. See **Section 15.0** "**Peripheral Pin Select (PPS) Module**" for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

15.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- The I²C SCLx and SDAx functions can be Note: remapped through PPS. However, only the RB1, RB2, RC3 and RC4 pins have the I²C and SMBus specific input buffers implemented (I²C mode disables INLVL and sets thresholds that are specific for I^2C). If the SCLx or SDAx functions are mapped to some other pin (other than RB1, RB2, RC3 or RC4), the general purpose TTL or ST input buffers (as configured based on INLVL register setting) will be used instead. In most applications, it is therefore recommended only to map the SCLx and SDAx pin functions to the RB1, RB2, RC3 or RC4 pins.

15.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 15-1.

EXAMPLE 15-1: PPS LOCK/UNLOCK SEQUENCE

;	suspend interrupts
	BCF INTCON, GIE
;	BANKSEL PPSLOCK ; set bank
;	required sequence, next 5 instructions
	MOVLW 0x55
	MOVWF PPSLOCK
	MOVLW 0xAA
	MOVWF PPSLOCK
;	Set PPSLOCKED bit to disable writes or
;	Clear PPSLOCKED bit to enable writes
	BSF PPSLOCK, PPSLOCKED
;	restore interrupts
	BSF INTCON, GIE

15.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

15.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

15.7 Effects of a Reset

A device Power-on-Reset (POR) clears all PPS input and output selections to their default values (Permanent Lock Removed). All other Resets leave the selections unchanged. Default input selections are shown in Table 15-1 through Table 15-3.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	_	—			ADACT	۲<3:0>		
bit 7							bit 0	
Legend:	Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, r					nented bit, read	d as '0'		
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Rese				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 20-3: ADACT: A/D AUTO-CONVERSION TRIGGER

bit 7-4 Unimplemented: Read as '0'

bit 3-0 ADACT<3:0>: Auto-Conversion Trigger Selection bits⁽¹⁾ (see Table 20-2)

Note 1: This is a rising edge sensitive input for all sources.

22.8 NCO Control Registers

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
N1EN	—	N1OUT	N1POL	—	—	—	N1PFM
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7 bit 6 bit 5	N1EN: NCO1 Enable bit 1 = NCO1 module is enabled 0 = NCO1 module is disabled Unimplemented: Read as '0' N1OUT: NCO1 Output bit						
bit 4	bit 4 N1POL: NCO1 Polarity bit 1 = NCO1 output signal is inverted 0 = NCO1 output signal is not inverted						
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	bit 0 N1PFM: NCO1 Pulse Frequency Mode bit 1 = NCO1 operates in Pulse Frequency mode 0 = NCO1 operates in Fixed Duty Cycle mode, divide by 2						

REGISTER 22-1: NCO1CON: NCO CONTROL REGISTER

© 2016 Microchip Technology Inc.

26.3 Timer Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

26.4 Secondary Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO (amplifier output). This internal circuit is designed to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the SOSCEN bit of the OSCEN register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, SOSCEN should be set and a suitable delay observed prior to using Timer1 with the SOSC source. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

26.5 Timer Operation in Asynchronous Counter Mode

If the control bit SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 26.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

26.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

26.6 Timer Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using the time gate circuitry. This is also referred to as Timer Gate Enable.

The timer gate can also be driven by multiple selectable sources.

26.6.1 TIMER GATE ENABLE

The Timer Gate Enable mode is enabled by setting the GE bit of the T1GCON register. The polarity of the Timer Gate Enable mode is configured using the GPOL bit of the T1GCON register.

When Timer Gate Enable signal is enabled, the timer will increment on the rising edge of the Timer1 clock source. When Timer Gate Enable signal is disabled, the timer always increments, regardless of the GE bit. See Figure 26-3 for timing details.

TABLE 26-2: TIMER GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer Operation
\uparrow	1	1	Counts
\uparrow	1	0	Holds Count
\uparrow	0	1	Holds Count
\uparrow	0	0	Counts

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	LCxG3D4T: (Gate 2 Data 4 T	rue (non-inve	rted) bit				
	1 = CLCIN3	(true) is gated i	nto CLCx Gat	e 2				
hit C	0 = CLCIN3	(true) is not gat	ed Into CLCX	Gale Z				
DILO		(invorted) is ga	tod into CLCx	Gate 2				
	0 = CLCIN3	(inverted) is no	t gated into CLOX	Cx Gate 2				
bit 5	LCxG3D3T:	Sate 2 Data 3 T	rue (non-inve	rted) bit				
	1 = CLCIN2 ((true) is gated i	rue) is gated into CLCx Gate 2					
	0 = CLCIN2	(true) is not gat	ed into CLCx	Gate 2				
bit 4	LCxG3D3N:	Gate 2 Data 3 Negated (inverted) bit						
	1 = CLCIN2	(inverted) is ga	ted into CLCx	Gate 2				
hit 2	0 = CLCINZ((Inverted) is no		LOX Gale Z				
DIL 3	1 = CLCIN1/C	(true) is gated into CLCx Gate 2						
	0 = CLCIN1	(true) is not gat	ed into CLCx	Gate 2				
bit 2	LCxG3D2N:	Gate 2 Data 2 I	Negated (inver	rted) bit				
	1 = CLCIN1 (inverted) is gated into CLCx Gate 2							
	0 = CLCIN1 ((inverted) is no	t gated into Cl	Cx Gate 2				
bit 1	LCxG3D1T: (Gate 2 Data 1 T	rue (non-inve	rted) bit				
	1 = CLCINO((true) is gated i	nto CLCx Gate	e 2 Cata 2				
h it 0		(true) is not gat						
		(inverted) is as	ted into CLCv	Gate 2				
	0 = CLCINO((inverted) is ga	t gated into CLOX	_Cx Gate 2				
	-	, , ,	5					

REGISTER 31-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

32.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPxSTAT)
- MSSP Control register 1 (SSPxCON1)
- MSSP Control register 3 (SSPxCON3)
- MSSP Data Buffer register (SSPxBUF)
- MSSP Address register (SSPxADD)
- MSSP Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 32.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

© 2016 Microchip Technology Inc.

32.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

32.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit (I²C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- · Serial Clock (SCL)
- Serial Data (SDA)

Figure 32-11 shows the block diagram of the MSSP module when operating in I^2C mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 32-11 shows a typical connection between two processors configured as master and slave devices.

The I²C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

FIGURE 32-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDA line while the SCL line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit.

32.6.7 I²C MASTER MODE RECEPTION

Master mode reception (Figure 32-29) is enabled by programming the Receive Enable bit, RCEN bit of the SSPxCON2 register.

Note:	The MSSP module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

32.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

32.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

32.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

- 32.6.7.4 Typical Receive Sequence:
- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- User sets the RCEN bit of the SSPxCON2 register and the master clocks in a byte from the slave.
- 9. After the eighth falling edge of SCL, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxBUF, clears BF.
- 11. Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Master's ACK is clocked out to the slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

ΜΟΥΨΙ	Move W to INDFn				
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]				
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31				
Operation:	$\label{eq:W} \begin{split} W &\rightarrow INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be} \\ \text{either:} \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \text{Unchanged} \end{split}$				
Status Affected:	None				

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the RI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by software.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE k
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1

37-4:	I/O PORTS					
Standard Operating Conditions (unless otherwise stated)						
Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
VIL	Input Low Voltage					
	I/O PORT:					
	with TTL buffer	—	-	0.8	V	4.5V ≤ VDD <u>≤ 5.5V</u>
		—	-	0.15 Vdd	V	1.8V< ≤ VDp ≤ 4.5V
	with Schmitt Trigger buffer	—	_	0.2 VDD	/v	2.0V ≤ VpD ≥ 5.5V
	with I ² C levels	_	_	0.3 VDQ	V	
	with SMBus levels	_		0.8	V	$2.7V \le VDD \le 5.5V$
	MCLR	_		0.2 VDD	\ W	
VIH	Input High Voltage	•		\wedge	$\langle \langle \rangle$	
	I/O PORT:			//		\rangle
	with TTL buffer	2.0			L V V	$4.5V \leq V\text{DD} \leq 5.5V$
		0.25 VDD + 0.8	, , ,		$\mathbf{\mathcal{Y}}$	$1.8V \leq V\text{DD} \leq 4.5V$
	with Schmitt Trigger buffer	0.8 VDD <		$\langle \mathcal{F} \rangle$	V	$2.0V \le VDD \le 5.5V$
	with I ² C levels	0.7 Yap	/-/	\searrow	V	
	with SMBus levels	(2.1		<u> </u>	V	$2.7V \le VDD \le 5.5V$
	MCLR	0.7 VDD	/_ /	/ _	V	
lı∟	Input Leakage Current ⁽¹⁾	<				
	I/O Ports	N - C	±5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C
		$\langle \rangle$	±5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 125°C
	MCLR ⁽²⁾	$\overline{\mathbf{a}}$	± 50	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C
IPUR	Weak Pull-up Current					
		25	120	200	μΑ	VDD = 3.0V, VPIN = VSS
Vol	Output Løw Voltage					
	I/O ports		_	0.6	V	IOL = 10.0mA, VDD = 3.0V
Voн	Øutput High Voltage	•		•		•
	I/O ports	Vdd - 0.7	_	_	V	ЮН = 6.0 mA, VDD = 3.0V
Сю	All I/O pins	—	5	50	pF	
	37-4: d Operat Sym. VIL VIL VIH	37-4: I/O PORTS Joperating Conditions (unless otherwist) Sym. Characteristic VIL Input Low Voltage I/O PORT: with TTL buffer with Schmitt Trigger buffer with SChmitt Trigger buffer with Schmitt Trigger buffer with SMBus levels MCLR Input High Voltage VIH Input High Voltage I/O PORT: with Schmitt Trigger buffer with Schmitt Trigger buffer with SChmitt Trigger buffer with SChmitt Trigger buffer with SCHWER IIL Input Leakage Current ⁽¹⁾ I/O Ports MCLR IIL Input Leakage Current ⁽¹⁾ I/O Ports MCLR IPUR Weak Pull-up Current VOL Output Low Voltage I/O ports Voltage I/O ports Voltage I/O ports Voltage	37-4: I/O PORTS doperating Conditions (unless otherwise stated) Sym. Characteristic Min. VIL Input Low Voltage ////////////////////////////////////	37-4: I/O PORTS d Operating Conditions (unless otherwise stated) Sym. Characteristic Min. Typ† VIL Input Low Voltage	37-4: VO PORTS Sym. Characteristic Min. Typ† Max. VIL Input Low Voltage I/O PORT: - - 0.8 With TTL buffer - - 0.15 VDD with Schmitt Trigger buffer - - 0.3 Vb0 With SChmitt Trigger buffer - - 0.3 Vb0 With SChmitt Trigger buffer - - 0.2 VbD VIH Input High Voltage With Schmitt Trigger buffer - - - - With Schmitt Trigger buffer 0.8 VDD - With Schmitt Trigger buffer - - - - - - - I/I Input Leakage Current ⁽¹⁾ I/I I/I Input Leakage Current ⁽¹⁾ I/I I I I <td>37-4: I/O PORTS doperating Conditions (unless otherwise stated) Sym. Characteristic Min. Typ† Max. Units VIL Input Low Voltage I/O PORT: - - 0.8 V with Schmitt Trigger buffer - - 0.2 VDD V With Schmitt Trigger buffer - - 0.3 VD6 V With SMBus levels - - 0.3 VD6 V With II Input High Voltage - - 0.3 VD6 V With TL buffer - - 0.3 VD6 V With Schmitt Trigger buffer - - V O With Schmitt Trigger buffer - V O MCLR - - -</td>	37-4: I/O PORTS doperating Conditions (unless otherwise stated) Sym. Characteristic Min. Typ† Max. Units VIL Input Low Voltage I/O PORT: - - 0.8 V with Schmitt Trigger buffer - - 0.2 VDD V With Schmitt Trigger buffer - - 0.3 VD6 V With SMBus levels - - 0.3 VD6 V With II Input High Voltage - - 0.3 VD6 V With TL buffer - - 0.3 VD6 V With Schmitt Trigger buffer - - V O With Schmitt Trigger buffer - V O MCLR - - -

† Data in "Typ) column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: Negative current is defined as current sourced by the pin.
 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent

normal operating conditions. Higher leakage current may be measured at different input voltages.