

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15356-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Digital Peripherals (Cont.)

- I/O Pins:
 - Individually programmable pull-ups
 - Slew rate control
 - Interrupt-on-change with edge-select
 - Input level selection control (ST or TTL)
- Digital open-drain enable
- Peripheral Pin Select (PPS):
 - Enables pin mapping of digital I/O

Analog Peripherals

- Analog-to-Digital Converter (ADC):
 - 10-bit with up to 43 external channels
 - Operates in Sleep
- Two Comparators:
 - FVR, DAC and external input pin available on inverting and noninverting input
 - Software selectable hysteresis
 - Outputs available internally to other modules, or externally through PPS
- 5-Bit Digital-to-Analog Converter (DAC):
 - 5-bit resolution, rail-to-rail
 - Positive Reference Selection
 - Unbuffered I/O pin output
 - Internal connections to ADCs and comparators
- Voltage Reference:
 - Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels
- Zero-Cross Detect module:
 - AC high voltage zero-crossing detection for simplifying TRIAC control
 - Synchronized switching control and timing

Flexible Oscillator Structure

- High-Precision Internal Oscillator:
- Software selectable frequency range up to 32 MHz, ±1% typical
- x2/x4 PLL with Internal and External Sources
- Low-Power Internal 32 kHz Oscillator (LFINTOSC)
- External 32 kHz Crystal Oscillator (SOSC)
- External Oscillator Block with:
 - Three crystal/resonator modes up to 20 MHz
 - Three external clock modes up to 32 MHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if primary clock stops
- Oscillator Start-up Timer (OST):
 - Ensures stability of crystal oscillator resources

Name	Function	Input Type	Output Type	Description
RC2/ANC2/CCP1 ⁽¹⁾ /IOCC2	RC2	TTL/ST	CMOS/OD	General purpose I/O.
	ANC2	AN	—	ADC Channel C2 input.
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM1 (default input location for capture function).
	IOCC2	TTL/ST	—	Interrupt-on-change input.
RC3/ANC3/SCL1 ⁽¹⁾ /SDI1 ⁽¹⁾ /T2IN ⁽¹⁾ / IOCC3	RC3	TTL/ST	CMOS/OD	General purpose I/O.
0000	ANC3	AN	—	ADC Channel C3 input.
	SCL1 ⁽¹⁾	I ² C	OD	MSSP1 I ² C input/output.
	SDI1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI serial data input (default input location, SDI1 is a PPS remappable input and output).
	T2IN ⁽¹⁾	TTL/ST	—	Timer2 external input.
	IOCC3	TTL/ST	—	Interrupt-on-change input.
RC4/ANC4/SDA1 ⁽¹⁾ /SDI1 ⁽¹⁾ /IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	_	ADC Channel C4 input.
	SDA1 ⁽¹⁾	l ² C	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI serial data input (default input location, SDI1 is a PPS remappable input and output).
	IOCC4	TTL/ST	—	Interrupt-on-change input.
RC5/ANC5/IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	—	ADC Channel C5 input.
	IOCC5	TTL/ST	—	Interrupt-on-change input.
RC6/ANC6/TX1/CK1 ⁽¹⁾ /IOCC6	RC6	TTL/ST	CMOS/OD	General purpose I/O.
	ANC6	AN	—	ADC Channel C6 input.
	TX1	—	CMOS	EUSART1 asynchronous.
	CK1 ⁽¹⁾	TTL/ST	CMOS/OD	EUSART Synchronous mode clock input/output.
	IOCC6	TTL/ST	_	Interrupt-on-change input.
RC7/ANC7/RX1/DT1 ⁽¹⁾ /IOCC7	RC7	TTL/ST	CMOS/OD	General purpose I/O.
	ANC7	AN	_	ADC Channel C7 input.
	RX1	TTL/ST	_	EUSART1 Asynchronous mode receiver data input.
	DT1 ⁽¹⁾	TTL/ST	CMOS/OD	EUSART1 Synchronous mode data input/output.
	IOCC7	TTL/ST	_	Interrupt-on-change input.
RD0/AND0/SCL2 ^(1,4) /SCK2 ⁽¹⁾ /	RD0	TTL/ST	CMOS/OD	General purpose I/O.
	AND0	AN	_	ADC Channel D0 input.
	SCL2 ^(1,4)	l ² C	OD	MSSP2 I ² C input/output.
	SCK2 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP2 SPI clock input/output (default input location, SCK2 is PPS remappable input and output).

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION (CONTINUED)

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1: pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 15-5, Table 15-6 and Table 15-6. This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and

3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Note

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address	Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on: MCLR									
Bank 8-10											
CPU CORE REGISTERS; see Table 4-3 for specifics											
x0Ch/ x8Ch Unimplemented											

5.2 Register Definitions: Configuration Words

REGISTER	5-1: CO	NFIGURATIO	N WORD 1:	OSCILLATO	RS			
		R/P-1	U-1	R/P-1	U-1	U-1	R/P-1	
		FCMEN	_	CSWEN	_	_	CLKOUTEN	
		bit 13					bit 8	
11.1	R/P-1	R/P-1	R/P-1	11.1	R/P-1	R/P-1	R/P-1	
U-1				U-1				
	RSTOSC2	RSTOSC1	RSTOSC0	—	FEXTOSC2	FEXTOSC1	FEXTOSC0	
bit 7							bit (
Legend:								
R = Readable	e bit	P = Programma	able bit	x = Bit is unkno	own	U = Unimpleme '1'	nted bit, read as	
'0' = Bit is clea	ared	'1' = Bit is set		W = Writable b	it	n = Value when blank or after Bulk Erase		
bit 13	FCMEN: Fail- 1 = FSCM tir 0 = FSCM tir		or Enable bit					
bit 12	Unimplement	ed: Read as '1'						
bit 11	1 = Writing to	k Switch Enable NOSC and NDI C and NDIV bits	/ is allowed	ged by user soft	ware			
bit 10-9	Unimplement	ed: Read as '1'						
bit 8	If FEXTOSC = 1 = CLKOUT	Clock Out Enable <u>EC (high, mid or</u> function is disable function is enable pred.	<u>low) or Not En</u> ed; I/O or oscill	ator function on (
bit 7	Unimplement	ed: Read as '1'						
bit 6-4	This value is t 111 = EXTC 110 = HFIN 101 = LFIN 100 = SOSC 011 = Reserved 010 = EXTC 001 = EXTC 001 = EXTC	OSC operating per TOSC with HFFR TOSC	value for COSC FEXTOSC bits Q = 3 ' b010 with EXTOSC of with EXTOSC of	and selects the (device manufa pperating per FE pperating per FE	cturing default) XTOSC bits	ed by user softwa	re.	
bit 3	Unimplement	ed: Read as '1'						
bit 2-0	Unimplemented: Read as '1' FEXTOSC<2:0>:FEXTOSC External Oscillator Mode Selection bits 111 = EC (External Clock) above 8 MHz; PFM set to high power (device manufacturing default) 10 = EC (External Clock) for 100 kHz to 8 MHz; PFM set to medium power 101 = EC (External Clock) below 100 kHz 100 = Oscillator not enabled 011 = Reserved (do not use) 010 = HS (Crystal oscillator) above 4 MHz; PFM set to high power 001 = XT (Crystal oscillator) above 100 kHz, below 4 MHz; PFM set to medium power 000 = LP (Crystal oscillator) optimized for 32.768 kHz; PFM set to low power							

REGISTER 5-1: CONFIGURATION WORD 1: OSCILLATORS

REGISTER 5-3: CONFIGURATION WORD 3: WINDOWED WATCHDOG (CONTINUED)

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

		WDTPS at	POR		
WDTCPS	Value	Divider Ra	atio	Typical Time Out (FIN = 31 kHz)	- Software Control of WDTPS?
11111 (1)	01011	1:65536	2 ¹⁶	2 s	Yes
11110 10011	11110 10011	1:32	2 ⁵	1 ms	No
10010	10010	1:8388608	2 ²³	256 s	
10001	10001	1:4194304	2 ²²	128 s	
10000	10000	1:2097152	2 ²¹	64 s	
01111	01111	1:1048576	2 ²⁰	32 s	
01110	01110	1:524299	2 ¹⁹	16 s	
01101	01101	1:262144	2 ¹⁸	8 s	
01100	01100	1:131072	2 ¹⁷	4 s	
01011	01011	1:65536	2 ¹⁶	2 s	
01010	01010	1:32768	2 ¹⁵	1 s	
01001	01001	1:16384	2 ¹⁴	512 ms	No
01000	01000	1:8192	2 ¹³	256 ms	
00111	00111	1:4096	2 ¹²	128 ms	
00110	00110	1:2048	2 ¹¹	64 ms	
00101	00101	1:1024	2 ¹⁰	32 ms	
00100	00100	1:512	2 ⁹	16 ms	
00011	00011	1:256	2 ⁸	8 ms	
00010	00010	1:128	2 ⁷	4 ms	
00001	00001	1:64	2 ⁶	2 ms	
00000	00000	1:32	2 ⁵	1 ms	

Note 1: 0b11111 is the default value of the WDTCPS bits.

© 2016 Microchip Technology Inc.

5.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data memory are controlled independently. Internal access to the program memory is unaffected by any code protection setting.

5.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Self-writing the program memory is dependent upon the write protection setting. See **Section 5.4** "Write **Protection**" for more information.

5.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRTAPP, WRTSAF, WRTB, WRTC bits in Configuration Words (Register 5-4) define whether the corresponding region of the program memory block is protected or not.

5.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 13.3.6 "NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Words" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC16(L)F153xx Memory Programming Specification" (DS40001838).

8.15 Register Definitions: Power Control

REGISTER 8-2: PCON0: POWER CONTROL REGISTER 0

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:								
HC = Bit is clo	eared by hardv	vare	HS = Bit is set by hardware					
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read as '0'					
u = Bit is uncl	hanged	x = Bit is unknown	-m/n = Value at POR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition					
bit 7	1 = A Stack	tack Overflow Flag bit Overflow occurred Overflow has not occurre	ed or cleared by firmware					
bit 6	1 = A Stack	tack Underflow Flag bit Underflow occurred Underflow has not occurr	red or cleared by firmware					
bit 5	1 = A WDT 0 = A WDT	Window Violation Reset h	g bit as not occurred or set to '1' by firmware as occurred (a CLRWDT instruction was executed either without window (cleared by hardware)					
bit 4	1 = A Watch		it occurred or set to '1' by firmware urred (cleared by hardware)					
bit 3	1 = A MCLR	CLR Reset Flag bit Reset has not occurred of Reset has occurred (clea						
bit 2	1 = A RESET		executed or set to '1' by firmware ecuted (cleared by hardware)					
bit 1	1 = No Pow	r-on Reset Status bit er-on Reset occurred r-on Reset occurred (must	t be set in software after a Power-on Reset occurs)					
bit 0	1 = No Brow	•	t be set in software after a Power-on Reset or Brown-out Reset					

PIC16(L)F15356/75/76/85/86

REGISTER	10-3: PIE1:	PERIPHERAI		PT ENABLE	REGISTER 1		
R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
OSFIE	CSWIE	—	—	—	—	—	ADIE
bit 7							bit 0
Legend:]
R = Readab	la hit	W = Writable	h:t		nantad hit raad	aa 'O'	
					nented bit, read		
u = Bit is un	changed	x = Bit is unkr	iown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 6	0 = Disables CSWIE: Cloc 1 = The clock	he Oscillator Fa the Oscillator F k Switch Comp switch module	ail Interrupt lete Interrupt I interrupt is er	nabled			
h :1 F 4		switch module	•	sabled			
bit 5-1	-	ted: Read as '					
bit 0 ADIE: Analog-to-Digital Converter (ADC) Interrupt Enable bit 1 = Enables the ADC interrupt 0 = Disables the ADC interrupt							
Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt controlled by registers PIE1-PIE7							

EXAMPLE 13-1: PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
    PROG_ADDR_HI : PROG_ADDR_LO
    data will be returned in the variables;
*
    PROG_DATA_HI, PROG_DATA_LO
    BANKSELNVMADRL; Select Bank for NVMCON registersMOVLWPROG_ADDR_LO;MOVWFNVMADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWFNVMADRH; Store MSB of address
    BCF
              NVMCON1,NVMREGS ; Do not select Configuration Space
    BSF
                NVMCON1, RD
                                      ; Initiate read
    MOVF
                 NVMDATL,W
                                        ; Get LSB of word
                NVMDATL,W; Get LSB of wordPROG_DATA_LO; Store in user locationNVMDATH,W; Get MSB of wordPROG_DATA_HI; Store in user location
    MOVWF
    MOVF
    MOVWF
```

14.10.8 PORTE FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

22.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for application that requires frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse Width Control
- Multiple Clock Input Sources
- Output Polarity Control
- Interrupt Capability

Figure 22-1 is a simplified block diagram of the NCO module.

23.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 23-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- · Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 23-2) contains Control bits for the following:

- · Interrupt on positive/negative edge enables
- The CMxNSEL and CMxPSEL (Register 23-3 and Register 23-4) contain control bits for the following:
 - Positive input channel selection
 - Negative input channel selection

23.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

23.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 15-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

23.2.3 COMPARATOR OUTPUT POLARITY

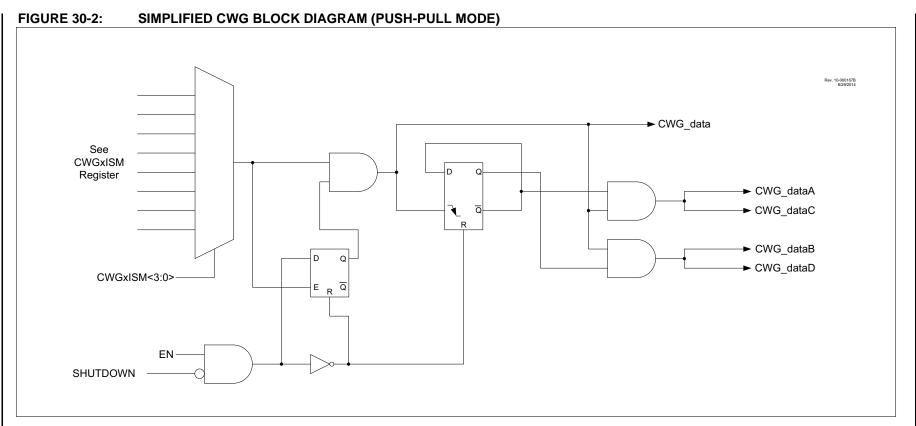
Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 23-2 shows the output state versus input conditions, including polarity control.

TABLE 23-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

27.6 Timer2 Operation During Sleep


When PSYNC = 1, Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and T2PR registers will remain unchanged while processor is in Sleep mode.

When PSYNC = 0, Timer2 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC ^{(1,}	²⁾ CKPOL ⁽³⁾	CKSYNC ^(4, 5)			MODE<4:0>(6, 7)	1	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'	
u = Bit is un	changed	x = Bit is unknow	'n	-n/n = Value at	POR and BOR/V	alue at all other	Resets
'1' = Bit is se	et	'0' = Bit is cleare	d				
bit 7	1 = TMRx Pr 0 = TMRx Pr	erx Prescaler Synch rescaler Output is s rescaler Output is n	ynchronized to ot synchronize	Fosc/4			
bit 6	1 = Falling e	erx Clock Polarity S dge of input clock c dge of input clock cl	locks timer/pre				
bit 5	1 = ON regis	nerx Clock Synchro ster bit is synchroniz ster bit is not synchr	ed to TMR2_c	clk input			
bit 4-0	MODE<4:0>: See Table 27-	Timerx Control Mod	de Selection b	its ^(6, 7)			
Note 1:	Setting this bit ens	sures that reading T	MRx will retur	n a valid value.			
2:	When this bit is '1	', Timer2 cannot op	erate in Sleep	mode.			
3: CKPOL should not be changed while ON = 1.							
4: Setting this bit ensures glitch-free operation when the ON is enabled or disabled.							
5:	When this bit is se	et then the timer ope	eration will be	delayed by two Tl	MRx input clocks	after the ON bit	is set.
6:	6: Unless otherwise indicated, all modes start upon ON = 1 and stop upon ON = 0 (stops occur without affecting the value of TMRx).						

REGISTER 27-3: T2HLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

© 2016 Microchip Technology Inc.

30.12 Configuring the CWG

The following steps illustrate how to properly configure the CWG.

- 1. Ensure that the TRIS control bits corresponding to the desired CWG pins for your application are set so that the pins are configured as inputs.
- 2. Clear the EN bit, if not already cleared.
- 3. Set desired mode of operation with the MODE bits.
- Set desired dead-band times, if applicable to mode, with the CWG1DBR and CWG1DBF registers.
- 5. Setup the following controls in the CWG1AS0 and CWG1AS1 registers.
 - a. Select the desired shutdown source.
 - b. Select both output overrides to the desired levels (this is necessary even if not using autoshutdown because start-up will be from a shutdown state).
 - c. Set which pins will be affected by auto-shutdown with the CWG1AS1 register.
 - d. Set the SHUTDOWN bit and clear the REN bit.
- 6. Select the desired input source using the CWG1ISM register.
- 7. Configure the following controls.
 - a. Select desired clock source using the CWG1CLKCON register.
 - b. Select the desired output polarities using the CWG1CON1 register.
 - c. Set the output enables for the desired outputs.
- 8. Set the EN bit.
- Clear TRIS control bits corresponding to the desired output pins to configure these pins as outputs.
- If auto-restart is to be used, set the REN bit and the SHUTDOWN bit will be cleared automatically. Otherwise, clear the SHUTDOWN bit to start the CWG.

30.12.1 PIN OVERRIDE LEVELS

The levels driven to the output pins, while the shutdown input is true, are controlled by the LSBD and LSAC bits of the CWG1AS0 register. LSBD<1:0> controls the CWG1B and D override levels and LSAC<1:0> controls the CWG1A and C override levels. The control bit logic level corresponds to the output logic drive level while in the shutdown state. The polarity control does not affect the override level.

30.12.2 AUTO-SHUTDOWN RESTART

After an auto-shutdown event has occurred, there are two ways to resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the REN bit of the CWG1CON2 register. Waveforms of software controlled and automatic restarts are shown in Figure 30-13 and Figure 30-14.

30.12.2.1 Software Controlled Restart

When the REN bit of the CWG1AS0 register is cleared, the CWG must be restarted after an auto-shutdown event by software. Clearing the shutdown state requires all selected shutdown inputs to be low, otherwise the SHUTDOWN bit will remain set. The overrides will remain in effect until the first rising edge event after the SHUTDOWN bit is cleared. The CWG will then resume operation.

30.12.2.2 Auto-Restart

When the REN bit of the CWG1CON2 register is set, the CWG will restart from the auto-shutdown state automatically. The SHUTDOWN bit will clear automatically when all shutdown sources go low. The overrides will remain in effect until the first rising edge event after the SHUTDOWN bit is cleared. The CWG will then resume operation.

R/W/HS-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0
SHUTDOWN ^(1, 2)	REN	LSBD<1:0> LSAC<1:0> — —					
bit 7						·	bit 0
Legend:							
HC = Bit is cleared	l by hardware			HS = Bit is se	et by hardware	•	
R = Readable bit		W = Writable	e bit	U = Unimpler	nented bit, rea	ad as '0'	
u = Bit is unchange	ed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	DR/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	eared	q = Value de	pends on cond	lition	
bit 7 SHUTDOWN: Auto-Shutdown Event Status bit ^(1, 2) 1 = An Auto-Shutdown state is in effect 0 = No Auto-shutdown event has occurred							
bit 6	REN: Auto-R 1 = Auto-res 0 = Auto-res		bit				
bit 5-4				-Shutdown Sta			
	10 =A logic '(01 =Pin is tri-	o' is placed or -stated on CW tive state of th	n CWG1B/D w /G1B/D when	hen an auto-sh hen an auto-sh an auto-shutdo g polarity, is pla	utdown event wn event is pr	is present esent	equired dead-
bit 3-2	LSAC<1:0>:	CWG1A and	CWG1C Auto	-Shutdown Sta	te Control bits		
	 11 =A logic '1' is placed on CWG1A/C when an auto-shutdown event is present 10 =A logic '0' is placed on CWG1A/C when an auto-shutdown event is present 01 =Pin is tri-stated on CWG1A/C when an auto-shutdown event is present 00 =The inactive state of the pin, including polarity, is placed on CWG1A/C after the required dead- band interval 						
bit 1-0	Unimplemer	nted: Read as	·'0'				
Note 1: This bit may be written while EN = 0 (CWG1CON0 register) to place the outputs into the shutdown configuration.						he shutdown	

REGISTER 30-5: CWG1AS0: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 0

2: The outputs will remain in auto-shutdown state until the next rising edge of the input signal after this bit is cleared.

32.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

32.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit (I²C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is controlled through addressing.

The I²C bus specifies two signal connections:

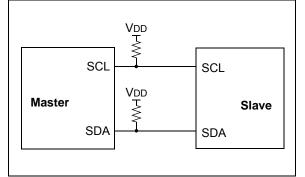
- · Serial Clock (SCL)
- Serial Data (SDA)

Figure 32-11 shows the block diagram of the MSSP module when operating in I^2C mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 32-11 shows a typical connection between two processors configured as master and slave devices.

The I²C bus can operate with one or more master devices and one or more slave devices.

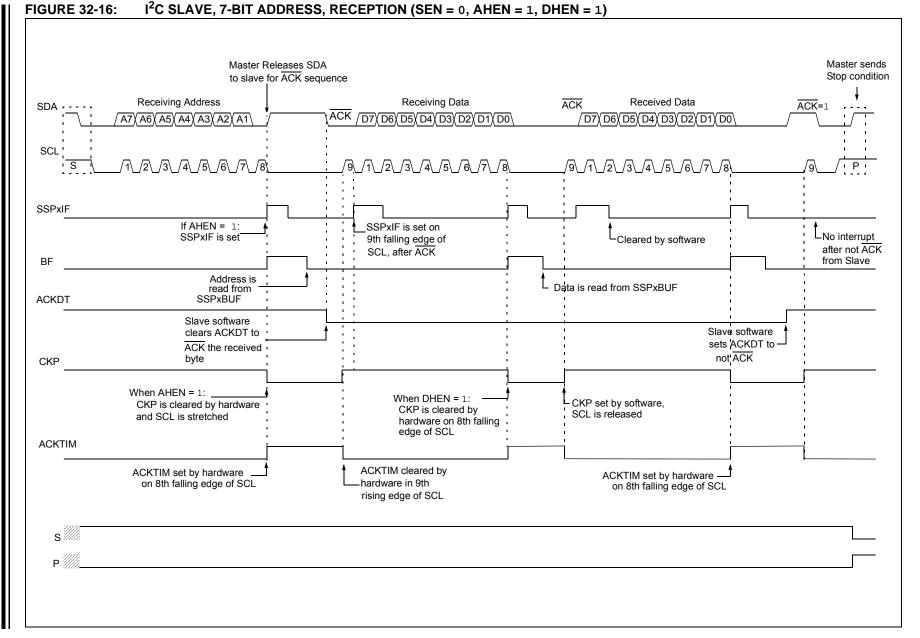

There are four potential modes of operation for a given device:

- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

FIGURE 32-11: I²C MASTER/ SLAVE CONNECTION



The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDA line while the SCL line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit.

PIC16(L)F15356/75/76/85/86

40.1 Package Marking Information (Continued)

Legend:	XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC [®] designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
		ent the full Microchip part number cannot be marked on one line, it will
		d over to the next line, thus limiting the number of available s for customer-specific information.